code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def sqrt(cls, x: 'TensorFluent') -> 'TensorFluent':
return cls._unary_op(x, tf.sqrt, tf.float32) | Returns a TensorFluent for the sqrt function.
Args:
x: The input fluent.
Returns:
A TensorFluent wrapping the sqrt function. | juraj-google-style |
def __hash__(self):
return hash(self.path) | Hash function.
Returns:
return the hash value of its path.
NOTE(daiyip): KeyPath shares the same hash of its JSONPath representation
(relative form), thus we can lookup a dict with KeyPath key by string,
and vice versa. | github-repos |
def __init__(self, file_object, encoding='utf-8'):
super(FileObjectOutputWriter, self).__init__(encoding=encoding)
self._errors = 'strict'
self._file_object = file_object | Initializes a file object command line interface output writer.
Args:
file_object (file): file-like object to read from.
encoding (Optional[str]): output encoding. | juraj-google-style |
def get_diff_coeff(hvec, n=1):
hvec = np.array(hvec, dtype=np.float)
acc = len(hvec)
exp = np.column_stack(([np.arange(acc)] * acc))
a = (np.vstack(([hvec] * acc)) ** exp)
b = np.zeros(acc)
b[n] = factorial(n)
return np.linalg.solve(a, b) | Helper function to find difference coefficients of an
derivative on an arbitrary mesh.
Args:
hvec (1D array-like): sampling stencil
n (int): degree of derivative to find | codesearchnet |
def modify(self, modification, obj):
for (action, settings) in modification.items():
if (action in self.supported_actions):
self.supported_actions[action].__call__(obj, settings)
elif self.strict:
raise ValueError('{} is not a supported action!'.format(action)) | Note that modify makes actual in-place modifications. It does not
return a copy.
Args:
modification (dict): Modification must be {action_keyword :
settings}. E.g., {'_set': {'Hello':'Universe', 'Bye': 'World'}}
obj (dict/str/object): Object to modify depending on actions. For
example, for DictActions, obj will be a dict to be modified.
For FileActions, obj will be a string with a full pathname to a
file. | codesearchnet |
class RunOneDetector(beam.PTransform[beam.PCollection[NestedKeyedInputT], beam.PCollection[NestedKeyedOutputT]]):
def __init__(self, detector):
self._detector = detector
def expand(self, input: beam.PCollection[NestedKeyedInputT]) -> beam.PCollection[NestedKeyedOutputT]:
model_id = getattr(self._detector, '_model_id', getattr(self._detector, '_key', 'unknown_model'))
model_uuid = f'{model_id}:{uuid.uuid4().hex[:6]}'
ret = input | beam.Reshuffle() | f'Score and Learn ({model_uuid})' >> RunScoreAndLearn(self._detector)
if self._detector._threshold_criterion:
ret = ret | f'Run Threshold Criterion ({model_uuid})' >> RunThresholdCriterion(self._detector._threshold_criterion)
return ret | Runs a single anomaly detector on a PCollection of data.
This PTransform applies a single `AnomalyDetector` to the input data,
including scoring, learning, and thresholding.
Args:
detector: The `AnomalyDetector` to run. | github-repos |
def sort_orbitals(element_pdos):
sorted_orbitals = ['s', 'p', 'py', 'pz', 'px', 'd', 'dxy', 'dyz', 'dz2', 'dxz', 'dx2', 'f', 'f_3', 'f_2', 'f_1', 'f_0', 'f1', 'f2', 'f3']
unsorted_keys = element_pdos.keys()
sorted_keys = []
for key in sorted_orbitals:
if (key in unsorted_keys):
sorted_keys.append(key)
return sorted_keys | Sort the orbitals of an element's projected density of states.
Sorts the orbitals based on a standard format. E.g. s < p < d.
Will also sort lm decomposed orbitals. This is useful for plotting/saving.
Args:
element_pdos (dict): An element's pdos. Should be formatted as a
:obj:`dict` of ``{orbital: dos}``. Where dos is a
:obj:`~pymatgen.electronic_structure.dos.Dos` object. For example::
{'s': dos, 'px': dos}
Returns:
list: The sorted orbitals. | codesearchnet |
def merge_dicts(dicts, op=operator.add):
a = None
for b in dicts:
if a is None:
a = b.copy()
else:
a = dict(a.items() + b.items() + [(k, op(a[k], b[k])) for k in set(b) & set(a)])
return a | Merge a list of dictionaries.
Args:
dicts (list): a list of dictionary objects
op (operator): an operator item used to merge the dictionaries. Defaults to :py:func:`operator.add`.
Returns:
dict: the merged dictionary | juraj-google-style |
class TFSwinPatchMerging(keras.layers.Layer):
def __init__(self, input_resolution: Tuple[int, int], dim: int, norm_layer: Optional[Callable]=None, **kwargs) -> None:
super().__init__(**kwargs)
self.input_resolution = input_resolution
self.dim = dim
self.reduction = keras.layers.Dense(2 * dim, use_bias=False, name='reduction')
if norm_layer is None:
self.norm = keras.layers.LayerNormalization(epsilon=1e-05, name='norm')
else:
self.norm = norm_layer(name='norm')
def maybe_pad(self, input_feature: tf.Tensor, height: int, width: int) -> tf.Tensor:
should_pad = height % 2 == 1 or width % 2 == 1
if should_pad:
pad_values = ((0, 0), (0, height % 2), (0, width % 2), (0, 0))
input_feature = tf.pad(input_feature, pad_values)
return input_feature
def call(self, input_feature: tf.Tensor, input_dimensions: Tuple[int, int], training: bool=False) -> tf.Tensor:
height, width = input_dimensions
batch_size, _, num_channels = shape_list(input_feature)
input_feature = tf.reshape(input_feature, (batch_size, height, width, num_channels))
input_feature = self.maybe_pad(input_feature, height, width)
input_feature_0 = input_feature[:, 0::2, 0::2, :]
input_feature_1 = input_feature[:, 1::2, 0::2, :]
input_feature_2 = input_feature[:, 0::2, 1::2, :]
input_feature_3 = input_feature[:, 1::2, 1::2, :]
input_feature = tf.concat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1)
input_feature = tf.reshape(input_feature, (batch_size, -1, 4 * num_channels))
input_feature = self.norm(input_feature, training=training)
input_feature = self.reduction(input_feature, training=training)
return input_feature
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, 'reduction', None) is not None:
with tf.name_scope(self.reduction.name):
self.reduction.build([None, None, 4 * self.dim])
if getattr(self, 'norm', None) is not None:
with tf.name_scope(self.norm.name):
self.norm.build([None, None, 4 * self.dim]) | Patch Merging Layer.
Args:
input_resolution (`Tuple[int]`):
Resolution of input feature.
dim (`int`):
Number of input channels.
norm_layer (`keras.layer.Layer`, *optional*, defaults to `keras.layers.LayerNormalization`):
Normalization layer class. | github-repos |
def map(self, callback: Callable[[T], U]) -> 'Option[U]':
return self._type.Some(callback(self._val)) if self._is_some else cast('Option[U]', NONE) | Applies the ``callback`` with the contained value as its argument or
returns :py:data:`NONE`.
Args:
callback: The callback to apply to the contained value.
Returns:
The ``callback`` result wrapped in an :class:`Option` if the
contained value is ``Some``, otherwise :py:data:`NONE`
Examples:
>>> Some(10).map(lambda x: x * x)
Some(100)
>>> NONE.map(lambda x: x * x)
NONE | juraj-google-style |
def part_studio_stl(self, did, wid, eid):
req_headers = {'Accept': 'application/vnd.onshape.v1+octet-stream'}
return self._api.request('get', (((((('/api/partstudios/d/' + did) + '/w/') + wid) + '/e/') + eid) + '/stl'), headers=req_headers) | Exports STL export from a part studio
Args:
- did (str): Document ID
- wid (str): Workspace ID
- eid (str): Element ID
Returns:
- requests.Response: Onshape response data | codesearchnet |
def metamodel_from_file(file_name, **kwargs):
with codecs.open(file_name, 'r', 'utf-8') as f:
lang_desc = f.read()
metamodel = metamodel_from_str(lang_desc=lang_desc,
file_name=file_name,
**kwargs)
return metamodel | Creates new metamodel from the given file.
Args:
file_name(str): The name of the file with textX language description.
other params: See metamodel_from_str. | juraj-google-style |
def ces_distance(C1, C2):
if config.USE_SMALL_PHI_DIFFERENCE_FOR_CES_DISTANCE:
return round(small_phi_ces_distance(C1, C2), config.PRECISION)
concepts_only_in_C1 = [
c1 for c1 in C1 if not any(c1.emd_eq(c2) for c2 in C2)]
concepts_only_in_C2 = [
c2 for c2 in C2 if not any(c2.emd_eq(c1) for c1 in C1)]
if not concepts_only_in_C1 or not concepts_only_in_C2:
dist = _ces_distance_simple(C1, C2)
else:
dist = _ces_distance_emd(concepts_only_in_C1, concepts_only_in_C2)
return round(dist, config.PRECISION) | Return the distance between two cause-effect structures.
Args:
C1 (CauseEffectStructure): The first |CauseEffectStructure|.
C2 (CauseEffectStructure): The second |CauseEffectStructure|.
Returns:
float: The distance between the two cause-effect structures in concept
space. | juraj-google-style |
def _ip_string_from_prefix(self, prefixlen=None):
if (not prefixlen):
prefixlen = self._prefixlen
return self._string_from_ip_int(self._ip_int_from_prefix(prefixlen)) | Turn a prefix length into a dotted decimal string.
Args:
prefixlen: An integer, the netmask prefix length.
Returns:
A string, the dotted decimal netmask string. | codesearchnet |
def add(self, path, compress=None):
if os.path.isdir(path):
self.add_dir(path, compress)
else:
self.add_file(path, compress) | Add `path` to the MAR file.
If `path` is a file, it will be added directly.
If `path` is a directory, it will be traversed recursively and all
files inside will be added.
Args:
path (str): path to file or directory on disk to add to this MAR
file
compress (str): One of 'xz', 'bz2', or None. Defaults to None. | juraj-google-style |
def from_string(cls, contents):
mol = None
charge = None
spin_multiplicity = None
params = dict()
lines = contents.split('\n')
parse_section = False
section_name = None
section_text = []
ghost_atoms = None
for line_num, line in enumerate(lines):
l = line.strip().lower()
if len(l) == 0:
continue
if (not parse_section) and (l == "$end" or not l.startswith("$")):
raise ValueError("Format error, parsing failed")
if parse_section and l != "$end":
section_text.append(line)
if l.startswith("$") and not parse_section:
parse_section = True
section_name = l[1:]
available_sections = ["comment", "molecule", "rem"] + \
sorted(list(cls.optional_keywords_list))
if section_name not in available_sections:
raise ValueError("Unrecognized keyword " + line.strip() +
" at line " + str(line_num))
if section_name in params:
raise ValueError("duplicated keyword " + line.strip() +
"at line " + str(line_num))
if parse_section and l == "$end":
func_name = "_parse_" + section_name
if func_name not in QcTask.__dict__:
raise Exception(func_name + " is not implemented yet, "
"please implement it")
parse_func = QcTask.__dict__[func_name].__get__(None, QcTask)
if section_name == "molecule":
mol, charge, spin_multiplicity, ghost_atoms = parse_func(section_text)
else:
d = parse_func(section_text)
params[section_name] = d
parse_section = False
section_name = None
section_text = []
if parse_section:
raise ValueError("Format error. " + section_name + " is not "
"terminated")
jobtype = params["rem"]["jobtype"]
title = params.get("comment", None)
exchange = params["rem"].get("exchange", "hf")
method = params["rem"].get("method", None)
correlation = params["rem"].get("correlation", None)
basis_set = params["rem"]["basis"]
aux_basis_set = params["rem"].get("aux_basis", None)
ecp = params["rem"].get("ecp", None)
optional_params = None
op_keys = set(params.keys()) - {"comment", "rem"}
if len(op_keys) > 0:
optional_params = dict()
for k in op_keys:
optional_params[k] = params[k]
return QcTask(molecule=mol, charge=charge,
spin_multiplicity=spin_multiplicity,
jobtype=jobtype, title=title,
exchange=exchange, correlation=correlation,
basis_set=basis_set, aux_basis_set=aux_basis_set,
ecp=ecp, rem_params=params["rem"],
optional_params=optional_params,
ghost_atoms=ghost_atoms,
method=method) | Creates QcInput from a string.
Args:
contents: String representing a QChem input file.
Returns:
QcInput object | juraj-google-style |
def _broadcast_half(ac_0: _LayerBroadcaster, a_1: RowPartition) -> Tuple[_LayerBroadcaster, RowPartition]:
c_1 = ac_0.broadcast_row_partition(a_1)
old_value_rowids = array_ops.gather(ac_0.gather_index, c_1.value_rowids())
old_row_starts = array_ops.gather(a_1.row_splits(), old_value_rowids)
gather_index = old_row_starts + c_1.offsets_in_rows()
return [_LayerBroadcaster.from_gather_index(gather_index), c_1] | Does a NOOP broadcast of a_1.
*-ac_0-->*
| |
a_1 c_1
| |
V V
*-ac_1-->*
Note that by definition this cannot fail: there is always a well-defined
NOOP broadcast. This is usually intended as half of broadcasting two shapes
together.
Args:
ac_0: previous LayerBroadcaster
a_1: previous RowPartition
Returns:
[ac_1, c_1] where ac_1 is the next LayerBroadcaster, and c_1 is the
broadcast RowPartition | github-repos |
def step(self, input_stream, value):
reading = IOTileReading(input_stream.encode(), self.tick_count, value)
self.sensor_graph.process_input(input_stream, reading, self.rpc_executor) | Step the sensor graph through one since input.
The internal tick count is not advanced so this function may
be called as many times as desired to input specific conditions
without simulation time passing.
Args:
input_stream (DataStream): The input stream to push the
value into
value (int): The reading value to push as an integer | codesearchnet |
def element(self, using, value):
return self._execute(Command.FIND_ELEMENT, {'using': using, 'value': value}) | Find an element in the current context.
Support:
Android iOS Web(WebView)
Args:
using(str): The element location strategy.
value(str): The value of the location strategy.
Returns:
WebElement Object.
Raises:
WebDriverException. | codesearchnet |
def Wait(self, context, *args): | Wait for and validate an interaction event.
This method should block and wait for a specific interaction. For example,
this method might wait for a specific message over a TCP connection.
Args:
context: Context of this event.
context.source: Source role for this event. Use the attributes of
the source role to validate where the event came from.
context.target: Target role for this event. Use the attributes of
the target role to validate the event recipient.
*args: Additional arguments for validating the event. These arguments
should be used to validate the incoming event.
Returns:
True if the event was successfully validated. | github-repos |
def __init__(self, env, keys=None):
self.env = env
if keys is None:
assert self.env.use_object_obs, "Object observations need to be enabled."
keys = ["robot-state", "object-state"]
self.keys = keys
flat_ob = self._flatten_obs(self.env.reset(), verbose=True)
self.obs_dim = flat_ob.size
high = np.inf * np.ones(self.obs_dim)
low = -high
self.observation_space = spaces.Box(low=low, high=high)
low, high = self.env.action_spec
self.action_space = spaces.Box(low=low, high=high) | Initializes the Gym wrapper.
Args:
env (MujocoEnv instance): The environment to wrap.
keys (list of strings): If provided, each observation will
consist of concatenated keys from the wrapped environment's
observation dictionary. Defaults to robot-state and object-state. | juraj-google-style |
def submit_jobs(job_specs):
gk = get_api_client()
jobs = []
try:
for site, job_spec in job_specs:
logger.info("Submitting %s on %s" % (job_spec, site))
jobs.append(gk.sites[site].jobs.create(job_spec))
except Exception as e:
logger.error("An error occured during the job submissions")
logger.error("Cleaning the jobs created")
for job in jobs:
job.delete()
raise(e)
return jobs | Submit a job
Args:
job_spec (dict): The job specifiation (see Grid'5000 API reference) | juraj-google-style |
def get_device(ads, **kwargs):
filtered = get_devices(ads, **kwargs)
if (len(filtered) == 1):
return filtered[0]
else:
serials = [ad.serial for ad in filtered]
raise Error(('More than one device matched: %s' % serials)) | Finds a unique AndroidDevice instance from a list that has specific
attributes of certain values.
Deprecated, use `get_devices(ads, **kwargs)[0]` instead.
This method will be removed in 1.8.
Example:
get_device(android_devices, label='foo', phone_number='1234567890')
get_device(android_devices, model='angler')
Args:
ads: A list of AndroidDevice instances.
kwargs: keyword arguments used to filter AndroidDevice instances.
Returns:
The target AndroidDevice instance.
Raises:
Error: None or more than one device is matched. | codesearchnet |
def from_any_pb(pb_type, any_pb):
msg = pb_type()
if callable(getattr(pb_type, "pb", None)):
msg_pb = pb_type.pb(msg)
else:
msg_pb = msg
if not any_pb.Unpack(msg_pb):
raise TypeError(
"Could not convert {} to {}".format(
any_pb.__class__.__name__, pb_type.__name__
)
)
return msg | Converts an ``Any`` protobuf to the specified message type.
Args:
pb_type (type): the type of the message that any_pb stores an instance
of.
any_pb (google.protobuf.any_pb2.Any): the object to be converted.
Returns:
pb_type: An instance of the pb_type message.
Raises:
TypeError: if the message could not be converted. | juraj-google-style |
def _create_job_info(self, job_dir):
meta = self._build_job_meta(job_dir)
self.logger.debug(('Create job: %s' % meta))
job_record = JobRecord.from_json(meta)
job_record.save() | Create information for given job.
Meta file will be loaded if exists, and the job information will
be saved in db backend.
Args:
job_dir (str): Directory path of the job. | codesearchnet |
def GetTSKFileByPathSpec(self, path_spec):
inode = getattr(path_spec, 'inode', None)
location = getattr(path_spec, 'location', None)
if (inode is not None):
tsk_file = self._tsk_file_system.open_meta(inode=inode)
elif (location is not None):
tsk_file = self._tsk_file_system.open(location)
else:
raise errors.PathSpecError('Path specification missing inode and location.')
return tsk_file | Retrieves the SleuthKit file object for a path specification.
Args:
path_spec (PathSpec): path specification.
Returns:
pytsk3.File: TSK file.
Raises:
PathSpecError: if the path specification is missing inode and location. | codesearchnet |
def set_tif(self, interface):
if not ((1 << interface) & self.supported_tifs()):
raise errors.JLinkException('Unsupported target interface: %s' % interface)
res = self._dll.JLINKARM_TIF_Select(interface)
if res != 0:
return False
self._tif = interface
return True | Selects the specified target interface.
Note that a restart must be triggered for this to take effect.
Args:
self (Jlink): the ``JLink`` instance
interface (int): integer identifier of the interface
Returns:
``True`` if target was updated, otherwise ``False``.
Raises:
JLinkException: if the given interface is invalid or unsupported. | juraj-google-style |
def prepare_srcs(deps: list[str], deps_destinations: list[str], srcs_dir: str) -> None:
path_to_replace = {'external/local_xla/': 'tensorflow/compiler', 'external/local_tsl/': 'tensorflow'}
deps_mapping_dict = {}
for deps_destination in deps_destinations:
with open(deps_destination, 'r') as deps_destination_file:
deps_mapping_dict.update(json.load(deps_destination_file))
for file in deps:
for path, val in path_to_replace.items():
if path in file:
copy_file(file, os.path.join(srcs_dir, val), path)
break
else:
if 'external' not in file:
if file in deps_mapping_dict:
dest = deps_mapping_dict[file]
if dest:
copy_file(file, srcs_dir, None, dest)
else:
copy_file(file, srcs_dir, None, None) | Rearrange source files in target the target directory.
Exclude `external` files and move vendored xla/tsl files accordingly.
Args:
deps: a list of paths to files.
deps_destinations: a list of json files with mapping of deps to their
destinations for deps whose original path and path inside the wheel are
different.
srcs_dir: target directory where files are copied to. | github-repos |
async def run(self, login: LoginProtocol):
self._print('%d +++| %s', bytes(socket_info.get()))
await self._do_greeting(login)
while True:
resp: Response
try:
cmd = await self._read_command()
except (ConnectionError, EOFError):
break
except NotParseable as exc:
resp = BadCommandResponse(exc)
else:
try:
if isinstance(cmd, NoOpCommand):
resp = NoOpResponse(cmd.tag)
elif isinstance(cmd, LogoutCommand):
resp = Response(Condition.BYE)
elif isinstance(cmd, CapabilityCommand):
resp = CapabilitiesResponse(self.capabilities)
elif self._session is None:
if isinstance(cmd, AuthenticateCommand):
resp = await self._do_authenticate(login, cmd)
elif isinstance(cmd, StartTLSCommand):
resp = await self._do_starttls()
else:
resp = Response(Condition.NO, text='Bad command.')
else:
if isinstance(cmd, UnauthenticateCommand):
resp = await self._do_unauthenticate()
else:
assert self._session.filter_set is not None
state = FilterState(self._session.filter_set,
self.config)
resp = await state.run(cmd)
except Exception:
_log.exception('Unhandled exception')
resp = Response(Condition.NO, text='Server error.')
await self._write_response(resp)
if resp.is_bye:
break
self._print('%d ---| %s', b'<disconnected>') | Start the socket communication with the server greeting, and then
enter the command/response cycle.
Args:
login: The login/authentication function. | juraj-google-style |
def __init__(self, layouts: Optional[sparse_core_layout_pb2.SparseCoreTableLayouts]=None):
self._checkpoint_layouts = {}
self._checkpoint_to_reshard_callback = {}
if layouts:
for layout in layouts.tables:
self._checkpoint_layouts[layout.table_name] = layout | An adapter for TPUEmbeddingV3 checkpoints.
Constructs an adapter for TPUEmbeddingV3 to handle layout changes. between
checkpoint values and embedding object being restored.
Args:
layouts: The target layouts required. | github-repos |
def PreprocessSources(
self, artifacts_registry_object, source_path_specs,
resolver_context=None):
detected_operating_systems = []
for source_path_spec in source_path_specs:
try:
file_system, mount_point = self.GetSourceFileSystem(
source_path_spec, resolver_context=resolver_context)
except (RuntimeError, dfvfs_errors.BackEndError) as exception:
logger.error(exception)
continue
try:
searcher = file_system_searcher.FileSystemSearcher(
file_system, mount_point)
operating_system = self._DetermineOperatingSystem(searcher)
if operating_system != definitions.OPERATING_SYSTEM_FAMILY_UNKNOWN:
preprocess_manager.PreprocessPluginsManager.RunPlugins(
artifacts_registry_object, file_system, mount_point,
self.knowledge_base)
detected_operating_systems.append(operating_system)
finally:
file_system.Close()
if detected_operating_systems:
logger.info('Preprocessing detected operating systems: {0:s}'.format(
', '.join(detected_operating_systems)))
self.knowledge_base.SetValue(
'operating_system', detected_operating_systems[0]) | Preprocesses the sources.
Args:
artifacts_registry_object (artifacts.ArtifactDefinitionsRegistry):
artifact definitions registry.
source_path_specs (list[dfvfs.PathSpec]): path specifications of
the sources to process.
resolver_context (Optional[dfvfs.Context]): resolver context. | juraj-google-style |
def Refresh(self):
with requests.Session() as session:
session.proxies = self.proxy_config.proxies
session.verify = (not self.proxy_config.disable_certificate_validation)
session.cert = self.proxy_config.cafile
self.creds.refresh(google.auth.transport.requests.Request(session=session)) | Uses the Refresh Token to retrieve and set a new Access Token.
Raises:
google.auth.exceptions.RefreshError: If the refresh fails. | codesearchnet |
def to_proto(self, export_scope=None):
if export_scope is None or self.queue.name.startswith(export_scope):
queue_runner_def = queue_runner_pb2.QueueRunnerDef()
queue_runner_def.queue_name = ops.strip_name_scope(self.queue.name, export_scope)
for enqueue_op in self.enqueue_ops:
queue_runner_def.enqueue_op_name.append(ops.strip_name_scope(enqueue_op.name, export_scope))
queue_runner_def.close_op_name = ops.strip_name_scope(self.close_op.name, export_scope)
queue_runner_def.cancel_op_name = ops.strip_name_scope(self.cancel_op.name, export_scope)
queue_runner_def.queue_closed_exception_types.extend([errors.error_code_from_exception_type(cls) for cls in self._queue_closed_exception_types])
return queue_runner_def
else:
return None | Converts this `QueueRunner` to a `QueueRunnerDef` protocol buffer.
Args:
export_scope: Optional `string`. Name scope to remove.
Returns:
A `QueueRunnerDef` protocol buffer, or `None` if the `Variable` is not in
the specified name scope. | github-repos |
def send(self, request):
if (self.call is None):
raise ValueError('Can not send() on an RPC that has never been open()ed.')
if self.call.is_active():
self._request_queue.put(request)
else:
next(self.call) | Queue a message to be sent on the stream.
Send is non-blocking.
If the underlying RPC has been closed, this will raise.
Args:
request (protobuf.Message): The request to send. | codesearchnet |
def make_gradients(dims=DEFAULT_DIMS):
return np.meshgrid(np.linspace(0.0, 1.0, dims[0]), np.linspace(0.0, 1.0, dims[1])) | Makes a pair of gradients to generate textures from numpy primitives.
Args:
dims (pair): the dimensions of the surface to create
Returns:
pair: A pair of surfaces. | codesearchnet |
def zsh_complete(self, path, cmd, *cmds, sourceable=False):
grouping = (internal.zsh_version() >= (5, 4))
path = pathlib.Path(path)
firstline = ['
firstline.extend(cmds)
subcmds = list(self.subcmds.keys())
with path.open('w') as zcf:
print(*firstline, end='\n\n', file=zcf)
print('function _{} {{'.format(cmd), file=zcf)
print('local line', file=zcf)
print('_arguments -C', end=BLK, file=zcf)
if subcmds:
substrs = ["{}\\:'{}'".format(sub, self.subcmds[sub].help) for sub in subcmds]
print('"1:Commands:(({}))"'.format(' '.join(substrs)), end=BLK, file=zcf)
self._zsh_comp_command(zcf, None, grouping)
if subcmds:
print("'*::arg:->args'", file=zcf)
print('case $line[1] in', file=zcf)
for sub in subcmds:
print('{sub}) _{cmd}_{sub} ;;'.format(sub=sub, cmd=cmd), file=zcf)
print('esac', file=zcf)
print('}', file=zcf)
for sub in subcmds:
print('\nfunction _{}_{} {{'.format(cmd, sub), file=zcf)
print('_arguments', end=BLK, file=zcf)
self._zsh_comp_command(zcf, sub, grouping)
print('}', file=zcf)
if sourceable:
print('\ncompdef _{0} {0}'.format(cmd), *cmds, file=zcf) | Write zsh compdef script.
Args:
path (path-like): desired path of the compdef script.
cmd (str): command name that should be completed.
cmds (str): extra command names that should be completed.
sourceable (bool): if True, the generated file will contain an
explicit call to ``compdef``, which means it can be sourced
to activate CLI completion. | codesearchnet |
def GetEntries(self, parser_mediator, cache=None, database=None, **kwargs):
if (database is None):
raise ValueError('Invalid database.')
for (table_name, callback_method) in iter(self._tables.items()):
if parser_mediator.abort:
break
if (not callback_method):
continue
callback = getattr(self, callback_method, None)
if (callback is None):
logger.warning('[{0:s}] missing callback method: {1:s} for table: {2:s}'.format(self.NAME, callback_method, table_name))
continue
esedb_table = database.get_table_by_name(table_name)
if (not esedb_table):
logger.warning('[{0:s}] missing table: {1:s}'.format(self.NAME, table_name))
continue
callback(parser_mediator, cache=cache, database=database, table=esedb_table, **kwargs) | Extracts event objects from the database.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
cache (Optional[ESEDBCache]): cache.
database (Optional[pyesedb.file]): ESE database.
Raises:
ValueError: If the database attribute is not valid. | codesearchnet |
def actor_checkpoint_info(self, actor_id):
self._check_connected()
message = self._execute_command(
actor_id,
"RAY.TABLE_LOOKUP",
ray.gcs_utils.TablePrefix.ACTOR_CHECKPOINT_ID,
"",
actor_id.binary(),
)
if message is None:
return None
gcs_entry = ray.gcs_utils.GcsTableEntry.GetRootAsGcsTableEntry(
message, 0)
entry = (
ray.gcs_utils.ActorCheckpointIdData.GetRootAsActorCheckpointIdData(
gcs_entry.Entries(0), 0))
checkpoint_ids_str = entry.CheckpointIds()
num_checkpoints = len(checkpoint_ids_str)
assert len(checkpoint_ids_str) % ID_SIZE == 0
checkpoint_ids = [
ray.ActorCheckpointID(
checkpoint_ids_str[(i * ID_SIZE):((i + 1) * ID_SIZE)])
for i in range(num_checkpoints)
]
return {
"ActorID": ray.utils.binary_to_hex(entry.ActorId()),
"CheckpointIds": checkpoint_ids,
"Timestamps": [
entry.Timestamps(i) for i in range(num_checkpoints)
],
} | Get checkpoint info for the given actor id.
Args:
actor_id: Actor's ID.
Returns:
A dictionary with information about the actor's checkpoint IDs and
their timestamps. | juraj-google-style |
def encode(self, spec, value, minimum_rank=0):
raise NotImplementedError(f'{type(self).__name__}.encode') | Encodes `value` as a nest of batchable `Tensor` or `CompositeTensor`.
Args:
spec: The TypeSpec of the value to encode.
value: A value compatible with `spec`.
minimum_rank: The minimum rank for the returned Tensors, CompositeTensors,
and ExtensionType values. This can be used to ensure that the encoded
values can be unbatched this number of times. If `minimum_rank>0`,
then `t.shape[:minimum_rank]` must be compatible for all values `t`
returned by `encode`.
Returns:
A nest (as defined by `tf.nest`) of `tf.Tensor`s, batchable
`tf.CompositeTensor`s, or `tf.ExtensionType`s. Stacking, unstacking, or
concatenating these encoded values and then decoding the result must be
equivalent to stacking, unstacking, or concatenating the original values. | github-repos |
def batch_shuffle(index_array, batch_size):
batch_count = int(len(index_array) / batch_size)
last_batch = index_array[batch_count * batch_size:]
index_array = index_array[:batch_count * batch_size]
index_array = index_array.reshape((batch_count, batch_size))
np.random.shuffle(index_array)
index_array = index_array.flatten()
return np.append(index_array, last_batch) | Shuffles an array in a batch-wise fashion.
Useful for shuffling HDF5 arrays
(where one cannot access arbitrary indices).
Args:
index_array: array of indices to be shuffled.
batch_size: integer.
Returns:
The `index_array` array, shuffled in a batch-wise fashion. | github-repos |
def GetPasswdMap(self, since=None):
return PasswdUpdateGetter().GetUpdates(self, self.conf['passwd_url'], since) | Return the passwd map from this source.
Args:
since: Get data only changed since this timestamp (inclusive) or None
for all data.
Returns:
instance of passwd.PasswdMap | github-repos |
def __init__(self, browser, **kwargs):
if len(kwargs) > 1:
raise TypeError('BrowserQuery() takes at most 1 keyword argument.')
if not kwargs:
raise TypeError('Must pass a query keyword argument to BrowserQuery().')
query_name, query_value = list(kwargs.items())[0]
if query_name not in QUERY_TYPES:
raise TypeError(u'{} is not a supported query type for BrowserQuery()'.format(query_name))
def query_fn():
return getattr(browser, QUERY_TYPES[query_name])(query_value)
super(BrowserQuery, self).__init__(
query_fn,
desc=u"BrowserQuery({}={!r})".format(query_name, query_value),
)
self.browser = browser | Generate a query over a browser.
Args:
browser (selenium.webdriver): A Selenium-controlled browser.
Keyword Args:
css (str): A CSS selector.
xpath (str): An XPath selector.
Returns:
BrowserQuery
Raises:
TypeError: The query must be passed either a CSS or XPath selector, but not both. | juraj-google-style |
def __init__(self, tsk_attribute):
super(TSKAttribute, self).__init__()
self._tsk_attribute = tsk_attribute | Initializes an attribute.
Args:
tsk_attribute (pytsk3.Attribute): TSK attribute. | juraj-google-style |
def tabledata_insert_all(self, table_name, rows):
url = Api._ENDPOINT + (Api._TABLES_PATH % table_name) + "/insertAll"
data = {
'kind': 'bigquery
'rows': rows
}
return datalab.utils.Http.request(url, data=data, credentials=self._credentials) | Issues a request to insert data into a table.
Args:
table_name: the name of the table as a tuple of components.
rows: the data to populate the table, as a list of dictionaries.
Returns:
A parsed result object.
Raises:
Exception if there is an error performing the operation. | juraj-google-style |
def __init__(self, channel):
self.GetVersion = channel.unary_unary(
'/versionpb.API/GetVersion',
request_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString,
response_deserializer=client_dot_version_dot_versionpb_dot_version__pb2.Version.FromString,
) | Constructor.
Args:
channel: A grpc.Channel. | juraj-google-style |
def _load(self, dataset='train'):
data, labels = None, None
if dataset is 'train':
files = [os.path.join(self.cifar10_dir, 'data_batch_%d' % i) for i in range(1, 6)]
else:
files = [os.path.join(self.cifar10_dir, 'test_batch')]
for file in files:
if not os.path.exists(file):
raise FileNotFoundError('Failed to find file: ' + file)
for file in files:
with open(file, 'rb') as f:
cifar10 = pickle.load(f, encoding='latin1')
if labels is None:
labels = np.array(cifar10['labels'])
else:
labels = np.concatenate((labels, cifar10['labels']), axis=0)
if data is None:
data = cifar10['data']
else:
data = np.concatenate((data, cifar10['data']), axis=0)
data = np.array(data, dtype=float) / 255.0
data = data.reshape([-1, self.num_channels, self.img_size, self.img_size])
data = data.transpose([0, 2, 3, 1])
labels = np.eye(self.num_classes)[np.array(labels).reshape(-1)]
if dataset is 'train':
self._train_data, self._train_labels = data, labels
else:
self._test_data, self._test_labels = data, labels | Load the data in memory.
Args:
dataset: string in ['train', 'test'] | juraj-google-style |
def seek(self, relative_position):
self._player_interface.Seek(Int64(((1000.0 * 1000) * relative_position)))
self.seekEvent(self, relative_position) | Seek the video by `relative_position` seconds
Args:
relative_position (float): The position in seconds to seek to. | codesearchnet |
def adduser(name, username, **kwargs):
try:
group_obj = _get_group_object(name)
except pywintypes.com_error as exc:
msg = 'Failed to access group {0}. {1}'.format(
name, win32api.FormatMessage(exc.excepinfo[5]))
log.error(msg)
return False
existing_members = [_get_username(x) for x in group_obj.members()]
username = salt.utils.win_functions.get_sam_name(username)
try:
if username not in existing_members:
group_obj.Add('WinNT:
log.info('Added user %s', username)
else:
log.warning('User %s is already a member of %s', username, name)
return False
except pywintypes.com_error as exc:
msg = 'Failed to add {0} to group {1}. {2}'.format(
username, name, win32api.FormatMessage(exc.excepinfo[5]))
log.error(msg)
return False
return True | Add a user to a group
Args:
name (str):
The name of the group to modify
username (str):
The name of the user to add to the group
Returns:
bool: ``True`` if successful, otherwise ``False``
CLI Example:
.. code-block:: bash
salt '*' group.adduser foo username | juraj-google-style |
def get_summary_string(self):
from rez.plugin_managers import plugin_manager
txt = ('Rez %s' % __version__)
txt += ('\n\n%s' % plugin_manager.get_summary_string())
return txt | Get a string summarising the state of Rez as a whole.
Returns:
String. | codesearchnet |
def save(self, force=False):
if ((not self._success) and (not force)):
raise ConfigError('The config file appears to be corrupted:\n\n {fname}\n\nBefore attempting to save the configuration, please either fix the config file manually, or overwrite it with a blank configuration as follows:\n\n from dustmaps.config import config\n config.reset()\n\n'.format(fname=self.fname))
with open(self.fname, 'w') as f:
json.dump(self._options, f, indent=2) | Saves the configuration to a JSON, in the standard config location.
Args:
force (Optional[:obj:`bool`]): Continue writing, even if the original
config file was not loaded properly. This is dangerous, because
it could cause the previous configuration options to be lost.
Defaults to :obj:`False`.
Raises:
:obj:`ConfigError`: if the configuration file was not successfully
loaded on initialization of the class, and
:obj:`force` is :obj:`False`. | codesearchnet |
def getline(self, lnum=None):
return (self._vim.current.buffer[lnum] if lnum else self._vim.current.line) | Get a line from the current buffer.
Args:
lnum (Optional[str]): Number of the line to get, current if ``None``.
Todo:
- Give this more behavior of Vim ``getline()``?
- ``buffer[index]`` is zero-based, this is probably too confusing | codesearchnet |
def forward(self, hidden_states):
forwarded_states = self.mlp(hidden_states)
output = hidden_states + self.norm(forwarded_states)
return output | Args:
hidden_states (`torch.Tensor`) :
[num_groups, tokens_per_group, hidden_dim] inputs to send to experts.
Returns:
torch.Tensor[num_groups, tokens_per_group, hidden_dim] | github-repos |
def to_str(value):
if ((sys.version_info.major < 3) and isinstance(value, six.string_types)):
return value
return str(value) | Convert the input to a string, unless it is a unicode string in Python 2.
Unicode strings are supported as native strings in Python 3, but ``str()`` cannot be
invoked on unicode strings in Python 2, so we need to check for that case when
converting user-specified values to strings.
Args:
value: The value to convert to a string.
Returns:
str or unicode: The string representation of the value or the unicode string itself. | codesearchnet |
def browse(self, folder, levels=None, prefix=None):
assert (isinstance(levels, int) or (levels is None))
assert (isinstance(prefix, string_types) or (prefix is None))
return self.get('browse', params={'folder': folder, 'levels': levels, 'prefix': prefix}) | Returns the directory tree of the global model.
Directories are always JSON objects (map/dictionary), and files are
always arrays of modification time and size. The first integer is
the files modification time, and the second integer is the file
size.
Args:
folder (str): The root folder to traverse.
levels (int): How deep within the tree we want to dwell down.
(0 based, defaults to unlimited depth)
prefix (str): Defines a prefix within the tree where to start
building the structure.
Returns:
dict | codesearchnet |
def stop_gradient(input, name=None):
if isinstance(input, composite_tensor.CompositeTensor) and (not _pywrap_utils.IsResourceVariable(input)):
return nest.map_structure(stop_gradient, input, expand_composites=True)
with record.stop_recording():
return gen_array_ops.stop_gradient(input, name=name) | Stops gradient computation.
NOTE: This docstring is patched out below. See
tensorflow/core/api_def/base_api/api_def_StopGradient.pbtxt for the full
docstring. That file determines the public documentation page.
Args:
input: A `Tensor`.
name: A name for this operation.
Returns:
A `Tensor`. Has the same dtype as `input`. | github-repos |
def add_gripper(self, arm_name, gripper):
if (arm_name in self.grippers):
raise ValueError('Attempts to add multiple grippers to one body')
arm_subtree = self.worldbody.find(".
for actuator in gripper.actuator:
if (actuator.get('name') is None):
raise XMLError('Actuator has no name')
if (not actuator.get('name').startswith('gripper')):
raise XMLError("Actuator name {} does not have prefix 'gripper'".format(actuator.get('name')))
for body in gripper.worldbody:
arm_subtree.append(body)
self.merge(gripper, merge_body=False)
self.grippers[arm_name] = gripper | Mounts gripper to arm.
Throws error if robot already has a gripper or gripper type is incorrect.
Args:
arm_name (str): name of arm mount
gripper (MujocoGripper instance): gripper MJCF model | codesearchnet |
def AddDirectory(self, path):
if self.file_system.FileEntryExistsByPath(path):
raise ValueError('Path: {0:s} already set.'.format(path))
self._AddParentDirectories(path)
self.file_system.AddFileEntry(path, file_entry_type=definitions.FILE_ENTRY_TYPE_DIRECTORY) | Adds a directory to the fake file system.
Note that this function will create parent directories if needed.
Args:
path (str): path of the directory within the fake file system.
Raises:
ValueError: if the path is already set. | codesearchnet |
def read_from_hdx(identifier, configuration=None):
if is_valid_uuid(identifier) is False:
raise HDXError('%s is not a valid resource id!' % identifier)
resource = Resource(configuration=configuration)
result = resource._load_from_hdx('resource', identifier)
if result:
return resource
return None | Reads the resource given by identifier from HDX and returns Resource object
Args:
identifier (str): Identifier of resource
configuration (Optional[Configuration]): HDX configuration. Defaults to global configuration.
Returns:
Optional[Resource]: Resource object if successful read, None if not | juraj-google-style |
def merge_dictionaries(dicts, merge_lists=False):
dict1 = dicts[0]
for other_dict in dicts[1:]:
merge_two_dictionaries(dict1, other_dict, merge_lists=merge_lists)
return dict1 | Merges all dictionaries in dicts into a single dictionary and returns result
Args:
dicts (List[DictUpperBound]): Dictionaries to merge into the first one in the list
merge_lists (bool): Whether to merge lists (True) or replace lists (False). Default is False.
Returns:
DictUpperBound: Merged dictionary | codesearchnet |
def get_fail_graph(self, failure_index=None):
phase, _ = self._get_failed_phase(failure_index)
return phase.get_graph() | Returns a graph showing a solve failure.
Args:
failure_index: See `failure_reason`
Returns:
A pygraph.digraph object. | juraj-google-style |
def install(self, apk_path, destination_dir=None, timeout_ms=None):
if not destination_dir:
destination_dir = '/data/local/tmp/'
basename = os.path.basename(apk_path)
destination_path = destination_dir + basename
self.push(apk_path, destination_path, timeout_ms=timeout_ms)
return self.Shell('pm install -r "%s"' % destination_path,
timeout_ms=timeout_ms) | Install apk to device.
Doesn't support verifier file, instead allows destination directory to be
overridden.
Arguments:
apk_path: Local path to apk to install.
destination_dir: Optional destination directory. Use /system/app/ for
persistent applications.
timeout_ms: Expected timeout for pushing and installing.
Returns:
The pm install output. | juraj-google-style |
def delta_E(self):
site_delta_E = (self.final_site.energy - self.initial_site.energy)
if self.nearest_neighbour_energy:
site_delta_E += self.nearest_neighbour_delta_E()
if self.coordination_number_energy:
site_delta_E += self.coordination_number_delta_E()
return site_delta_E | The change in system energy if this jump were accepted.
Args:
None
Returns:
(Float): delta E | codesearchnet |
def send(self, message_type, message, connection_id, one_way=False):
try:
self._network.send(message_type, message, connection_id, one_way=one_way)
except ValueError:
LOGGER.debug('Connection %s is no longer valid. Removing from list of peers.', connection_id)
if (connection_id in self._peers):
del self._peers[connection_id] | Sends a message via the network.
Args:
message_type (str): The type of the message.
message (bytes): The message to be sent.
connection_id (str): The connection to send it to. | codesearchnet |
def when_matches(self, path, good_value, bad_values=None, timeout=None,
event_timeout=None):
future = self.when_matches_async(path, good_value, bad_values)
self.wait_all_futures(
future, timeout=timeout, event_timeout=event_timeout) | Resolve when an path value equals value
Args:
path (list): The path to wait to
good_value (object): the value to wait for
bad_values (list): values to raise an error on
timeout (float): time in seconds to wait for responses, wait
forever if None
event_timeout: maximum time in seconds to wait between each response
event, wait forever if None | juraj-google-style |
def get(cls, session, record_id, endpoint_override=None):
cls._check_implements('get')
try:
return cls(
endpoint_override or '/%s/%d.json' % (
cls.__endpoint__, record_id,
),
singleton=True,
session=session,
)
except HelpScoutRemoteException as e:
if e.status_code == 404:
return None
else:
raise | Return a specific record.
Args:
session (requests.sessions.Session): Authenticated session.
record_id (int): The ID of the record to get.
endpoint_override (str, optional): Override the default
endpoint using this.
Returns:
helpscout.BaseModel: A record singleton, if existing. Otherwise
``None``. | juraj-google-style |
def GetNetgroupMap(self, since=None):
return NetgroupUpdateGetter().GetUpdates(self, self.conf['netgroup_url'], since) | Return the netgroup map from this source.
Args:
since: Get data only changed since this timestamp (inclusive) or None
for all data.
Returns:
instance of netgroup.NetgroupMap | github-repos |
def derive_value(self, value):
return IonEvent(self.event_type, self.ion_type, value, self.field_name, self.annotations, self.depth) | Derives a new event from this one setting the ``value`` attribute.
Args:
value: (any):
The value associated with the derived event.
Returns:
IonEvent: The newly generated non-thunk event. | codesearchnet |
def delete_files(file_paths):
if len(file_paths) == 0:
raise RuntimeError('Clean up failed. Invalid file path: %s.' % file_paths)
FileSystems.delete(file_paths) | A function to clean up files or directories using ``FileSystems``.
Glob is supported in file path and directories will be deleted recursively.
Args:
file_paths: A list of strings contains file paths or directories. | github-repos |
def register(self, address, retry=True):
logger.debug("<%s> Sending REGISTER request to: %s" % (str(self.cuuid),
str(address)))
if not self.listener.listening:
logger.warning("Neteria client is not listening.")
message = {"method": "REGISTER", "cuuid": str(self.cuuid)}
if self.encryption:
message["encryption"] = [self.encryption.n, self.encryption.e]
self.listener.send_datagram(
serialize_data(message, self.compression,
encryption=False), address)
if retry:
self.register_retries = 0
self.listener.call_later(
self.timeout, self.retransmit, {"method": "REGISTER",
"address": address}) | This function will send a register packet to the discovered Neteria
server.
Args:
address (tuple): A tuple of the (address, port) to send the register
request to.
retry (boolean): Whether or not we want to reset the current number
of registration retries to 0.
Returns:
None
Examples:
>>> address
('192.168.0.20', 40080) | juraj-google-style |
def CompileReport(self, mediator):
report_text = 'Tagging plugin produced {0:d} tags.\n'.format(
self._number_of_event_tags)
self._number_of_event_tags = 0
return reports.AnalysisReport(plugin_name=self.NAME, text=report_text) | Compiles an analysis report.
Args:
mediator (AnalysisMediator): mediates interactions between
analysis plugins and other components, such as storage and dfvfs.
Returns:
AnalysisReport: analysis report. | juraj-google-style |
def __init__(self, callback):
self._callback = callback
self._brocade_tunnels = brocade_tunnels(callback=pynos.utilities.return_xml) | VCS init function
Args:
callback: Callback function that will be called for each action
Returns:
VCS Object
Raises:
None | juraj-google-style |
def _getClassInstance(path, args=None):
if not path.endswith(".py"):
return None
if args is None:
args = {}
classname = AtomShieldsScanner._getClassName(path)
basename = os.path.basename(path).replace(".py", "")
sys.path.append(os.path.dirname(path))
try:
mod = __import__(basename, globals(), locals(), [classname], -1)
class_ = getattr(mod, classname)
instance = class_(**args)
except Exception as e:
AtomShieldsScanner._debug("[!] %s" % e)
return None
finally:
sys.path.remove(os.path.dirname(path))
return instance | Returns a class instance from a .py file.
Args:
path (str): Absolute path to .py file
args (dict): Arguments passed via class constructor
Returns:
object: Class instance or None | juraj-google-style |
def _ParseRecordString(self, record_strings_data, record_strings_data_offset, string_offset):
if (string_offset == 0):
return None
if (string_offset & self._STRING_OFFSET_MSB):
if ((string_offset >> 60) != 8):
raise errors.ParseError('Invalid inline record string flag.')
string_size = ((string_offset >> 56) & 15)
if (string_size >= 8):
raise errors.ParseError('Invalid inline record string size.')
string_data = bytes(bytearray([((string_offset >> (8 * byte_index)) & 255) for byte_index in range(6, (- 1), (- 1))]))
try:
return string_data[:string_size].decode('utf-8')
except UnicodeDecodeError as exception:
raise errors.ParseError('Unable to decode inline record string with error: {0!s}.'.format(exception))
data_offset = (string_offset - record_strings_data_offset)
record_string_map = self._GetDataTypeMap('asl_record_string')
try:
record_string = self._ReadStructureFromByteStream(record_strings_data[data_offset:], string_offset, record_string_map)
except (ValueError, errors.ParseError) as exception:
raise errors.ParseError('Unable to parse record string at offset: 0x{0:08x} with error: {1!s}'.format(string_offset, exception))
return record_string.string.rstrip('\x00') | Parses a record string.
Args:
record_strings_data (bytes): record strings data.
record_strings_data_offset (int): offset of the record strings data
relative to the start of the file.
string_offset (int): offset of the string relative to the start of
the file.
Returns:
str: record string or None if string offset is 0.
Raises:
ParseError: if the record string cannot be parsed. | codesearchnet |
def __init__(self, declaration):
self._address_space = None
self._type_qualifiers = []
self._basic_ctype = ''
self._vector_type_length = None
self._nmr_pointer_stars = 0
self._pointer_qualifiers = []
self._name = ''
self._array_sizes = []
param = self
class Semantics:
def type_qualifiers(self, ast):
if ast in param._type_qualifiers:
raise ValueError('The pre-type qualifier "{}" is present multiple times.'.format(ast))
param._type_qualifiers.append(ast)
return ast
def address_space(self, ast):
param._address_space = ''.join(ast)
return ''.join(ast)
def basic_ctype(self, ast):
param._basic_ctype = ast
return ast
def vector_type_length(self, ast):
param._vector_type_length = int(ast)
return ast
def pointer_star(self, ast):
param._nmr_pointer_stars += 1
return ast
def pointer_qualifiers(self, ast):
if ast in param._pointer_qualifiers:
raise ValueError('The pre-type qualifier "{}" is present multiple times.'.format(ast))
param._pointer_qualifiers.append(ast)
return ast
def name(self, ast):
param._name = ast
return ast
def array_size(self, ast):
param._array_sizes.append(int(ast[1:-1]))
return ast
_cl_data_type_parser.parse(declaration, semantics=Semantics()) | Creates a new function parameter for the CL functions.
Args:
declaration (str): the declaration of this parameter. For example ``global int foo``. | juraj-google-style |
def set_message(self, title, msg, typ, url=None):
return self.user.send_notification(title=title, message=msg, typ=typ, url=url) | Sets user notification message.
Args:
title: Msg. title
msg: Msg. text
typ: Msg. type
url: Additional URL (if exists)
Returns:
Message ID. | codesearchnet |
def l2_loss(tensor, weight=1.0, scope=None):
with tf.name_scope(scope, 'L2Loss', [tensor]):
weight = tf.convert_to_tensor(weight, dtype=tensor.dtype.base_dtype, name='loss_weight')
loss = tf.multiply(weight, tf.nn.l2_loss(tensor), name='value')
tf.add_to_collection(LOSSES_COLLECTION, loss)
return loss | Define a L2Loss, useful for regularize, i.e. weight decay.
Args:
tensor: tensor to regularize.
weight: an optional weight to modulate the loss.
scope: Optional scope for name_scope.
Returns:
the L2 loss op. | codesearchnet |
def _update_cross_replica(self, update_fn, value, **kwargs):
values_util.mark_as_unsaveable()
return self.distribute_strategy.extended.update(self, update_fn, args=(value,), kwargs=kwargs, group=True) | Applies updates across replicas.
Args:
update_fn: A callable to pass to `strategy.extended.update` to update the
variable. It should has the same signature as `Variable.assign()`.
value: value to be passed to `update_fn`.
**kwargs: remaining arguments to `update_fn`.
Returns:
Updated variable or `tf.Operation`. | github-repos |
def get_name_scope(self) -> str:
return self._name_stack | Returns the current name scope.
For example:
```python
with tf.name_scope('scope1'):
with tf.name_scope('scope2'):
print(tf.compat.v1.get_default_graph().get_name_scope())
```
would print the string `scope1/scope2`.
Returns:
A string representing the current name scope. | github-repos |
def exec_python(attr, src, executable='python'):
import subprocess
if isinstance(src, basestring):
src = [src]
p = popen([executable, '-c', '; '.join(src)], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
(out, err) = p.communicate()
if p.returncode:
from rez.exceptions import InvalidPackageError
raise InvalidPackageError(("Error determining package attribute '%s':\n%s" % (attr, err)))
return out.strip() | Runs a python subproc to calculate a package attribute.
Args:
attr (str): Name of package attribute being created.
src (list of str): Python code to execute, will be converted into
semicolon-delimited single line of code.
Returns:
str: Output of python process. | codesearchnet |
def register(config_class, feature_extractor_class, exist_ok=False):
FEATURE_EXTRACTOR_MAPPING.register(config_class, feature_extractor_class, exist_ok=exist_ok) | Register a new feature extractor for this class.
Args:
config_class ([`PretrainedConfig`]):
The configuration corresponding to the model to register.
feature_extractor_class ([`FeatureExtractorMixin`]): The feature extractor to register. | github-repos |
def __div__(self, other):
return self | DEPRECATED: Use `__floordiv__` via `x // y` instead.
This function exists only for backwards compatibility purposes; new code
should use `__floordiv__` via the syntax `x // y`. Using `x // y`
communicates clearly that the result rounds down, and is forward compatible
to Python 3.
Args:
other: Another `Dimension`.
Returns:
A `Dimension` whose value is the integer quotient of `self` and `other`. | github-repos |
def get_completed_task(self, task, timeout=-1):
self.__wait_task_completion(task, timeout)
return self.get(task) | Waits until the task is completed and returns the task resource.
Args:
task: TaskResource
timeout: Timeout in seconds
Returns:
dict: TaskResource | juraj-google-style |
def subtract_business_days(self, date_tensor, num_days, roll_convention=constants.BusinessDayConvention.NONE):
return self.add_business_days(date_tensor, -num_days, roll_convention) | Adds given number of business days to given dates.
Note that this is different from calling `subtract_period_and_roll` with
PeriodType.DAY. For example, subtracting 5 business days from Friday gives
the previous Friday (unless there are holidays on this week or previous
Friday). Subtracting 5 days and rolling means landing on Sunday and then
rolling either to Monday or to Friday, depending on the roll convention.
If any of the dates in `date_tensor` are not business days, they will be
rolled to business days before doing the subtraction. If `roll_convention`
is `NONE`, and any dates are not business days, an exception is raised.
Args:
date_tensor: `DateTensor` of dates to advance from.
num_days: Tensor of int32 type broadcastable to `date_tensor`.
roll_convention: BusinessDayConvention. Determines how to roll a date that
falls on a holiday.
Returns:
The resulting `DateTensor`. | github-repos |
def is_for_driver_task(self):
return all(((len(x) == 0) for x in [self.module_name, self.class_name, self.function_name])) | See whether this function descriptor is for a driver or not.
Returns:
True if this function descriptor is for driver tasks. | codesearchnet |
def guess_file_type(kind, filepath=None, youtube_id=None, web_url=None, encoding=None):
if youtube_id:
return FileTypes.YOUTUBE_VIDEO_FILE
elif web_url:
return FileTypes.WEB_VIDEO_FILE
elif encoding:
return FileTypes.BASE64_FILE
else:
ext = os.path.splitext(filepath)[1][1:].lower()
if kind in FILE_TYPE_MAPPING and ext in FILE_TYPE_MAPPING[kind]:
return FILE_TYPE_MAPPING[kind][ext]
return None | guess_file_class: determines what file the content is
Args:
filepath (str): filepath of file to check
Returns: string indicating file's class | juraj-google-style |
def get_replicated_var_handle(self, name: Text, handle_id: Text, vars_: Union[List[core_types.Tensor], List[variables.Variable]], is_mirrored: bool=False, is_packed: bool=False) -> core_types.Tensor:
device_assignment = _enclosing_tpu_device_assignment()
handle = self._replicated_vars.get(handle_id)
if handle is not None:
return handle
if device_assignment is not None and (not is_packed):
job_name = pydev.DeviceSpec.from_string(vars_[0].device).job
devices_to_vars = {device_util.canonicalize(v.device): v for v in vars_}
replicated_vars = []
for replica_id in range(device_assignment.num_replicas):
for logical_core in range(device_assignment.num_cores_per_replica):
device = device_util.canonicalize(device_assignment.tpu_device(replica=replica_id, logical_core=logical_core, job=job_name))
if device in devices_to_vars:
replicated_vars.append(devices_to_vars[device])
break
else:
raise ValueError('Failed to find a variable on any device in replica {} for current device assignment'.format(replica_id))
else:
replicated_vars = vars_
_, graph = _enclosing_tpu_context_and_graph()
with graph.as_default():
if isinstance(replicated_vars[0], variables.Variable):
replicated_vars = [v.handle for v in replicated_vars]
saved_context = graph._get_control_flow_context()
graph._set_control_flow_context(self.outer_context)
handle = tpu_ops.tpu_replicated_input(replicated_vars, name=name + '/handle', is_mirrored_variable=is_mirrored, is_packed=is_packed)
graph._set_control_flow_context(saved_context)
self._replicated_vars[handle_id] = handle
return handle | Returns a variable handle for replicated TPU variable 'var'.
This is a method used by an experimental replicated variable implementation
and is not intended as a public API.
Args:
name: The common name of the variable.
handle_id: Unique ID of the variable handle, used as the cache key.
vars_: The replicated TPU variables or handles.
is_mirrored: Whether the variables are mirrored, which guarantees the
values in each replica are always the same.
is_packed: Whether the replicated variables are packed into one variable.
Returns:
The handle of the TPU replicated input node. | github-repos |
def _build(self, *args, **kwargs):
flattened = nest.flatten([args, kwargs])
merged_flattened = [(merge_leading_dims(inp, self._n_dims) if (inp is not None) else None) for inp in flattened]
(merged_args, merged_kwargs) = nest.pack_sequence_as([args, kwargs], merged_flattened)
results = self._module(*merged_args, **merged_kwargs)
example_input = tf.convert_to_tensor(flattened[self._input_example_index])
def _split_to_original_leading_dims(result):
if (result is None):
return None
else:
return split_leading_dim(result, example_input, self._n_dims)
flat_results = nest.flatten(results)
flat_unmerged_results = [_split_to_original_leading_dims(result) for result in flat_results]
return nest.pack_sequence_as(results, flat_unmerged_results) | Connects the BatchApply module into the graph.
Args:
*args: a Tensor or a nested list or dictionary of Tensors. The input
tensors will have their first dimensions merged, then an op or a
module will be called on the input. The first dimension of the output
tensor(s) will be split again based on the leading dimensions of the
first input tensor.
**kwargs: Dictionary of named arguments; used in the same way as `*args`.
Returns:
A Tensor or nested list or dictionary of Tensors as a result of applying
the process above. ("None" return values are also supported.) | codesearchnet |
def __init__(self,
*,
dtype: Type[np.number] = np.complex64,
noise: devices.NoiseModel = devices.NO_NOISE):
if dtype not in {np.complex64, np.complex128}:
raise ValueError(
'dtype must be complex64 or complex128, was {}'.format(dtype))
self._dtype = dtype
self.noise = noise | Density matrix simulator.
Args:
dtype: The `numpy.dtype` used by the simulation. One of
`numpy.complex64` or `numpy.complex128`
noise: A noise model to apply while simulating. | juraj-google-style |
def get_ir_reciprocal_mesh(self, mesh=(10, 10, 10), is_shift=(0, 0, 0)):
shift = np.array([(1 if i else 0) for i in is_shift])
(mapping, grid) = spglib.get_ir_reciprocal_mesh(np.array(mesh), self._cell, is_shift=shift, symprec=self._symprec)
results = []
for (i, count) in zip(*np.unique(mapping, return_counts=True)):
results.append((((grid[i] + (shift * (0.5, 0.5, 0.5))) / mesh), count))
return results | k-point mesh of the Brillouin zone generated taken into account
symmetry.The method returns the irreducible kpoints of the mesh
and their weights
Args:
mesh (3x1 array): The number of kpoint for the mesh needed in
each direction
is_shift (3x1 array): Whether to shift the kpoint grid. (1, 1,
1) means all points are shifted by 0.5, 0.5, 0.5.
Returns:
A list of irreducible kpoints and their weights as a list of
tuples [(ir_kpoint, weight)], with ir_kpoint given
in fractional coordinates | codesearchnet |
def __init__(self, name=None, options=None):
del options
rr = gen_io_ops.lmdb_reader(name=name)
super(LMDBReader, self).__init__(rr) | Create a LMDBReader.
Args:
name: A name for the operation (optional).
options: A LMDBRecordOptions object (optional). | github-repos |
def dump(self, content, entry_type):
new_content = copy.deepcopy(content)
new_content['Type'] = entry_type.value
with self._lock:
with io.open(self._path, 'a', encoding='utf-8') as f:
yaml.safe_dump(new_content, f, explicit_start=True, explicit_end=True, allow_unicode=True, indent=4) | Dumps a dictionary as a yaml document to the summary file.
Each call to this method dumps a separate yaml document to the same
summary file associated with a test run.
The content of the dumped dictionary has an extra field `TYPE` that
specifies the type of each yaml document, which is the flag for parsers
to identify each document.
Args:
content: dictionary, the content to serialize and write.
entry_type: a member of enum TestSummaryEntryType.
Raises:
recoreds.Error: An invalid entry type is passed in. | github-repos |
def _head(self, client_kwargs):
return _handle_http_errors(
self.client.request(
'HEAD', timeout=self._TIMEOUT, **client_kwargs)).headers | Returns object HTTP header.
Args:
client_kwargs (dict): Client arguments.
Returns:
dict: HTTP header. | juraj-google-style |
def same_dynamic_shape(a, b):
a = tf.convert_to_tensor(value=a, name='a')
b = tf.convert_to_tensor(value=b, name='b')
def all_shapes_equal():
return tf.reduce_all(input_tensor=tf.equal(tf.concat([tf.shape(input=a), tf.shape(input=b)], 0), tf.concat([tf.shape(input=b), tf.shape(input=a)], 0)))
return tf.cond(pred=tf.equal(tf.rank(a), tf.rank(b)), true_fn=all_shapes_equal, false_fn=(lambda : tf.constant(False))) | Returns whether a and b have the same dynamic shape.
Args:
a: `Tensor`
b: `Tensor`
Returns:
`bool` `Tensor` representing if both tensors have the same shape. | codesearchnet |
def u2handlers(self):
return_handlers = suds.transport.http.HttpTransport.u2handlers(self)
return_handlers.extend(self.handlers)
return return_handlers | Get a collection of urllib2 handlers to be installed in the opener.
Returns:
A list of handlers to be installed to the OpenerDirector used by suds. | codesearchnet |
def parse(self, argument):
if isinstance(argument, list):
return argument
elif not argument:
return []
else:
if self._comma_compat:
argument = argument.replace(',', ' ')
return argument.split() | Parses argument as whitespace-separated list of strings.
It also parses argument as comma-separated list of strings if requested.
Args:
argument: string argument passed in the commandline.
Returns:
[str], the parsed flag value. | juraj-google-style |
def add_spectra(self, spectra_dict, key_sort_func=None):
if key_sort_func:
keys = sorted(spectra_dict.keys(), key=key_sort_func)
else:
keys = spectra_dict.keys()
for label in keys:
self.add_spectra(label, spectra_dict[label]) | Add a dictionary of doses, with an optional sorting function for the
keys.
Args:
dos_dict: dict of {label: Dos}
key_sort_func: function used to sort the dos_dict keys. | juraj-google-style |
def __init__(
self,
app=None,
base_url='http:
namespaces=DEFAULT_NAMESPACES):
self.app = app
self.namespaces = namespaces
self.base_url = None
if app is not None:
self.init_app(app)
if 'FEDORA_BASE_URL' in app.config:
self.base_url = app.config.get('FEDORA_BASE_URL')
if self.base_url is None:
self.base_url = base_url
if self.base_url.endswith("/"):
self.base_url = self.base_url[:-1]
self.transaction = [] | Initializes a Repository object
Args:
app(Flask): Flask app, default is None
base_url(str): Base url for Fedora Commons, defaults to
localhost:8080.
namespaces(list): List of namespace tuples of prefix, uri for
each namespace in Fedora | juraj-google-style |
def cancel_job_button(self, description=None):
if (not hasattr(self, 'jobId')):
return
try:
import ipywidgets as widgets
if (not description):
description = 'Cancel job: '
description += (self.name if hasattr(self, 'name') else self.job.name)
button = widgets.Button(description=description, button_style='danger', layout=widgets.Layout(width='40%'))
out = widgets.Output()
vb = widgets.VBox([button, out])
@out.capture(clear_output=True)
def _cancel_job_click(b):
b.disabled = True
print((('Cancelling job: id=' + str(self.job.id)) + ' ...\n'), flush=True)
try:
rc = self.job.cancel()
out.clear_output()
if rc:
print((((('Cancelled job: id=' + str(self.job.id)) + ' : ') + self.job.name) + '\n'), flush=True)
else:
print((((('Job already cancelled: id=' + str(self.job.id)) + ' : ') + self.job.name) + '\n'), flush=True)
except:
b.disabled = False
out.clear_output()
raise
button.on_click(_cancel_job_click)
display(vb)
except:
pass | Display a button that will cancel the submitted job.
Used in a Jupyter IPython notebook to provide an interactive
mechanism to cancel a job submitted from the notebook.
Once clicked the button is disabled unless the cancel fails.
A job may be cancelled directly using::
submission_result = submit(ctx_type, topology, config)
submission_result.job.cancel()
Args:
description(str): Text used as the button description, defaults to value based upon the job name.
.. warning::
Behavior when called outside a notebook is undefined.
.. versionadded:: 1.12 | codesearchnet |
def floodlight_report(config, task: dict, floodlight_id: int) -> int:
account_id, subaccount_id = parse_account(config, task['auth'], task['account'])
name = 'Floodlight Monitor %s %s ( StarThinker )' % (account_id, floodlight_id)
if config.verbose:
print('FLOODLIGHT MONITOR REPORT: ', name)
report = report_build(config, task['auth'], task['account'], {'kind': 'dfareporting
return report['id'] | Create a report for a specific floodlight if it does not exist.
Args:
floodlight_id - the floodlight being monitored
Returns:
The id of the created report. | github-repos |
def get_tensors(object_):
if torch.is_tensor(object_):
return [object_]
elif isinstance(object_, (str, float, int)):
return []
tensors = set()
if isinstance(object_, collections.abc.Mapping):
for value in object_.values():
tensors.update(get_tensors(value))
elif isinstance(object_, collections.abc.Iterable):
for value in object_:
tensors.update(get_tensors(value))
else:
members = [value for (key, value) in inspect.getmembers(object_) if (not isinstance(value, (collections.abc.Callable, type(None))))]
tensors.update(get_tensors(members))
return tensors | Get all tensors associated with ``object_``
Args:
object_ (any): Any object to look for tensors.
Returns:
(list of torch.tensor): List of tensors that are associated with ``object_``. | codesearchnet |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.