code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def _retry_on_appropriate_gcp_error(exception):
return isinstance(exception, (TooManyRequests, ServerError)) | Retry filter that returns True if a returned HTTP error code is 5xx or 429.
This is used to retry remote requests that fail, most notably 429
(TooManyRequests.)
Args:
exception: the returned exception encountered during the request/response
loop.
Returns:
boolean indication whether or not the exception is a Server Error (5xx) or
a TooManyRequests (429) error. | github-repos |
def _maybe_extract(compressed_filename, directory, extension=None):
logger.info('Extracting {}'.format(compressed_filename))
if (extension is None):
basename = os.path.basename(compressed_filename)
extension = basename.split('.', 1)[1]
if ('zip' in extension):
with zipfile.ZipFile(compressed_filename, 'r') as zip_:
zip_.extractall(directory)
elif (('tar' in extension) or ('tgz' in extension)):
with tarfile.open(compressed_filename, mode='r') as tar:
tar.extractall(path=directory)
logger.info('Extracted {}'.format(compressed_filename)) | Extract a compressed file to ``directory``.
Args:
compressed_filename (str): Compressed file.
directory (str): Extract to directory.
extension (str, optional): Extension of the file; Otherwise, attempts to extract extension
from the filename. | codesearchnet |
def dispatch(self, message):
for (validator, callback) in self.validators:
if (not validator.matches(message)):
continue
callback(message)
return
raise ArgumentError('No handler was registered for message', message=message) | Dispatch a message to a callback based on its schema.
Args:
message (dict): The message to dispatch | codesearchnet |
def describe_training_job(self, TrainingJobName):
if (TrainingJobName not in LocalSagemakerClient._training_jobs):
error_response = {'Error': {'Code': 'ValidationException', 'Message': 'Could not find local training job'}}
raise ClientError(error_response, 'describe_training_job')
else:
return LocalSagemakerClient._training_jobs[TrainingJobName].describe() | Describe a local training job.
Args:
TrainingJobName (str): Training job name to describe.
Returns: (dict) DescribeTrainingJob Response. | codesearchnet |
def unlock_kinetis_read_until_ack(jlink, address):
request = swd.ReadRequest(address, ap=True)
response = None
while True:
response = request.send(jlink)
if response.ack():
break
elif response.wait():
continue
raise KinetisException('Read exited with status: %s', response.status)
return response | Polls the device until the request is acknowledged.
Sends a read request to the connected device to read the register at the
given 'address'. Polls indefinitely until either the request is ACK'd or
the request ends in a fault.
Args:
jlink (JLink): the connected J-Link
address (int) the address of the register to poll
Returns:
``SWDResponse`` object on success.
Raises:
KinetisException: when read exits with non-ack or non-wait status.
Note:
This function is required in order to avoid reading corrupt or otherwise
invalid data from registers when communicating over SWD. | codesearchnet |
def call_with_layout(fn: Callable[..., Any], layout: Optional[layout_lib.Layout], *args, **kwargs) -> Any:
if layout is not None:
if context.executing_eagerly():
with default_mesh(layout.mesh):
with _dtensor_device()._default_layout(layout):
return fn(*args, **kwargs)
else:
return relayout(fn(*args, **kwargs), layout)
return fn(*args, **kwargs) | Calls a function in the DTensor device scope if `layout` is not None.
If `layout` is not None, `fn` consumes DTensor(s) as input and produces a
DTensor as output; a DTensor is a tf.Tensor with layout-related attributes.
If `layout` is None, `fn` consumes and produces regular tf.Tensors.
Args:
fn: A supported TF API function such as tf.zeros.
layout: Optional, the layout of the output DTensor.
*args: Arguments given to `fn`.
**kwargs: Keyword arguments given to `fn`.
Returns:
The return value of `fn` transformed to a DTensor if requested. | github-repos |
def set_memcache_policy(self, func):
if (func is None):
func = self.default_memcache_policy
elif isinstance(func, bool):
func = (lambda unused_key, flag=func: flag)
self._memcache_policy = func | Set the memcache policy function.
Args:
func: A function that accepts a Key instance as argument and returns
a bool indicating if it should be cached. May be None. | codesearchnet |
def add(self, full_name: str, alias: str | None=None):
if not self.track_imports:
return
alias = alias or full_name
if '.' not in full_name or (full_name == alias and (not alias.endswith('.*'))):
self._direct_imports[alias] = full_name
else:
module, name = full_name.rsplit('.', 1)
if name == '*':
alias = '*'
if module == 'typing':
self._typing.add(name, alias)
else:
self._from_imports.setdefault(module, {})[alias] = name
self._reverse_alias_map[full_name] = alias | Adds an import.
Examples:
-------------------------------------------------------
Import Statement | Method Call
-------------------------------------------------------
import abc | add('abc')
import abc as xyz | add('abc', 'xyz')
import foo.bar | add('foo.bar')
from foo import bar | add('foo.bar', 'bar')
from foo import bar as baz | add('foo.bar', 'baz')
Args:
full_name: The full name of the thing being imported.
alias: The name that the imported thing is assigned to. | github-repos |
def unstack(self, value, name=None):
return self._implementation.unstack(value, name=name) | Unstack the values of a `Tensor` in the TensorArray.
If input value shapes have rank-`R`, then the output TensorArray will
contain elements whose shapes are rank-`(R-1)`.
Args:
value: (N+1)-D. Tensor of type `dtype`. The Tensor to unstack.
name: A name for the operation (optional).
Returns:
A new TensorArray object with flow that ensures the unstack occurs.
Use this object for all subsequent operations.
Raises:
ValueError: if the shape inference fails. | github-repos |
def mom(self, K, **kws):
K = numpy.asarray(K, dtype=int)
shape = K.shape
dim = len(self)
if (dim > 1):
shape = shape[1:]
size = int((K.size / dim))
K = K.reshape(dim, size)
cache = {}
out = [evaluation.evaluate_moment(self, kdata, cache) for kdata in K.T]
out = numpy.array(out)
return out.reshape(shape) | Raw statistical moments.
Creates non-centralized raw moments from the random variable. If
analytical options can not be utilized, Monte Carlo integration
will be used.
Args:
K (numpy.ndarray):
Index of the raw moments. k.shape must be compatible with
distribution shape. Sampling scheme when performing Monte
Carlo
rule (str):
rule for estimating the moment if the analytical method fails.
composite (numpy.ndarray):
If provided, composit quadrature will be used. Ignored in the
case if gaussian=True. If int provided, determines number of
even domain splits. If array of ints, determines number of even
domain splits along each axis. If array of arrays/floats,
determines location of splits.
antithetic (numpy.ndarray):
List of bool. Represents the axes to mirror using antithetic
variable during MCI.
Returns:
(numpy.ndarray):
Shapes are related through the identity
``k.shape == dist.shape+k.shape``. | codesearchnet |
def makecontinuum(cube, **kwargs):
inchs = kwargs.pop('inchs', None)
exchs = kwargs.pop('exchs', None)
if ((inchs is not None) or (exchs is not None)):
raise KeyError('Inchs and exchs are no longer supported. Use weight instead.')
if (weight is None):
weight = 1.0
cont = ((cube * (1 / (weight ** 2))).sum(dim='ch') / (1 / (weight ** 2)).sum(dim='ch'))
xcoords = {'x': cube.x.values}
ycoords = {'y': cube.y.values}
chcoords = {'masterid': np.array([0]), 'kidid': np.array([0]), 'kidfq': np.array([0]), 'kidtp': np.array([1])}
scalarcoords = {'coordsys': cube.coordsys.values, 'datatype': cube.datatype.values, 'xref': cube.xref.values, 'yref': cube.yref.values}
return dc.cube(cont.values, xcoords=xcoords, ycoords=ycoords, chcoords=chcoords, scalarcoords=scalarcoords) | Make a continuum array.
Args:
cube (decode.cube): Decode cube which will be averaged over channels.
kwargs (optional): Other arguments.
inchs (list): Included channel kidids.
exchs (list): Excluded channel kidids.
Returns:
decode cube (decode.cube): Decode cube (2d). | codesearchnet |
def generator_consumer(coro):
if not asyncio.iscoroutinefunction(coro):
raise TypeError('paco: coro must be a coroutine function')
@functools.wraps(coro)
@asyncio.coroutine
def wrapper(*args, **kw):
if len(args) > 1 and isgenerator(args[1]):
args = list(args)
args[1] = (yield from consume(args[1])
if hasattr(args[1], '__anext__')
else list(args[1]))
args = tuple(args)
return (yield from coro(*args, **kw))
return wrapper | Decorator wrapper that consumes sync/async generators provided as
interable input argument.
This function is only intended to be used internally.
Arguments:
coro (coroutinefunction): function to decorate
Raises:
TypeError: if function or coroutine function is not provided.
Returns:
function: decorated function. | juraj-google-style |
def broadcast_to(rt_input, shape: DynamicRaggedShape):
if not isinstance(shape, DynamicRaggedShape):
raise TypeError('shape must be a DynamicRaggedShape')
rt_input = ragged_tensor.convert_to_tensor_or_ragged_tensor(rt_input)
origin_shape = None
if ragged_tensor.is_ragged(rt_input):
if shape.num_row_partitions != 0:
if rt_input.row_splits.dtype != shape.dtype:
raise ValueError('Cannot coerce row_splits.dtype')
else:
shape = shape.with_dtype(rt_input.row_splits.dtype)
origin_shape = DynamicRaggedShape.from_tensor(rt_input)
elif shape.num_row_partitions != 0:
origin_shape = DynamicRaggedShape.from_tensor(rt_input, dtype=shape.dtype)
else:
origin_shape = DynamicRaggedShape.from_tensor(rt_input, dtype=dtypes.int64)
shape = shape.with_dtype(dtype=dtypes.int64)
broadcaster = _get_broadcaster(origin_shape, shape)
return broadcaster.broadcast(rt_input) | Broadcasts a potentially ragged tensor to a ragged shape.
Tiles `rt_input` as necessary to match the given shape.
Behavior is undefined if `rt_input` is not broadcast-compatible with `shape`.
Args:
rt_input: The potentially ragged tensor to broadcast.
shape: A `DynamicRaggedShape`
Returns:
A potentially ragged tensor whose values are taken from
`rt_input`, and whose shape matches `shape`. | github-repos |
def _is_disk_usage_reset_each_run(self):
return False | Indicates whether disk usage is reset after each Session.run.
Subclasses that clean up the disk usage after every run should
override this protected method.
Returns:
(`bool`) Whether the disk usage amount is reset to zero after
each Session.run. | github-repos |
def get(self, service_id, insert_defaults=None):
return self.prepare_model(self.client.api.inspect_service(service_id, insert_defaults)) | Get a service.
Args:
service_id (str): The ID of the service.
insert_defaults (boolean): If true, default values will be merged
into the output.
Returns:
:py:class:`Service`: The service.
Raises:
:py:class:`docker.errors.NotFound`
If the service does not exist.
:py:class:`docker.errors.APIError`
If the server returns an error.
:py:class:`docker.errors.InvalidVersion`
If one of the arguments is not supported with the current
API version. | codesearchnet |
def write(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0):
super(Boolean, self).write(ostream, kmip_version=kmip_version)
self.write_value(ostream, kmip_version=kmip_version) | Write the encoding of the Boolean object to the output stream.
Args:
ostream (Stream): A buffer to contain the encoded bytes of a
Boolean object. Usually a BytearrayStream object. Required.
kmip_version (KMIPVersion): An enumeration defining the KMIP
version with which the object will be encoded. Optional,
defaults to KMIP 1.0. | juraj-google-style |
def deepgetattr(obj, name, default=_UNSPECIFIED):
try:
if '.' in name:
attr, subname = name.split('.', 1)
return deepgetattr(getattr(obj, attr), subname, default)
else:
return getattr(obj, name)
except AttributeError:
if default is _UNSPECIFIED:
raise
else:
return default | Try to retrieve the given attribute of an object, digging on '.'.
This is an extended getattr, digging deeper if '.' is found.
Args:
obj (object): the object of which an attribute should be read
name (str): the name of an attribute to look up.
default (object): the default value to use if the attribute wasn't found
Returns:
the attribute pointed to by 'name', splitting on '.'.
Raises:
AttributeError: if obj has no 'name' attribute. | juraj-google-style |
def __init__(self, node, function, enclosing_graph, first_function_input, type_attribute, function_attributes):
super(_FunctionCaller, self).__init__(node, function, enclosing_graph)
self._first_function_input = first_function_input
self._type_attribute = type_attribute
self._function_attributes = function_attributes | Initializes a _FunctionCaller.
Args:
node: As in _Node.
function: As in _Node.
enclosing_graph: As in _Node.
first_function_input: The index of the first NodeDef input that is tied to
the function inputs. It is assumed that the rest of the NodeDef inputs
map one to one to function inputs.
type_attribute: The name of the NodeDef attribute that defines the input
types. It is assumed that the types listed here map one-to-one with the
function inputs (that is, they do _not_ specify types for inputs that
are not passed to functions).
function_attributes: The names of the NodeDef attributes containing
references to functions. | github-repos |
def List(self, request, global_params=None):
config = self.GetMethodConfig('List')
return self._RunMethod(config, request, global_params=global_params) | Lists all tables in the specified dataset. Requires the READER dataset role.
Args:
request: (BigqueryTablesListRequest) input message
global_params: (StandardQueryParameters, default: None) global arguments
Returns:
(TableList) The response message. | github-repos |
def pulse_drawer(samples, duration, dt=None, interp_method='None', filename=None, interactive=False, dpi=150, nop=1000, size=(6, 5)):
try:
from matplotlib import pyplot as plt
except ImportError:
raise ImportError('pulse_drawer need matplotlib. Run "pip install matplotlib" before.')
if dt:
_dt = dt
else:
_dt = 1
re_y = np.real(samples)
im_y = np.imag(samples)
image = plt.figure(figsize=size)
ax0 = image.add_subplot(111)
if (interp_method == 'CubicSpline'):
time = ((np.arange(0, (duration + 1)) * _dt) + (0.5 * _dt))
cs_ry = CubicSpline(time[:(- 1)], re_y)
cs_iy = CubicSpline(time[:(- 1)], im_y)
_time = np.linspace(0, (duration * _dt), nop)
_re_y = cs_ry(_time)
_im_y = cs_iy(_time)
elif (interp_method == 'None'):
time = (np.arange(0, (duration + 1)) * _dt)
_time = np.r_[(time[0], np.repeat(time[1:(- 1)], 2), time[(- 1)])]
_re_y = np.repeat(re_y, 2)
_im_y = np.repeat(im_y, 2)
else:
raise QiskitError(('Invalid interpolation method "%s"' % interp_method))
ax0.fill_between(x=_time, y1=_re_y, y2=np.zeros_like(_time), facecolor='red', alpha=0.3, edgecolor='red', linewidth=1.5, label='real part')
ax0.fill_between(x=_time, y1=_im_y, y2=np.zeros_like(_time), facecolor='blue', alpha=0.3, edgecolor='blue', linewidth=1.5, label='imaginary part')
ax0.set_xlim(0, (duration * _dt))
ax0.grid(b=True, linestyle='-')
ax0.legend(bbox_to_anchor=(0.5, 1.0), loc='lower center', ncol=2, frameon=False, fontsize=14)
if filename:
image.savefig(filename, dpi=dpi, bbox_inches='tight')
plt.close(image)
if (image and interactive):
plt.show(image)
return image | Plot the interpolated envelope of pulse
Args:
samples (ndarray): Data points of complex pulse envelope.
duration (int): Pulse length (number of points).
dt (float): Time interval of samples.
interp_method (str): Method of interpolation
(set `None` for turn off the interpolation).
filename (str): Name required to save pulse image.
interactive (bool): When set true show the circuit in a new window
(this depends on the matplotlib backend being used supporting this).
dpi (int): Resolution of saved image.
nop (int): Data points for interpolation.
size (tuple): Size of figure.
Returns:
matplotlib.figure: A matplotlib figure object for the pulse envelope.
Raises:
ImportError: when the output methods requieres non-installed libraries.
QiskitError: when invalid interpolation method is specified. | codesearchnet |
def threat(self, name, **kwargs):
group_obj = Threat(name, **kwargs)
return self._group(group_obj) | Add Threat data to Batch object
Args:
name (str): The name for this Group.
date_added (str, kwargs): The date timestamp the Indicator was created.
xid (str, kwargs): The external id for this Group.
Returns:
obj: An instance of Threat. | codesearchnet |
def index(self, value, start=0, end=None):
try:
index = self._dict[value]
except KeyError:
raise ValueError
else:
start = self._fix_neg_index(start)
end = self._fix_end_index(end)
if ((start <= index) and (index < end)):
return index
else:
raise ValueError | Return the index of value between start and end.
By default, the entire setlist is searched.
This runs in O(1)
Args:
value: The value to find the index of
start (int): The index to start searching at (defaults to 0)
end (int): The index to stop searching at (defaults to the end of the list)
Returns:
int: The index of the value
Raises:
ValueError: If the value is not in the list or outside of start - end
IndexError: If start or end are out of range | codesearchnet |
def delete(self, entity):
key = _normalize_key(entity)
if key is None:
return self.ndb_delete(entity)
self.deletes.append(key) | Registers entity to delete from datastore.
Args:
entity: an entity, model instance, or key to delete. | juraj-google-style |
def put_path(self, url, path):
cache_path = self._url_to_path(url)
try:
dir = os.path.dirname(cache_path)
os.makedirs(dir)
except OSError as e:
if e.errno != errno.EEXIST:
raise Error('Failed to create cache directories for ' % cache_path)
try:
os.unlink(cache_path)
except OSError:
pass
try:
os.link(path, cache_path)
except OSError:
try:
shutil.copyfile(path, cache_path)
except IOError:
raise Error('Failed to cache %s as %s for %s' % (path, cache_path, url)) | Puts a resource already on disk into the disk cache.
Args:
url: The original url of the resource
path: The resource already available on disk
Raises:
CacheError: If the file cannot be put in cache | juraj-google-style |
def capture(self, payment_id, amount, data={}, **kwargs):
url = '{}/{}/capture'.format(self.base_url, payment_id)
data['amount'] = amount
return self.post_url(url, data, **kwargs) | Capture Payment for given Id
Args:
payment_id : Id for which payment object has to be retrieved
Amount : Amount for which the payment has to be retrieved
Returns:
Payment dict after getting captured | codesearchnet |
def _get_updated_values(before_values, after_values):
assert before_values.keys() == after_values.keys()
return dict([(k, [before_values[k], after_values[k]])
for k in before_values.keys()
if before_values[k] != after_values[k]]) | Get updated values from 2 dicts of values
Args:
before_values (dict): values before update
after_values (dict): values after update
Returns:
dict: a diff dict with key is field key, value is tuple of
(before_value, after_value) | juraj-google-style |
def span(self):
other = VersionRange(None)
bound = _Bound(self.bounds[0].lower, self.bounds[(- 1)].upper)
other.bounds = [bound]
return other | Return a contiguous range that is a superset of this range.
Returns:
A VersionRange object representing the span of this range. For
example, the span of "2+<4|6+<8" would be "2+<8". | codesearchnet |
def getConParams(virtualhost):
return pika.ConnectionParameters(
host=settings.RABBITMQ_HOST,
port=int(settings.RABBITMQ_PORT),
virtual_host=virtualhost,
credentials=pika.PlainCredentials(
settings.RABBITMQ_USER_NAME,
settings.RABBITMQ_USER_PASSWORD
)
) | Connection object builder.
Args:
virtualhost (str): selected virtualhost in rabbitmq
Returns:
pika.ConnectionParameters: object filled by `constants` from
:class:`edeposit.amqp.settings`. | juraj-google-style |
def generate_stack_policy_args(stack_policy=None):
args = {}
if stack_policy:
logger.debug('Stack has a stack policy')
if stack_policy.url:
raise NotImplementedError
else:
args['StackPolicyBody'] = stack_policy.body
return args | Converts a stack policy object into keyword args.
Args:
stack_policy (:class:`stacker.providers.base.Template`): A template
object representing a stack policy.
Returns:
dict: A dictionary of keyword arguments to be used elsewhere. | codesearchnet |
def duplicate(script, layer_num=None):
filter_xml = ' <filter name="Duplicate Current layer"/>\n'
if isinstance(script, mlx.FilterScript):
if (layer_num is None) or (layer_num == script.current_layer()):
util.write_filter(script, filter_xml)
script.add_layer('{}_copy'.format(script.layer_stack[script.current_layer()]), True)
else:
change(script, layer_num)
util.write_filter(script, filter_xml)
script.add_layer('{}_copy'.format(script.layer_stack[layer_num]), True)
else:
util.write_filter(script, filter_xml)
return None | Duplicate a layer.
New layer label is '*_copy'.
Args:
script: the mlx.FilterScript object or script filename to write
the filter to.
layer_num (int): layer number to duplicate. Default is the
current layer. Not supported on the file base API.
Layer stack:
Creates a new layer
Changes current layer to the new layer
MeshLab versions:
2016.12
1.3.4BETA | juraj-google-style |
def add_string_pairs_from_label_element(xib_file, results, label, special_ui_components_prefix):
label_entry_comment = extract_element_internationalized_comment(label)
if label_entry_comment is None:
return
warn_if_element_not_of_class(label, 'Label', special_ui_components_prefix)
if label.hasAttribute('usesAttributedText') and label.attributes['usesAttributedText'].value == 'YES':
add_string_pairs_from_attributed_ui_element(results, label, label_entry_comment)
else:
try:
label_entry_key = label.attributes['text'].value
except KeyError:
try:
label_entry_key = label.getElementsByTagName('string')[0].firstChild.nodeValue
except Exception:
label_entry_key = 'N/A'
logging.warn("%s: Missing text entry in %s", xib_file, label.toxml('UTF8'))
results.append((label_entry_key, label_entry_comment)) | Adds string pairs from a label element.
Args:
xib_file (str): Path to the xib file.
results (list): The list to add the results to.
label (element): The label element from the xib, to extract the string pairs from.
special_ui_components_prefix (str):
If not None, extraction will not warn about internationalized UI components with this class prefix. | juraj-google-style |
def attach(self, container, stdout=True, stderr=True, stream=False, logs=False, demux=False):
params = {'logs': ((logs and 1) or 0), 'stdout': ((stdout and 1) or 0), 'stderr': ((stderr and 1) or 0), 'stream': ((stream and 1) or 0)}
headers = {'Connection': 'Upgrade', 'Upgrade': 'tcp'}
u = self._url('/containers/{0}/attach', container)
response = self._post(u, headers=headers, params=params, stream=True)
output = self._read_from_socket(response, stream, self._check_is_tty(container), demux=demux)
if stream:
return CancellableStream(output, response)
else:
return output | Attach to a container.
The ``.logs()`` function is a wrapper around this method, which you can
use instead if you want to fetch/stream container output without first
retrieving the entire backlog.
Args:
container (str): The container to attach to.
stdout (bool): Include stdout.
stderr (bool): Include stderr.
stream (bool): Return container output progressively as an iterator
of strings, rather than a single string.
logs (bool): Include the container's previous output.
demux (bool): Keep stdout and stderr separate.
Returns:
By default, the container's output as a single string (two if
``demux=True``: one for stdout and one for stderr).
If ``stream=True``, an iterator of output strings. If
``demux=True``, two iterators are returned: one for stdout and one
for stderr.
Raises:
:py:class:`docker.errors.APIError`
If the server returns an error. | codesearchnet |
def _resize_image(image, height, width):
return tf.image.resize_images(image, [height, width], method=tf.image.ResizeMethod.BILINEAR, align_corners=False) | Simple wrapper around tf.resize_images.
This is primarily to make sure we use the same `ResizeMethod` and other
details each time.
Args:
image: A 3-D image `Tensor`.
height: The target height for the resized image.
width: The target width for the resized image.
Returns:
resized_image: A 3-D tensor containing the resized image. The first two
dimensions have the shape [height, width]. | codesearchnet |
def update_(self, conf_dict, conf_arg=True):
for (section, secdict) in conf_dict.items():
self[section].update_(secdict, conf_arg) | Update values of configuration options with dict.
Args:
conf_dict (dict): dict of dict indexed with section and option
names.
conf_arg (bool): if True, only options that can be set in a config
file are updated. | codesearchnet |
def _parse_meta_info(self, line):
if self.mslevel:
self.meta_info['ms_level'] = self.mslevel
if self.polarity:
self.meta_info['polarity'] = self.polarity
for k, regexes in six.iteritems(self.meta_regex):
for reg in regexes:
m = re.search(reg, line, re.IGNORECASE)
if m:
self.meta_info[k] = m.group(1).strip() | Parse and extract all meta data by looping through the dictionary of meta_info regexs
updates self.meta_info
Args:
line (str): line of the msp file | juraj-google-style |
def sort(expr, field=None, keytype=None, ascending=True):
weld_obj = WeldObject(encoder_, decoder_)
expr_var = weld_obj.update(expr)
if isinstance(expr, WeldObject):
expr_var = expr.obj_id
weld_obj.dependencies[expr_var] = expr
if (field is not None):
key_str = ('x.$%s' % field)
else:
key_str = 'x'
if (not ascending):
key_str = (key_str + ('* %s(-1)' % keytype))
weld_template = '\n sort(%(expr)s, |x| %(key)s)\n '
weld_obj.weld_code = (weld_template % {'expr': expr_var, 'key': key_str})
return weld_obj | Sorts the vector.
If the field parameter is provided then the sort
operators on a vector of structs where the sort key
is the field of the struct.
Args:
expr (WeldObject)
field (Int) | codesearchnet |
def as_json(self,
entity_url,
context=None):
try:
urllib.request.urlopen(entity_url)
except urllib.error.HTTPError:
raise ValueError("Cannot open {}".format(entity_url))
entity_graph = self.read(entity_url)
entity_json = json.loads(
entity_graph.serialize(
format='json-ld',
context=context).decode())
return json.dumps(entity_json) | Method takes a entity uri and attempts to return the Fedora Object
as a JSON-LD.
Args:
entity_url(str): Fedora Commons URL of Entity
context(None): Returns JSON-LD with Context, default is None
Returns:
str: JSON-LD of Fedora Object | juraj-google-style |
def docx_text_from_xml_node(node: ElementTree.Element, level: int, config: TextProcessingConfig) -> str:
text = ''
if (node.tag == DOCX_TEXT):
text += (node.text or '')
elif (node.tag == DOCX_TAB):
text += '\t'
elif (node.tag in DOCX_NEWLINES):
text += '\n'
elif (node.tag == DOCX_NEWPARA):
text += '\n\n'
if (node.tag == DOCX_TABLE):
text += ('\n\n' + docx_table_from_xml_node(node, level, config))
else:
for child in node:
text += docx_text_from_xml_node(child, (level + 1), config)
return text | Returns text from an XML node within a DOCX file.
Args:
node: an XML node
level: current level in XML hierarchy (used for recursion; start level
is 0)
config: :class:`TextProcessingConfig` control object
Returns:
contents as a string | codesearchnet |
def sibling(self, name: InstanceName) -> "ObjectMember":
ssn = self.parinst._member_schema_node(name)
try:
sibs = self.siblings.copy()
newval = sibs.pop(name)
sibs[self.name] = self.value
return ObjectMember(name, sibs, newval, self.parinst,
ssn, self.timestamp)
except KeyError:
raise NonexistentInstance(self.json_pointer(),
f"member '{name}'") from None | Return an instance node corresponding to a sibling member.
Args:
name: Instance name of the sibling member.
Raises:
NonexistentSchemaNode: If member `name` is not permitted by the
schema.
NonexistentInstance: If sibling member `name` doesn't exist. | juraj-google-style |
def nsx_controller_name(self, **kwargs):
name = kwargs.pop('name')
name_args = dict(name=name)
method_name = 'nsx_controller_name'
method_class = self._brocade_tunnels
nsxcontroller_attr = getattr(method_class, method_name)
config = nsxcontroller_attr(**name_args)
if kwargs.pop('get', False):
output = self._callback(config, handler='get_config')
else:
output = self._callback(config)
return output | Get/Set nsx controller name
Args:
name: (str) : Name of the nsx controller
get (bool) : Get nsx controller config(True,False)
callback (function): A function executed upon completion of the
method.
Returns:
Return value of `callback`.
Raises:
None | juraj-google-style |
def bytes_to_readable_str(num_bytes, include_b=False):
if num_bytes is None:
return str(num_bytes)
if num_bytes < 1024:
result = '%d' % num_bytes
elif num_bytes < 1048576:
result = '%.2fk' % (num_bytes / 1024.0)
elif num_bytes < 1073741824:
result = '%.2fM' % (num_bytes / 1048576.0)
else:
result = '%.2fG' % (num_bytes / 1073741824.0)
if include_b:
result += 'B'
return result | Generate a human-readable string representing number of bytes.
The units B, kB, MB and GB are used.
Args:
num_bytes: (`int` or None) Number of bytes.
include_b: (`bool`) Include the letter B at the end of the unit.
Returns:
(`str`) A string representing the number of bytes in a human-readable way,
including a unit at the end. | github-repos |
def _pack_with_tf_ops(dataset, keys, length):
empty_example = {}
for k in keys:
empty_example[k] = tf.zeros([0], dtype=tf.int32)
empty_example[k + "_position"] = tf.zeros([0], dtype=tf.int32)
keys_etc = empty_example.keys()
def write_packed_example(partial, outputs):
new_partial = empty_example.copy()
new_outputs = {}
for k in keys_etc:
new_outputs[k] = outputs[k].write(
outputs[k].size(),
tf.pad(partial[k], [[0, length - tf.size(partial[k])]]))
return new_partial, new_outputs
def map_fn(x):
partial = empty_example.copy()
i = tf.zeros([], dtype=tf.int32)
dynamic_batch_size = tf.shape(x[keys[0]])[0]
outputs = {}
for k in keys:
outputs[k] = tf.TensorArray(
tf.int32, size=0, dynamic_size=True, element_shape=[length])
outputs[k + "_position"] = tf.TensorArray(
tf.int32, size=0, dynamic_size=True, element_shape=[length])
def cond_fn(i, partial, outputs):
del partial, outputs
return i < dynamic_batch_size
def body_fn(i, partial, outputs):
can_append = True
one_example = {}
for k in keys:
val = tf.cast(x[k][i], tf.int32)
val = val[:tf.reduce_sum(tf.cast(tf.not_equal(val, 0), tf.int32))]
one_example[k] = val
for k in keys:
can_append = tf.logical_and(
can_append,
tf.less_equal(
tf.size(partial[k]) + tf.size(one_example[k]), length))
def false_fn():
return write_packed_example(partial, outputs)
def true_fn():
return partial, outputs
partial, outputs = tf.cond(can_append, true_fn, false_fn)
new_partial = {}
for k in keys:
new_seq = one_example[k][:length]
new_seq_len = tf.size(new_seq)
new_partial[k] = tf.concat([partial[k], new_seq], 0)
new_partial[k + "_position"] = tf.concat(
[partial[k + "_position"],
tf.range(new_seq_len, dtype=tf.int32)], 0)
partial = new_partial
return i+1, partial, outputs
i, partial, outputs = tf.while_loop(
cond_fn, body_fn, (i, partial, outputs),
back_prop=False,
shape_invariants=(
tf.TensorShape([]),
{k: tf.TensorShape([None]) for k in keys_etc},
{k: tf.TensorShape(None) for k in keys_etc},
))
partial, outputs = write_packed_example(partial, outputs)
packed = {k: outputs[k].stack() for k in keys_etc}
for k in keys:
packed[k + "_segmentation"] = (
tf.cumsum(
tf.cast(tf.equal(packed[k + "_position"], 0), tf.int32), axis=1) *
tf.cast(tf.not_equal(packed[k], 0), tf.int32))
return packed
dataset = dataset.map(map_fn,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
return dataset.flat_map(tf.data.Dataset.from_tensor_slices) | Helper-function for packing a dataset which has already been batched.
See pack_dataset()
Uses tf.while_loop. Slow.
Args:
dataset: a dataset containing padded batches of examples.
keys: a list of strings
length: an integer
Returns:
a dataset. | juraj-google-style |
def shortcut_string_merge(self, node_def):
device = node_def.device or ''
merge_key = (self._spec, device)
result = _string_merge_cache.get(merge_key)
if result is None:
result = self.__call__(node_def).to_string()
_string_merge_cache[merge_key] = result
return result | Merge a node def without materializing a full DeviceSpec object.
Often a device merge is invoked in order to generate a string which can be
passed into the c api. In such a case, we can cache the
node_def.device -> merge_result_string
map, and in most cases avoid:
- Materializing a copy of self._spec (In the case of DeviceSpecV1)
- Materializing a DeviceSpec for node_def.device
- A DeviceSpec.merge_from invocation
In practice the cache hit rate for this function is very high, because the
number of invocations when iterating through the device stack is much
larger than the number of devices.
Args:
node_def: An Operation (or Operation-like) to merge device constraints
with self._spec
Returns:
A string containing the merged device specification. | github-repos |
def _selection(candidate):
sample_index1 = np.random.choice(len(candidate))
sample_index2 = np.random.choice(len(candidate))
sample_1 = candidate[sample_index1]
sample_2 = candidate[sample_index2]
select_index = np.random.choice(len(sample_1))
logger.info((LOGGING_PREFIX + 'Perform selection from %sth to %sth at index=%s'), sample_index2, sample_index1, select_index)
next_gen = []
for i in range(len(sample_1)):
if (i is select_index):
next_gen.append(sample_2[i])
else:
next_gen.append(sample_1[i])
return next_gen | Perform selection action to candidates.
For example, new gene = sample_1 + the 5th bit of sample2.
Args:
candidate: List of candidate genes (encodings).
Examples:
>>> # Genes that represent 3 parameters
>>> gene1 = np.array([[0, 0, 1], [0, 1], [1, 0]])
>>> gene2 = np.array([[0, 1, 0], [1, 0], [0, 1]])
>>> new_gene = _selection([gene1, gene2])
>>> # new_gene could be gene1 overwritten with the
>>> # 2nd parameter of gene2
>>> # in which case:
>>> # new_gene[0] = gene1[0]
>>> # new_gene[1] = gene2[1]
>>> # new_gene[2] = gene1[0]
Returns:
New gene (encoding) | codesearchnet |
def stop_worker(config, *, worker_ids=None):
if ((worker_ids is not None) and (not isinstance(worker_ids, list))):
worker_ids = [worker_ids]
celery_app = create_app(config)
celery_app.control.shutdown(destination=worker_ids) | Stop a worker process.
Args:
config (Config): Reference to the configuration object from which the
settings for the worker are retrieved.
worker_ids (list): An optional list of ids for the worker that should be stopped. | codesearchnet |
def _SerializeRequest(self, request):
parsed = urllib_parse.urlsplit(request.url)
request_line = urllib_parse.urlunsplit(('', '', parsed.path, parsed.query, ''))
if (not isinstance(request_line, six.text_type)):
request_line = request_line.decode('utf-8')
status_line = u' '.join((request.http_method, request_line, u'HTTP/1.1\n'))
(major, minor) = request.headers.get('content-type', 'application/json').split('/')
msg = mime_nonmultipart.MIMENonMultipart(major, minor)
for (key, value) in request.headers.items():
if (key == 'content-type'):
continue
msg[key] = value
msg['Host'] = parsed.netloc
msg.set_unixfrom(None)
if (request.body is not None):
msg.set_payload(request.body)
str_io = six.StringIO()
gen = generator.Generator(str_io, maxheaderlen=0)
gen.flatten(msg, unixfrom=False)
body = str_io.getvalue()
return (status_line + body) | Convert a http_wrapper.Request object into a string.
Args:
request: A http_wrapper.Request to serialize.
Returns:
The request as a string in application/http format. | codesearchnet |
def ts_to_str(jwt_dict):
d = ts_to_dt(jwt_dict)
for k, v in list(d.items()):
if isinstance(v, datetime.datetime):
d[k] = v.isoformat().replace('T', ' ')
return d | Convert timestamps in JWT to human readable dates.
Args:
jwt_dict: dict
JWT with some keys containing timestamps.
Returns:
dict: Copy of input dict where timestamps have been replaced with human readable
dates. | juraj-google-style |
def _handle_port_request(self, client_data, writer):
try:
pid = int(client_data)
except ValueError as error:
self._client_request_errors += 1
log.warning('Could not parse request: %s', error)
return
log.info('Request on behalf of pid %d.', pid)
log.info('cmdline: %s', _get_process_command_line(pid))
if (not _should_allocate_port(pid)):
self._denied_allocations += 1
return
port = self._port_pool.get_port_for_process(pid)
if (port > 0):
self._total_allocations += 1
writer.write('{:d}\n'.format(port).encode('utf-8'))
log.debug('Allocated port %d to pid %d', port, pid)
else:
self._denied_allocations += 1 | Given a port request body, parse it and respond appropriately.
Args:
client_data: The request bytes from the client.
writer: The asyncio Writer for the response to be written to. | codesearchnet |
def GetObject(self, identifier):
cache_value = self._values.get(identifier, None)
if (not cache_value):
return None
return cache_value.vfs_object | Retrieves a cached object based on the identifier.
This method ignores the cache value reference count.
Args:
identifier (str): VFS object identifier.
Returns:
object: cached VFS object or None if not cached. | codesearchnet |
def dropout(x, level, noise_shape=None, seed=None):
if seed is None:
seed = np.random.randint(10000000.0)
return nn.dropout_v2(x, rate=level, noise_shape=noise_shape, seed=seed) | Sets entries in `x` to zero at random, while scaling the entire tensor.
Args:
x: tensor
level: fraction of the entries in the tensor
that will be set to 0.
noise_shape: shape for randomly generated keep/drop flags,
must be broadcastable to the shape of `x`
seed: random seed to ensure determinism.
Returns:
A tensor. | github-repos |
def _transform_indices(self, key):
ndims = self.ndims
if all(((not (isinstance(el, slice) or callable(el))) for el in key)):
dim_inds = []
for dim in self.kdims:
dim_type = self.get_dimension_type(dim)
if (isinstance(dim_type, type) and issubclass(dim_type, Number)):
dim_inds.append(self.get_dimension_index(dim))
str_keys = iter((key[i] for i in range(self.ndims) if (i not in dim_inds)))
num_keys = []
if len(dim_inds):
keys = list({tuple(((k[i] if (ndims > 1) else k) for i in dim_inds)) for k in self.keys()})
q = np.array([tuple(((key[i] if (ndims > 1) else key) for i in dim_inds))])
idx = np.argmin([(np.inner((q - np.array(x)), (q - np.array(x))) if (len(dim_inds) == 2) else np.abs((q - x))) for x in keys])
num_keys = iter(keys[idx])
key = tuple(((next(num_keys) if (i in dim_inds) else next(str_keys)) for i in range(self.ndims)))
elif any(((not (isinstance(el, slice) or callable(el))) for el in key)):
keys = self.keys()
for (i, k) in enumerate(key):
if isinstance(k, slice):
continue
dim_keys = np.array([ke[i] for ke in keys])
if (dim_keys.dtype.kind in 'OSU'):
continue
snapped_val = dim_keys[np.argmin(np.abs((dim_keys - k)))]
key = list(key)
key[i] = snapped_val
key = tuple(key)
return key | Snaps indices into the GridSpace to the closest coordinate.
Args:
key: Tuple index into the GridSpace
Returns:
Transformed key snapped to closest numeric coordinates | codesearchnet |
def update_state(self, state_arr, action_arr):
(x, y) = np.where((action_arr[(- 1)] == 1))
self.__agent_pos = (x[0], y[0])
self.__route_memory_list.append((x[0], y[0]))
self.__route_long_memory_list.append((x[0], y[0]))
self.__route_long_memory_list = list(set(self.__route_long_memory_list))
while (len(self.__route_memory_list) > self.__memory_num):
self.__route_memory_list = self.__route_memory_list[1:]
return self.extract_now_state() | Update state.
Override.
Args:
state_arr: `np.ndarray` of state in `self.t`.
action_arr: `np.ndarray` of action in `self.t`.
Returns:
`np.ndarray` of state in `self.t+1`. | codesearchnet |
def add_network(self, network, netmask, area=0):
if ((network == '') or (netmask == '')):
raise ValueError('network and mask values may not be empty')
cmd = 'network {}/{} area {}'.format(network, netmask, area)
return self.configure_ospf(cmd) | Adds a network to be advertised by OSPF
Args:
network (str): The network to be advertised in dotted decimal
notation
netmask (str): The netmask to configure
area (str): The area the network belongs to.
By default this value is 0
Returns:
bool: True if the command completes successfully
Exception:
ValueError: This will get raised if network or netmask
are not passed to the method | codesearchnet |
def maybe_download_image_dataset(image_ids, target_dir):
tf.gfile.MakeDirs(target_dir)
num_images = len(image_ids)
for (i, image_id) in enumerate(image_ids):
destination = os.path.join(target_dir, ('%s.jpg' % i))
tmp_destination = ('%s.temp' % destination)
source_url = ('http:
if tf.gfile.Exists(destination):
tf.logging.info(('Image with ID already present, skipping download (%s of %s).' % ((i + 1), num_images)))
continue
tf.logging.info(('Downloading image with id %s (%s of %s)' % (image_id, (i + 1), num_images)))
response = requests.get(source_url, stream=True)
response.raise_for_status()
with tf.gfile.Open(tmp_destination, 'w') as f:
for block in response.iter_content(1024):
f.write(block)
tf.gfile.Rename(tmp_destination, destination) | Download a set of images from api.brain-map.org to `target_dir`.
Args:
image_ids: list, a list of image ids.
target_dir: str, a directory to which to download the images. | codesearchnet |
def protected_branches():
master = conf.get('git.master_branch', 'master')
develop = conf.get('git.devel_branch', 'develop')
return conf.get('git.protected_branches', (master, develop)) | Return branches protected by deletion.
By default those are master and devel branches as configured in pelconf.
Returns:
list[str]: Names of important branches that should not be deleted. | codesearchnet |
def _retry_on_appropriate_openai_error(exception):
return isinstance(exception, (RateLimitError, APIError)) | Retry filter that returns True for rate limit (429) or server (5xx) errors.
Args:
exception: the returned exception encountered during the request/response
loop.
Returns:
boolean indication whether or not the exception is a Server Error (5xx) or
a RateLimitError (429) error. | github-repos |
def _indicator(self, indicator_data):
if isinstance(indicator_data, dict):
xid = indicator_data.get('xid')
else:
xid = indicator_data.xid
if self.indicators.get(xid) is not None:
indicator_data = self.indicators.get(xid)
elif self.indicators_shelf.get(xid) is not None:
indicator_data = self.indicators_shelf.get(xid)
else:
self.indicators[xid] = indicator_data
return indicator_data | Return previously stored indicator or new indicator.
Args:
indicator_data (dict|obj): An Indicator dict or instance of Indicator object.
Returns:
dict|obj: The new Indicator dict/object or the previously stored dict/object. | juraj-google-style |
def __init__(self, destination, transport):
self._destination = destination
self._transport = transport | Create a new ADB stream.
Args:
destination: String identifier for the destination of this stream.
transport: AdbStreamTransport to use for reads/writes. | juraj-google-style |
def list_matching(self, ref_name: str, filter_: str) \
-> Iterable[ListEntry]:
canonical, canonical_i = self._get_pattern(ref_name + filter_)
for entry in self.list():
if entry.name == 'INBOX':
if canonical_i.match('INBOX'):
yield entry
elif canonical.match(entry.name):
yield entry | Return all the entries in the list tree that match the given query.
Args:
ref_name: Mailbox reference name.
filter_: Mailbox name with possible wildcards. | juraj-google-style |
def timestr2time(time_str):
if any(c not in '0123456789:' for c in time_str):
raise ValueError('Illegal character in time string')
if time_str.count(':') == 2:
h, m, s = time_str.split(':')
elif time_str.count(':') == 1:
h, m = time_str.split(':')
s = '00'
elif len(time_str) == 6:
h = time_str[:2]
m = time_str[2:4]
s = time_str[4:]
else:
raise ValueError('Time format not recognised. {}'.format(
VALID_TIME_FORMATS_TEXT))
if len(m) == 2 and len(s) == 2:
mins = int(m)
sec = int(s)
else:
raise ValueError('m and s must be 2 digits')
try:
return datetime.time(int(h), mins, sec)
except ValueError:
raise ValueError('Invalid time {}. {}'.format(time_str,
VALID_TIME_FORMATS_TEXT)) | Turns a string into a datetime.time object. This will only work if the
format can be "guessed", so the string must have one of the formats from
VALID_TIME_FORMATS_TEXT.
Args:
time_str (str) a string that represents a date
Returns:
datetime.time object
Raises:
ValueError if the input string does not have a valid format. | juraj-google-style |
def select(self, selector):
if self._is_single_string_selector(selector, 'name'):
return self._all_models_by_name.get_all(selector['name'])
else:
return find(self._all_models.values(), selector) | Query this document for objects that match the given selector.
Args:
selector (JSON-like query dictionary) : you can query by type or by
name, e.g. ``{"type": HoverTool}``, ``{"name": "mycircle"}``
Returns:
seq[Model] | codesearchnet |
def parse_author(cls, marc):
name = None
code = None
linked_forms = None
is_corporation = None
record = None
if marc["100a"]:
name = _first_or_none(marc["100a"])
code = _first_or_none(marc["1007"])
is_corporation = False
record = marc.datafields["100"][0]
elif marc["110a"]:
name = _first_or_none(marc["110a"])
code = _first_or_none(marc["1107"])
linked_forms = marc["410a2 "]
is_corporation = True
record = marc.datafields["110"][0]
else:
return None
linked_forms = marc["410a2 "]
type_descriptor = ["osoba", "organizace"]
alt_name = "%s [%s]" % (name, type_descriptor[is_corporation])
if linked_forms:
alt_name += " (" + ", ".join(linked_forms) + ")"
return cls(
name=name,
code=code,
linked_forms=linked_forms,
is_corporation=is_corporation,
record=record,
alt_name=alt_name,
) | Parse author from `marc` data.
Args:
marc (obj): :class:`.MARCXMLRecord` instance. See module
:mod:`.marcxml_parser` for details.
Returns:
obj: :class:`Author`. | juraj-google-style |
def get_experiment_kind(root):
properties = {}
if root.find('experimentType').text == 'Ignition delay measurement':
properties['experiment-type'] = 'ignition delay'
else:
raise NotImplementedError(root.find('experimentType').text + ' not (yet) supported')
properties['apparatus'] = {'kind': '', 'institution': '', 'facility': ''}
kind = getattr(root.find('apparatus/kind'), 'text', False)
if not kind:
raise MissingElementError('apparatus/kind')
elif kind in ['shock tube', 'rapid compression machine']:
properties['apparatus']['kind'] = kind
else:
raise NotImplementedError(kind + ' experiment not (yet) supported')
return properties | Read common properties from root of ReSpecTh XML file.
Args:
root (`~xml.etree.ElementTree.Element`): Root of ReSpecTh XML file
Returns:
properties (`dict`): Dictionary with experiment type and apparatus information. | juraj-google-style |
def tensor_list(elements, element_dtype=None, element_shape=None, use_tensor_array=False):
_validate_list_constructor(elements, element_dtype, element_shape)
if use_tensor_array:
return data_structures.tf_tensor_array_new(elements, element_dtype, element_shape)
else:
return data_structures.tf_tensor_list_new(elements, element_dtype, element_shape) | Creates an tensor list and populates it with the given elements.
This function provides a more uniform access to tensor lists and tensor
arrays, and allows optional initialization.
Note: this function is a simplified wrapper. If you need greater control,
it is recommended to use the underlying implementation directly.
Args:
elements: Iterable[tf.Tensor, ...], the elements to initially fill the list
with
element_dtype: Optional[tf.DType], data type for the elements in the list;
required if the list is empty
element_shape: Optional[tf.TensorShape], shape for the elements in the list;
required if the list is empty
use_tensor_array: bool, whether to use the more compatible but restrictive
tf.TensorArray implementation
Returns:
Union[tf.Tensor, tf.TensorArray], the new list.
Raises:
ValueError: for invalid arguments | github-repos |
def is_link(url, processed, files):
if url not in processed:
is_file = url.endswith(BAD_TYPES)
if is_file:
files.add(url)
return False
return True
return False | Determine whether or not a link should be crawled
A url should not be crawled if it
- Is a file
- Has already been crawled
Args:
url: str Url to be processed
processed: list[str] List of urls that have already been crawled
Returns:
bool If `url` should be crawled | juraj-google-style |
def find_in_matrix_2d(val, matrix):
dim = len(matrix[0])
item_index = 0
for row in matrix:
for i in row:
if i == val:
break
item_index += 1
if i == val:
break
loc = (int(item_index / dim), item_index % dim)
return loc | Returns a tuple representing the index of an item in a 2D matrix.
Arguments:
- val (str) Value to look for
- matrix (list) 2D matrix to search for val in
Returns:
- (tuple) Ordered pair representing location of val | juraj-google-style |
def _wait_for_glob(self, pattern, timeout_secs, for_checkpoint=True):
end_time = time.time() + timeout_secs
while time.time() < end_time:
if for_checkpoint:
if checkpoint_management.checkpoint_exists(pattern):
return
elif len(gfile.Glob(pattern)) >= 1:
return
time.sleep(0.05)
self.assertFalse(True, 'Glob never matched any file: %s' % pattern) | Wait for a checkpoint file to appear.
Args:
pattern: A string.
timeout_secs: How long to wait for in seconds.
for_checkpoint: whether we're globbing for checkpoints. | github-repos |
def dates_in_range(start_date, end_date):
return [(start_date + timedelta(n)) for n in range(int((end_date - start_date).days))] | Returns all dates between two dates.
Inclusive of the start date but not the end date.
Args:
start_date (datetime.date)
end_date (datetime.date)
Returns:
(list) of datetime.date objects | codesearchnet |
def Issue(self, state, results):
result = CheckResult()
if (results and all((isinstance(r, CheckResult) for r in results))):
result.ExtendAnomalies(results)
else:
result.anomaly = [rdf_anomaly.Anomaly(type=anomaly_pb2.Anomaly.AnomalyType.Name(anomaly_pb2.Anomaly.ANALYSIS_ANOMALY), symptom=self.hint.Problem(state), finding=self.hint.Render(results), explanation=self.hint.Fix())]
return result | Collect anomalous findings into a CheckResult.
Comparisons with anomalous conditions collect anomalies into a single
CheckResult message. The contents of the result varies depending on whether
the method making the comparison is a Check, Method or Probe.
- Probes evaluate raw host data and generate Anomalies. These are condensed
into a new CheckResult.
- Checks and Methods evaluate the results of probes (i.e. CheckResults). If
there are multiple probe results, all probe anomalies are aggregated into
a single new CheckResult for the Check or Method.
Args:
state: A text description of what combination of results were anomalous
(e.g. some condition was missing or present.)
results: Anomalies or CheckResult messages.
Returns:
A CheckResult message. | codesearchnet |
def stacked_cnn(units: tf.Tensor, n_hidden_list: List, filter_width=3, use_batch_norm=False, use_dilation=False, training_ph=None, add_l2_losses=False):
l2_reg = (tf.nn.l2_loss if add_l2_losses else None)
for (n_layer, n_hidden) in enumerate(n_hidden_list):
if use_dilation:
dilation_rate = (2 ** n_layer)
else:
dilation_rate = 1
units = tf.layers.conv1d(units, n_hidden, filter_width, padding='same', dilation_rate=dilation_rate, kernel_initializer=INITIALIZER(), kernel_regularizer=l2_reg)
if use_batch_norm:
assert (training_ph is not None)
units = tf.layers.batch_normalization(units, training=training_ph)
units = tf.nn.relu(units)
return units | Number of convolutional layers stacked on top of each other
Args:
units: a tensorflow tensor with dimensionality [None, n_tokens, n_features]
n_hidden_list: list with number of hidden units at the ouput of each layer
filter_width: width of the kernel in tokens
use_batch_norm: whether to use batch normalization between layers
use_dilation: use power of 2 dilation scheme [1, 2, 4, 8 .. ] for layers 1, 2, 3, 4 ...
training_ph: boolean placeholder determining whether is training phase now or not.
It is used only for batch normalization to determine whether to use
current batch average (std) or memory stored average (std)
add_l2_losses: whether to add l2 losses on network kernels to
tf.GraphKeys.REGULARIZATION_LOSSES or not
Returns:
units: tensor at the output of the last convolutional layer | codesearchnet |
def LSTMLayer(cell_name, weights, m, c, x_seq, pad_seq):
if len(x_seq) != len(pad_seq):
raise ValueError('length of x_seq(%d) != pad_seq(%d)' % (len(x_seq), len(pad_seq)))
out_seq = []
for seq in range(len(x_seq)):
with ops.name_scope('%s_%d' % (cell_name, seq)):
m, c = LSTMCell(weights, m, c, x_seq[seq], pad_seq[seq])
out_seq.append(array_ops.identity(m, name='out'))
return out_seq | Unrolls a layer of LSTM cells forward by the sequence length.
The sequence length is determined by the length of x_seq and pad_seq, which
must be the same.
Args:
cell_name: Base name of each cell.
weights: Weight matrix with shape LSTMCellWeightsShape.
m: Initial m states with shape [batch_size, num_nodes].
c: Initial c states with shape [batch_size, num_nodes].
x_seq: List of inputs, each with shape [batch_size, num_inputs].
The length of the list is the sequence length.
pad_seq: List of paddings, each with shape [batch_size, 1].
The length of the list is the sequence length.
Each padding value is either 0 or 1, where 1 indicates padding;
i.e. the input is shorter than the sequence length.
Returns:
List of per-sequence-step outputs, each with shape [batch_size, num_nodes].
Raises:
ValueError: If len(x_seq) != len(pad_seq). | github-repos |
def load(cls, path):
with open(path, 'r') as in_file:
metadata = json.load(in_file)
return cls.from_dict(metadata) | Create a new MLPipeline from a JSON specification.
The JSON file format is the same as the one created by the `to_dict` method.
Args:
path (str): Path of the JSON file to load.
Returns:
MLPipeline:
A new MLPipeline instance with the specification found
in the JSON file. | codesearchnet |
def write(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0):
tstream = BytearrayStream()
self.revocation_code.write(tstream, kmip_version=kmip_version)
if (self.revocation_message is not None):
self.revocation_message.write(tstream, kmip_version=kmip_version)
self.length = tstream.length()
super(RevocationReason, self).write(ostream, kmip_version=kmip_version)
ostream.write(tstream.buffer) | Write the data encoding the RevocationReason object to a stream.
Args:
ostream (Stream): A data stream in which to encode object data,
supporting a write method; usually a BytearrayStream object.
kmip_version (KMIPVersion): An enumeration defining the KMIP
version with which the object will be encoded. Optional,
defaults to KMIP 1.0. | codesearchnet |
def primitive_wrapper_from_primitive(self, primitive_message: message.Message) -> _primitive_wrappers.PrimitiveWrapper: | Wraps the FHIR protobuf primitive_message to handle parsing/printing.
The wrapped FHIR protobuf primitive provides necessary state for printing to
the FHIR JSON spec.
Args:
primitive_message: The FHIR primitive to wrap.
Raises:
ValueError: In the event that primitive_message is not actually a
primitive FHIR type.
Returns: A wrapper around primitive_message. | github-repos |
def _make_class_weight_map_fn(class_weight):
class_ids = list(sorted(class_weight.keys()))
expected_class_ids = list(range(len(class_ids)))
if class_ids != expected_class_ids:
error_msg = 'Expected `class_weight` to be a dict with keys from 0 to one less than the number of classes, found {}'.format(class_weight)
raise ValueError(error_msg)
class_weight_tensor = tensor_conversion.convert_to_tensor_v2_with_dispatch([class_weight[int(c)] for c in class_ids])
def _class_weights_map_fn(*data):
x, y, sw = unpack_x_y_sample_weight(data)
if nest.is_nested(y):
raise ValueError('`class_weight` is only supported for Models with a single output.')
if y.shape.rank > 2:
raise ValueError('`class_weight` not supported for 3+ dimensional targets.')
y_classes = smart_cond.smart_cond(y.shape.rank == 2 and backend.shape(y)[1] > 1, lambda: backend.argmax(y, axis=1), lambda: math_ops.cast(backend.reshape(y, (-1,)), dtypes.int64))
cw = array_ops.gather_v2(class_weight_tensor, y_classes)
if sw is not None:
cw = math_ops.cast(cw, sw.dtype)
sw, cw = expand_1d((sw, cw))
sw = sw * cw
else:
sw = cw
return (x, y, sw)
return _class_weights_map_fn | Applies class weighting to a `Dataset`.
The `Dataset` is assumed to be in format `(x, y)` or `(x, y, sw)`, where
`y` must be a single `Tensor`.
Args:
class_weight: A map where the keys are integer class ids and values are
the class weights, e.g. `{0: 0.2, 1: 0.6, 2: 0.3}`
Returns:
A function that can be used with `tf.data.Dataset.map` to apply class
weighting. | github-repos |
def get_libstdcpp_version():
key = 'libstdcpp_ver'
out, err = run_shell_cmd(cmds_all[PLATFORM.lower()][key])
if err and FLAGS.debug:
print('Error in detecting libstdc++ version:\n %s' % str(err))
ver = out.split(b'_')[-1].replace(b'\n', b'')
return ver | Retrieves version of libstdc++ detected.
Returns:
String that is the version of libstdc++.
e.g. '3.4.25' | github-repos |
def Collect(
self, knowledge_base, artifact_definition, searcher, file_system):
for source in artifact_definition.sources:
if source.type_indicator not in (
artifact_definitions.TYPE_INDICATOR_FILE,
artifact_definitions.TYPE_INDICATOR_PATH):
continue
for path in source.paths:
path_segments = path.split(source.separator)
find_spec = file_system_searcher.FindSpec(
location_glob=path_segments[1:], case_sensitive=False)
for path_specification in searcher.Find(find_specs=[find_spec]):
self._ParsePathSpecification(
knowledge_base, searcher, file_system, path_specification,
source.separator) | Collects values using a file artifact definition.
Args:
knowledge_base (KnowledgeBase): to fill with preprocessing information.
artifact_definition (artifacts.ArtifactDefinition): artifact definition.
searcher (dfvfs.FileSystemSearcher): file system searcher to preprocess
the file system.
file_system (dfvfs.FileSystem): file system to be preprocessed.
Raises:
PreProcessFail: if the preprocessing fails. | juraj-google-style |
def _run_graph_for_calibration_graph_mode(model_dir: str, tags: Collection[str], representative_dataset_map: rd.RepresentativeDatasetMapping) -> None:
_replace_tensors_by_numpy_ndarrays(representative_dataset_map)
with ops.Graph().as_default(), session.Session() as sess:
meta_graph: meta_graph_pb2.MetaGraphDef = loader_impl.load(sess, tags, export_dir=model_dir)
for signature_key, repr_ds in representative_dataset_map.items():
sig_def = meta_graph.signature_def[signature_key]
try:
_run_function_for_calibration_graph_mode(sess, signature_def=sig_def, representative_dataset=repr_ds)
except Exception as ex:
raise ValueError(f'Failed to run representative dataset through the function with the signature key: {signature_key}.') from ex | Runs the graph for calibration in graph mode.
This function assumes _graph mode_ (used when legacy TF1 is used or when eager
mode is explicitly disabled) when running the graph. This step is used in
order to collect the statistics in CustomAggregatorOp for quantization using
the representative dataset for the actual data provided for inference.
Args:
model_dir: Path to SavedModel directory.
tags: Collection of tags identifying the MetaGraphDef within the SavedModel.
representative_dataset_map: A map where signature keys are mapped to
corresponding representative datasets.
Raises:
ValueError: When running the function with the representative dataset fails. | github-repos |
def build_polygon_dict(self, path, stroke_color='
if (not isinstance(path, list)):
raise AttributeError('To build a map path a list of dictionaries of latitude and logitudes is required')
polygon = {'path': path, 'stroke_color': stroke_color, 'stroke_opacity': stroke_opacity, 'stroke_weight': stroke_weight, 'fill_color': fill_color, 'fill_opacity': fill_opacity}
return polygon | Set a dictionary with the javascript class Polygon parameters
This function sets a default drawing configuration if the user just
pass the polygon path, but also allows to set each parameter
individually if the user wish so.
Args:
path (list): A list of latitude and longitude point for the polygon
stroke_color (str): Sets the color of the polygon border using
hexadecimal color notation
stroke_opacity (float): Sets the opacity of the polygon border
in percentage. If stroke_opacity = 0, the border is transparent
stroke_weight (int): Sets the stroke girth in pixels.
fill_color (str): Sets the color of the polygon fill using
hexadecimal color notation
fill_opacity (float): Sets the opacity of the polygon fill | codesearchnet |
def concat_urls(*urls):
normalized_urls = filter(bool, [url.strip('/') for url in urls])
joined_urls = '/'.join(normalized_urls)
if not joined_urls:
return '/'
return '/{}/'.format(joined_urls) | Concat Urls
Args:
*args: (str)
Returns:
str: urls starting and ending with / merged with / | juraj-google-style |
def index_impute2(fn):
logger.info("Indexing {} (IMPUTE2)".format(fn))
impute2_index(fn, cols=[0, 1, 2], names=["chrom", "name", "pos"], sep=" ")
logger.info("Index generated") | Indexes an IMPUTE2 file.
Args:
fn (str): The name of the IMPUTE2 file. | juraj-google-style |
class XCLIPVisionEncoder(nn.Module):
def __init__(self, config: XCLIPConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([XCLIPVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(self, inputs_embeds, attention_mask: Optional[torch.Tensor]=None, causal_attention_mask: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(encoder_layer.__call__, hidden_states, attention_mask, causal_attention_mask, output_attentions)
else:
layer_outputs = encoder_layer(hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple((v for v in [hidden_states, encoder_states, all_attentions] if v is not None))
return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions) | Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`XCLIPVisionEncoderLayer`].
Args:
config: XCLIPConfig | github-repos |
def copy_file_if_newer(src_fs, src_path, dst_fs, dst_path):
with manage_fs(src_fs, writeable=False) as _src_fs:
with manage_fs(dst_fs, create=True) as _dst_fs:
if (_src_fs is _dst_fs):
if _source_is_newer(_src_fs, src_path, _dst_fs, dst_path):
_src_fs.copy(src_path, dst_path, overwrite=True)
return True
else:
return False
else:
with _src_fs.lock(), _dst_fs.lock():
if _source_is_newer(_src_fs, src_path, _dst_fs, dst_path):
copy_file_internal(_src_fs, src_path, _dst_fs, dst_path)
return True
else:
return False | Copy a file from one filesystem to another, checking times.
If the destination exists, and is a file, it will be first truncated.
If both source and destination files exist, the copy is executed only
if the source file is newer than the destination file. In case
modification times of source or destination files are not available,
copy is always executed.
Arguments:
src_fs (FS or str): Source filesystem (instance or URL).
src_path (str): Path to a file on the source filesystem.
dst_fs (FS or str): Destination filesystem (instance or URL).
dst_path (str): Path to a file on the destination filesystem.
Returns:
bool: `True` if the file copy was executed, `False` otherwise. | codesearchnet |
def read(name, default=None, allow_none=False, fallback=None):
raw_value = environ.get(name)
if ((raw_value is None) and (fallback is not None)):
if ((not isinstance(fallback, builtins.list)) and (not isinstance(fallback, builtins.tuple))):
fallback = [fallback]
for fall in fallback:
raw_value = environ.get(fall)
if (raw_value is not None):
break
if (raw_value or (raw_value == '')):
return raw_value
elif ((default is not None) or allow_none):
return default
else:
raise KeyError('Set the "{0}" environment variable'.format(name)) | Read the raw env value.
Read the raw environment variable or use the default. If the value is not
found and no default is set throw an exception.
Args:
name: The environment variable name
default: The default value to use if no environment variable is found
allow_none: If the return value can be `None` (i.e. optional)
fallback: A list of fallback env variables to try and read if the primary environment
variable is unavailable. | codesearchnet |
def retry_until_valid_or_limit_reached(method, limit, validation_fn, sleep_s=1, catch_exceptions=()):
assert (limit > 0), 'Limit must be greater than 0'
def _execute_method(helper):
try:
return method()
except catch_exceptions:
if (not helper.remaining):
raise
return None
helper = RetryHelper((limit - 1))
result = _execute_method(helper)
while ((not validation_fn(result)) and helper.retry_if_possible()):
time.sleep(sleep_s)
result = _execute_method(helper)
return result | Executes a method until the retry limit or validation_fn returns True.
The method is always called once so the effective lower limit for 'limit' is
1. Passing in a number less than 1 will still result it the method being
called once.
Args:
method: The method to execute should take no arguments.
limit: The number of times to try this method. Must be >0.
validation_fn: The validation function called on the function result to
determine whether to keep looping.
sleep_s: The time to sleep in between invocations.
catch_exceptions: Tuple of exception types to catch and count as failures.
Returns:
Whatever the method last returned, implicit False would indicate the
method never succeeded. | codesearchnet |
def get_special_tokens_mask(self, token_ids_0: List[int], token_ids_1: Optional[List[int]]=None, already_has_special_tokens: Optional[bool]=False) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True)
if token_ids_1 is None:
return [0] * len(token_ids_0) + [1]
return [0] * len(token_ids_0) + [1] + [0] * len(token_ids_1) + [1] | Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | github-repos |
def seek_end(fileobj, offset):
if offset < 0:
raise ValueError
if get_size(fileobj) < offset:
fileobj.seek(0, 0)
else:
fileobj.seek(-offset, 2) | Like fileobj.seek(-offset, 2), but will not try to go beyond the start
Needed since file objects from BytesIO will not raise IOError and
file objects from open() will raise IOError if going to a negative offset.
To make things easier for custom implementations, instead of allowing
both behaviors, we just don't do it.
Args:
fileobj (fileobj)
offset (int): how many bytes away from the end backwards to seek to
Raises:
IOError | juraj-google-style |
def get_generating_ops(ts):
ts = make_list_of_t(ts, allow_graph=False)
return [t.op for t in ts] | Return all the generating ops of the tensors in `ts`.
Args:
ts: a list of `tf.Tensor`
Returns:
A list of all the generating `tf.Operation` of the tensors in `ts`.
Raises:
TypeError: if `ts` cannot be converted to a list of `tf.Tensor`. | github-repos |
def dict_head(d, N=5):
return {k: d[k] for k in list(d.keys())[:N]} | Return the head of a dictionary. It will be random!
Default is to return the first 5 key/value pairs in a dictionary.
Args:
d: Dictionary to get head.
N: Number of elements to display.
Returns:
dict: the first N items of the dictionary. | juraj-google-style |
def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, layer_head_mask: Optional[torch.Tensor]=None, position_bias: Optional[torch.Tensor]=None, output_attentions: bool=False):
residual = hidden_states
hidden_states, attn_weights, _ = self.attention(hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, position_bias=position_bias, output_attentions=output_attentions)
hidden_states = self.dropout(hidden_states)
hidden_states = residual + hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states + self.feed_forward(hidden_states)
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs | Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, hidden_size)`
attention_mask (`torch.FloatTensor`):
attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(config.encoder_attention_heads,)`.
position_bias (`torch.FloatTensor`):
relative position embeddings of size `(seq_len, seq_len, hidden_size // encoder_attention_heads)`
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail. | github-repos |
def from_voxels(voxels):
dimensions = len(voxels[0])
for d in range(len(dimensions)):
size.append(max([i[d] for i in voxels]))
result = numpy.zeros(dimensions)
for v in voxels:
result[v] = 1
return result | Converts a voxel list to an ndarray.
Arguments:
voxels (tuple[]): A list of coordinates indicating coordinates of
populated voxels in an ndarray.
Returns:
numpy.ndarray The result of the transformation. | juraj-google-style |
def read(self, length=0, timeout_ms=None):
return self._transport.read(length, timeouts.PolledTimeout.from_millis(timeout_ms)) | Reads data from the remote end of this stream.
Internally, this data will have been contained in AdbMessages, but
users of streams shouldn't need to care about the transport mechanism.
Args:
length: If provided, the number of bytes to read, otherwise all available
data will be returned (at least one byte).
timeout_ms: Time to wait for a message to come in for this stream, in
milliseconds (or as a PolledTimeout object).
Returns:
Data that was read, or None if the end of the stream was reached.
Raises:
AdbProtocolError: Received an unexpected wonky non-stream packet (like a
CNXN ADB message).
AdbStreamClosedError: The stream is already closed.
AdbTimeoutError: Timed out waiting for a message. | codesearchnet |
def std(self):
import math
chunk_iter = chunks(self.times, self.bestof)
times = list(map(min, chunk_iter))
mean = (sum(times) / len(times))
std = math.sqrt((sum((((t - mean) ** 2) for t in times)) / len(times)))
return std | The standard deviation of the best results of each trial.
Returns:
float: standard deviation of measured seconds
Note:
As mentioned in the timeit source code, the standard deviation is
not often useful. Typically the minimum value is most informative.
Example:
>>> import math
>>> self = Timerit(num=10, verbose=1)
>>> self.call(math.factorial, 50)
>>> assert self.std() >= 0 | codesearchnet |
def copy_to(self, new_key, bucket=None):
if bucket is None:
bucket = self._bucket
try:
new_info = self._api.objects_copy(self._bucket, self._key, bucket, new_key)
except Exception as e:
raise e
return Item(bucket, new_key, new_info, context=self._context) | Copies this item to the specified new key.
Args:
new_key: the new key to copy this item to.
bucket: the bucket of the new item; if None (the default) use the same bucket.
Returns:
An Item corresponding to new key.
Raises:
Exception if there was an error copying the item. | juraj-google-style |
def loop_until_timeout_or_not_none(timeout_s, function, sleep_s=1):
return loop_until_timeout_or_valid(timeout_s, function, (lambda x: (x is not None)), sleep_s) | Loops until the specified function returns non-None or until a timeout.
Args:
timeout_s: The number of seconds to wait until a timeout condition is
reached. As a convenience, this accepts None to mean never timeout. Can
also be passed a PolledTimeout object instead of an integer.
function: The function to call each iteration.
sleep_s: The number of seconds to wait after calling the function.
Returns:
Whatever the function returned last. | codesearchnet |
def _get_mean_and_median(hist: Hist) -> Tuple[(float, float)]:
x = ctypes.c_double(0)
q = ctypes.c_double(0.5)
hist.ComputeIntegral()
hist.GetQuantiles(1, x, q)
mean = hist.GetMean()
return (mean, x.value) | Retrieve the mean and median from a ROOT histogram.
Note:
These values are not so trivial to calculate without ROOT, as they are the bin values
weighted by the bin content.
Args:
hist: Histogram from which the values will be extract.
Returns:
mean, median of the histogram. | codesearchnet |
def set_value(self, value, timeout):
self.value = value
self.expiration = time.clock() * 1000 + timeout | Changes the cached value and updates creation time.
Args:
value: the new cached value.
timeout: time to live for the object in milliseconds
Returns: None | juraj-google-style |
def _generate_ascii(self, matrix, foreground, background):
return '\n'.join([''.join([(foreground if cell else background) for cell in row]) for row in matrix]) | Generates an identicon "image" in the ASCII format. The image will just
output the matrix used to generate the identicon.
Arguments:
matrix - Matrix describing which blocks in the identicon should be
painted with foreground (background if inverted) colour.
foreground - Character which should be used for representing
foreground.
background - Character which should be used for representing
background.
Returns:
ASCII representation of an identicon image, where one block is one
character. | codesearchnet |
def __init__(self, **kwargs):
try:
self.UIStatusMsg = ''
self.mac = kwargs.get('EUI')
self.handle = None
self.AutoDUTEnable = False
self._is_net = False
self.logStatus = {'stop':'stop', 'running':'running', 'pauseReq':'pauseReq', 'paused':'paused'}
self.logThreadStatus = self.logStatus['stop']
self.connectType = (kwargs.get('Param5')).strip().lower() if kwargs.get('Param5') is not None else 'usb'
if self.connectType == 'ip':
self.dutIpv4 = kwargs.get('TelnetIP')
self.dutPort = kwargs.get('TelnetPort')
self.port = self.dutIpv4 + ':' + self.dutPort
else:
self.port = kwargs.get('SerialPort')
self.intialize()
except Exception, e:
ModuleHelper.WriteIntoDebugLogger('initialize() Error: ' + str(e)) | initialize the serial port and default network parameters
Args:
**kwargs: Arbitrary keyword arguments
Includes 'EUI' and 'SerialPort' | juraj-google-style |
def gen_encoder_output_proposals(self, enc_output, padding_mask, spatial_shapes):
batch_size = enc_output.shape[0]
proposals = []
_cur = 0
for level, (height, width) in enumerate(spatial_shapes):
mask_flatten_ = padding_mask[:, _cur:_cur + height * width].view(batch_size, height, width, 1)
valid_height = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
valid_width = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
grid_y, grid_x = meshgrid(torch.linspace(0, height - 1, height, dtype=enc_output.dtype, device=enc_output.device), torch.linspace(0, width - 1, width, dtype=enc_output.dtype, device=enc_output.device), indexing='ij')
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)
scale = torch.cat([valid_width.unsqueeze(-1), valid_height.unsqueeze(-1)], 1).view(batch_size, 1, 1, 2)
grid = (grid.unsqueeze(0).expand(batch_size, -1, -1, -1) + 0.5) / scale
width_height = torch.ones_like(grid) * 0.05 * 2.0 ** level
proposal = torch.cat((grid, width_height), -1).view(batch_size, -1, 4)
proposals.append(proposal)
_cur += height * width
output_proposals = torch.cat(proposals, 1)
output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)
output_proposals = torch.log(output_proposals / (1 - output_proposals))
output_proposals = output_proposals.masked_fill(padding_mask.unsqueeze(-1), float('inf'))
output_proposals = output_proposals.masked_fill(~output_proposals_valid, float('inf'))
object_query = enc_output
object_query = object_query.masked_fill(padding_mask.unsqueeze(-1), float(0))
object_query = object_query.masked_fill(~output_proposals_valid, float(0))
object_query = self.enc_output_norm(self.enc_output(object_query))
return (object_query, output_proposals) | Generate the encoder output proposals from encoded enc_output.
Args:
enc_output (Tensor[batch_size, sequence_length, hidden_size]): Output of the encoder.
padding_mask (Tensor[batch_size, sequence_length]): Padding mask for `enc_output`.
spatial_shapes (List[Tuple[int, int]]): Spatial shapes of the feature maps.
Returns:
`tuple(torch.FloatTensor)`: A tuple of feature map and bbox prediction.
- object_query (Tensor[batch_size, sequence_length, hidden_size]): Object query features. Later used to
directly predict a bounding box. (without the need of a decoder)
- output_proposals (Tensor[batch_size, sequence_length, 4]): Normalized proposals, after an inverse
sigmoid. | github-repos |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.