code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def scatter_add(self, sparse_delta, use_locking=False, name=None):
raise NotImplementedError | Adds `tf.IndexedSlices` to this variable.
Args:
sparse_delta: `tf.IndexedSlices` to be added to this variable.
use_locking: If `True`, use locking during the operation.
name: the name of the operation.
Returns:
The updated variable.
Raises:
TypeError: if `sparse_delta` is not an `IndexedSlices`. | github-repos |
def _parse_datetime(self, value):
offset = 0
pattern = r"\s+([+-]{1}\d+)\Z"
matches = re.search(pattern, value)
if matches:
value = re.sub(pattern, '', value)
offset = datetime.timedelta(hours=int(matches.group(1))/100)
return datetime.datetime.strptime(value, "%Y/%m/%d %H:%M:%S") - offset | Parses a datetime string from "YYYY/MM/DD HH:MM:SS +HHMM" format
Args:
value (str): String
Returns:
datetime. Datetime | juraj-google-style |
def _aggregate_grads(gradients):
assert gradients, 'No gradients to aggregate'
if len(gradients) == 1:
return gradients[0]
if all((isinstance(g, tensor_lib.Tensor) for g in gradients)):
return gen_math_ops.add_n(gradients)
else:
assert all((isinstance(g, (tensor_lib.Tensor, indexed_slices.IndexedSlices)) for g in gradients))
return backprop_util.AggregateIndexedSlicesGradients(gradients) | Aggregate gradients from multiple sources.
Args:
gradients: A list of 'Tensor' or 'IndexedSlices' gradients.
Returns:
If 'gradients' only has 'Tensor', returns an aggregated 'Tensor'.
Otherwise returns an aggregated 'IndexedSlices'. | github-repos |
def _batched_mask_to_box_tf(masks: 'tf.Tensor'):
if tf.size(masks) == 0:
return tf.zeros([*masks.shape[:-2], 4])
shape = shape_list(masks)
height, width = shape[-2:]
in_height = tf.reduce_max(masks, axis=-1)
in_height_coords = in_height * tf.range(height)[None, :]
bottom_edges = tf.reduce_max(in_height_coords, axis=-1)
in_height_coords = in_height_coords + height * ~in_height
top_edges = tf.reduce_min(in_height_coords, axis=-1)
in_width, _ = tf.reduce_max(masks, axis=-2)
in_width_coords = in_width * tf.range(width)[None, :]
right_edges, _ = tf.reduce_max(in_width_coords, axis=-1)
in_width_coords = in_width_coords + width * ~in_width
left_edges, _ = tf.reduce_min(in_width_coords, axis=-1)
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
out = tf.stack([left_edges, top_edges, right_edges, bottom_edges], axis=-1)
out = out * tf.expand_dims(~empty_filter, -1)
out = tf.reshape(out, *shape[:-2], 4)
return out | Computes the bounding boxes around the given input masks. The bounding boxes are in the XYXY format which
corresponds the following required indices:
- LEFT: left hand side of the bounding box
- TOP: top of the bounding box
- RIGHT: right of the bounding box
- BOTTOM: bottom of the bounding box
Return [0,0,0,0] for an empty mask. For input shape channel_1 x channel_2 x ... x height x width, the output shape
is channel_1 x channel_2 x ... x 4.
Args:
- masks (`tf.Tensor` of shape `(batch, nb_mask, height, width)`) | github-repos |
def move(self, destination):
self.relocate(destination)
shutil.move(self.path, destination)
self._path = destination | Reconfigure and move the virtual environment to another path.
Args:
destination (str): The target path of the virtual environment.
Note:
Unlike `relocate`, this method *will* move the virtual to the
given path. | codesearchnet |
def bessel_y0(x, name=None):
with ops.name_scope(name, 'bessel_y0', [x]):
return gen_special_math_ops.bessel_y0(x) | Computes the Bessel y0 function of `x` element-wise.
Modified Bessel function of order 0.
>>> tf.math.special.bessel_y0([0.5, 1., 2., 4.]).numpy()
array([-0.44451873, 0.08825696, 0.51037567, -0.01694074], dtype=float32)
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
@compatibility(scipy)
Equivalent to scipy.special.y0
@end_compatibility | github-repos |
def xcompile(source_code, args=0, optimize=True):
code = crianza.compile(crianza.parse(source_code), optimize=optimize)
return crianza.native.compile(code, args=args) | Parses Crianza source code and returns a native Python function.
Args:
args: The resulting function's number of input parameters.
Returns:
A callable Python function. | juraj-google-style |
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, output_attentions: Optional[bool]=None, **kwargs: Unpack[FlashAttentionKwargs]) -> Tuple[torch.FloatTensor]:
residual = hidden_states
hidden_states = self.attention_norm(hidden_states)
hidden_states, attn_weights = self.attention(hidden_states=hidden_states, attention_mask=attention_mask, position_embeddings=position_embeddings, output_attentions=output_attentions, **kwargs)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.ffn_norm(hidden_states)
hidden_states = self.feed_forward(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs | Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(batch, seq_len, embed_dim)`.
attention_mask (`torch.FloatTensor`):
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail. | github-repos |
def run_restore_ops(self, session=None):
raise AssertionError('No checkpoint specified, so no restore ops are available (save_path=None to Saver.restore).') | For consistency with `CheckpointLoadStatus`.
Use `initialize_or_restore` for initializing if no checkpoint was passed
to `Saver.restore` and restoring otherwise.
Args:
session: Not used. | github-repos |
def collapse_short_branches(self, threshold):
if not isinstance(threshold,float) and not isinstance(threshold,int):
raise RuntimeError("threshold must be an integer or a float")
elif threshold < 0:
raise RuntimeError("threshold cannot be negative")
q = deque(); q.append(self.root)
while len(q) != 0:
next = q.popleft()
if next.edge_length is None or next.edge_length <= threshold:
if next.is_root():
next.edge_length = None
elif not next.is_leaf():
parent = next.parent; parent.remove_child(next)
for c in next.children:
parent.add_child(c)
q.extend(next.children) | Collapse internal branches (not terminal branches) with length less than or equal to ``threshold``. A branch length of ``None`` is considered 0
Args:
``threshold`` (``float``): The threshold to use when collapsing branches | juraj-google-style |
def _file_exists_in_gcs(gcs_file_path, credentials=None):
gcs_service = _get_storage_service(credentials)
(bucket_name, object_name) = gcs_file_path[len('gs:
request = gcs_service.objects().get(bucket=bucket_name, object=object_name, projection='noAcl')
try:
request.execute()
return True
except errors.HttpError:
return False | Check whether the file exists, in GCS.
Args:
gcs_file_path: The target file path; should have the 'gs://' prefix.
credentials: Optional credential to be used to load the file from gcs.
Returns:
True if the file's there. | codesearchnet |
def Deserialize(self, reader):
super(Block, self).Deserialize(reader)
self.Transactions = []
byt = reader.ReadVarInt()
transaction_length = byt
if transaction_length < 1:
raise Exception('Invalid format')
for i in range(0, transaction_length):
tx = Transaction.DeserializeFrom(reader)
self.Transactions.append(tx)
if MerkleTree.ComputeRoot([tx.Hash for tx in self.Transactions]) != self.MerkleRoot:
raise Exception("Merkle Root Mismatch") | Deserialize full object.
Args:
reader (neo.IO.BinaryReader): | juraj-google-style |
def remove_room_alias(self, room_alias):
try:
self.api.remove_room_alias(room_alias)
return True
except MatrixRequestError:
return False | Remove mapping of an alias
Args:
room_alias(str): The alias to be removed.
Returns:
bool: True if the alias is removed, False otherwise. | juraj-google-style |
def validate(self, profile):
ij = self.load_install_json(profile.get('install_json'))
print('{}{}Profile: "{}".'.format(c.Style.BRIGHT, c.Fore.BLUE, profile.get('profile_name')))
for arg in self.profile_settings_args_install_json(ij, None):
if (profile.get('args', {}).get('app', {}).get(arg) is None):
print('{}{}Input "{}" not found.'.format(c.Style.BRIGHT, c.Fore.YELLOW, arg)) | Check to see if any args are "missing" from profile.
Validate all args from install.json are in the profile. This can be helpful to validate
that any new args added to App are included in the profiles.
.. Note:: This method does not work with layout.json Apps.
Args:
profile (dict): The current profile to validate. | codesearchnet |
def create_alias(target_path, alias_path):
if platform.system() == 'Windows' and not alias_path.endswith('.lnk'):
alias_path += '.lnk'
if os.path.lexists(alias_path):
os.remove(alias_path)
if platform.system() == 'Windows':
from win32com import client
shell = client.Dispatch('WScript.Shell')
shortcut = shell.CreateShortCut(alias_path)
shortcut.Targetpath = target_path
shortcut.save()
else:
os.symlink(target_path, alias_path) | Creates an alias at 'alias_path' pointing to the file 'target_path'.
On Unix, this is implemented via symlink. On Windows, this is done by
creating a Windows shortcut file.
Args:
target_path: Destination path that the alias should point to.
alias_path: Path at which to create the new alias. | juraj-google-style |
def get_named_parent(decl):
if not decl:
return None
parent = decl.parent
while parent and (not parent.name or parent.name == '::'):
parent = parent.parent
return parent | Returns a reference to a named parent declaration.
Args:
decl (declaration_t): the child declaration
Returns:
declaration_t: the declaration or None if not found. | juraj-google-style |
def _MergeEntities(self, a, b):
distance = transitfeed.ApproximateDistanceBetweenStops(a, b)
if (distance > self.largest_stop_distance):
raise MergeError(('Stops are too far apart: %.1fm (largest_stop_distance is %.1fm).' % (distance, self.largest_stop_distance)))
scheme = {'stop_id': self._MergeIdentical, 'stop_name': self._MergeIdenticalCaseInsensitive, 'zone_id': self._MergeIdentical, 'location_type': self._MergeIdentical}
return self._SchemedMerge(scheme, a, b) | Merges two stops.
For the stops to be merged, they must have:
- the same stop_id
- the same stop_name (case insensitive)
- the same zone_id
- locations less than largest_stop_distance apart
The other attributes can have arbitary changes. The merged attributes are
taken from the new stop.
Args:
a: The first stop.
b: The second stop.
Returns:
The merged stop.
Raises:
MergeError: The stops could not be merged. | codesearchnet |
def get_value(self, query):
indices = self.get_dimension_indices(query)
index = self.get_value_index(indices)
value = self.get_value_by_index(index)
return value | Converts a dimension/category list of dicts into a data value \
in three steps.
Args:
query(list): list of dicts with the desired query.
Returns:
value(float): numeric data value. | juraj-google-style |
def regex_to_sql_like(regex_text: str, single_wildcard: str='_', zero_or_more_wildcard: str='%') -> List[str]:
def append_to_all(new_content: str) -> None:
nonlocal results
results = [(r + new_content) for r in results]
def split_and_append(new_options: List[str]) -> None:
nonlocal results
newresults = []
for option in new_options:
newresults.extend([(r + option) for r in results])
results = newresults
def deduplicate_wildcards(text: str) -> str:
while ((zero_or_more_wildcard + zero_or_more_wildcard) in text):
text = text.replace((zero_or_more_wildcard + zero_or_more_wildcard), zero_or_more_wildcard)
return text
working = regex_text
results = [zero_or_more_wildcard]
while working:
if working.startswith('.*'):
append_to_all(zero_or_more_wildcard)
working = working[2:]
elif working.startswith('['):
close_bracket = working.index(']')
bracketed = working[1:close_bracket]
option_groups = bracketed.split('|')
options = [c for group in option_groups for c in group]
split_and_append(options)
working = working[(close_bracket + 1):]
elif ((len(working) > 1) and (working[1] == '?')):
split_and_append(['', working[0]])
working = working[2:]
elif working.startswith('.'):
append_to_all(single_wildcard)
working = working[1:]
else:
append_to_all(working[0])
working = working[1:]
append_to_all(zero_or_more_wildcard)
results = [deduplicate_wildcards(r) for r in results]
return results | Converts regular expression text to a reasonably close fragment
for the SQL ``LIKE`` operator.
NOT PERFECT, but works for current built-in regular expressions.
Args:
regex_text: regular expression text to work with
single_wildcard: SQL single wildcard, typically an underscore
zero_or_more_wildcard: SQL "zero/one/many" wildcard, probably always
a percent symbol
Returns:
string for an SQL string literal
Raises:
:exc:`ValueError` for some regex text that it doesn't understand
properly | codesearchnet |
def aside_view_declaration(self, view_name):
if view_name in self._combined_asides:
return getattr(self, self._combined_asides[view_name])
else:
return None | Find and return a function object if one is an aside_view for the given view_name
Aside methods declare their view provision via @XBlockAside.aside_for(view_name)
This function finds those declarations for a block.
Arguments:
view_name (string): the name of the view requested.
Returns:
either the function or None | juraj-google-style |
def build_sql_statement(self) -> str:
builders = self._view.get_select_expressions()
from_expressions = [f'`{self._dataset}`.{self._table_name}']
where_expressions = self._build_where_expressions(self._view.get_constraint_expressions())
if not builders:
return self._build_sql_statement(['*'], from_expressions, where_expressions)
sql_statement = ''
next_from_expressions = []
child_builders = []
columns_selected = []
while builders or next_from_expressions:
select_expressions, next_from_expressions = self._build_select_and_next_from_expressions(builders, child_builders, columns_selected)
sql_statement = self._build_sql_statement(select_expressions, from_expressions, where_expressions)
from_expressions = [f'({sql_statement})']
from_expressions.extend(next_from_expressions)
where_expressions = []
builders = tuple(child_builders)
child_builders = []
return sql_statement | Build SQL statement.
Returns:
SQL string representation of the view | github-repos |
def write_dot_file(G, filename):
with io.open(filename, "w") as fh:
fh.write("strict digraph DependencyDiagram {\n")
edge_list = G.edges()
node_list = set(G.nodes())
if edge_list:
for edge in sorted(edge_list):
source, targ = edge
node_list = node_list - set(source)
node_list = node_list - set(targ)
line = '"{}" -> "{}";\n'
fh.write(line.format(source, targ))
if node_list:
for node in sorted(node_list):
line = '"{}"\n'.format(node)
fh.write(line)
fh.write("}") | Writes the graph G in dot file format for graphviz visualization.
Args:
a Networkx graph
A filename to name the dot files | juraj-google-style |
def apply_transform(self, data: OperationInputT, output_column_name: str) -> dict[str, OperationOutputT]: | Define any processing logic in the apply_transform() method.
processing logics are applied on inputs and returns a transformed
output.
Args:
inputs: input data. | github-repos |
def unapprove(self, **kwargs):
path = '%s/%s/unapprove' % (self.manager.path, self.get_id())
data = {}
server_data = self.manager.gitlab.http_post(path, post_data=data,
**kwargs)
self._update_attrs(server_data) | Unapprove the merge request.
Args:
**kwargs: Extra options to send to the server (e.g. sudo)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabMRApprovalError: If the unapproval failed | juraj-google-style |
def __request_finish(self, queue_item, new_requests, request_failed=False):
if self.__stopping:
return
del self.__threads[queue_item.get_hash()]
if request_failed:
new_queue_items = []
self.queue.move(queue_item, QueueItem.STATUS_ERRORED)
else:
self.routing.increase_route_count(queue_item.request)
new_queue_items = self.__add_scraped_requests_to_queue(queue_item, new_requests)
self.queue.move(queue_item, QueueItem.STATUS_FINISHED)
try:
action = self.__options.callbacks.request_after_finish(self.queue, queue_item, new_queue_items)
except Exception as e:
action = None
print(e)
print(traceback.format_exc())
queue_item.decompose()
if (action == CrawlerActions.DO_STOP_CRAWLING):
self.__should_stop = True
if ((action == CrawlerActions.DO_CONTINUE_CRAWLING) or (action is None)):
self.__should_spawn_new_requests = True | Called when the crawler finished the given queue item.
Args:
queue_item (:class:`nyawc.QueueItem`): The request/response pair that finished.
new_requests list(:class:`nyawc.http.Request`): All the requests that were found during this request.
request_failed (bool): True if the request failed (if needs to be moved to errored). | codesearchnet |
def _get_authenticated_client(self, wsdl):
return zeep.Client((wsdl % quote(self.username)), transport=zeep.Transport(session=self._get_authenticated_session())) | Return an authenticated SOAP client.
Returns:
zeep.Client: Authenticated API client. | codesearchnet |
def parse(cls, json_value: Union[int, float, str, List[Any], Tuple[Any], None], spec: Optional[DNASpec]=None) -> 'DNA':
return DNA(json_value, spec=spec) | Parse DNA from a nested structure of numbers.
Deprecated: use `DNA.__init__` instead.
Args:
json_value: A nested structure of numbers.
spec: DNA spec that will be applied to current DNA tree.
Returns:
an instance of DNA object.
Raises:
ValueError: Bad format for json_value or parsed DNA does not conform to
the DNA spec. | github-repos |
class TFGPT2Tokenizer(keras.layers.Layer):
def __init__(self, vocab: Dict[str, int], merges: List[str], max_length: Optional[int]=None, pad_token_id: Optional[int]=None):
super().__init__()
self.pad_token_id = pad_token_id
self.max_length = max_length
self.vocab = vocab
self.merges = merges
self.tf_tokenizer = BytePairTokenizer(vocab, merges, sequence_length=max_length)
@classmethod
def from_tokenizer(cls, tokenizer: GPT2Tokenizer, *args, **kwargs):
merges = [' '.join(m) for m in tokenizer.bpe_ranks.keys()]
vocab = tokenizer.get_vocab()
return cls(vocab, merges, *args, **kwargs)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], *init_inputs, **kwargs):
tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model_name_or_path, *init_inputs, **kwargs)
return cls.from_tokenizer(tokenizer, *init_inputs, **kwargs)
@classmethod
def from_config(cls, config):
return cls(**config)
def get_config(self):
return {'vocab': self.vocab, 'merges': self.merges, 'max_length': self.max_length, 'pad_token_id': self.pad_token_id}
def call(self, x, max_length: Optional[int]=None):
input_ids = self.tf_tokenizer(x)
attention_mask = tf.ones_like(input_ids)
if self.pad_token_id is not None:
max_length = max_length if max_length is not None else self.max_length
if max_length is not None:
input_ids, attention_mask = pad_model_inputs(input_ids, max_seq_length=max_length, pad_value=self.pad_token_id)
return {'attention_mask': attention_mask, 'input_ids': input_ids} | This is an in-graph tokenizer for GPT2. It should be initialized similarly to other tokenizers, using the
`from_pretrained()` method. It can also be initialized with the `from_tokenizer()` method, which imports settings
from an existing standard tokenizer object.
In-graph tokenizers, unlike other Hugging Face tokenizers, are actually Keras layers and are designed to be run
when the model is called, rather than during preprocessing. As a result, they have somewhat more limited options
than standard tokenizer classes. They are most useful when you want to create an end-to-end model that goes
straight from `tf.string` inputs to outputs.
Args:
vocab (Dict[str, int]): Vocabulary dict for Byte Pair Tokenizer
merges (List[str]): Merges list for Byte Pair Tokenizer | github-repos |
def signature_summary(self, default_values=False):
summary = f'{self._function_type!r}'
if default_values:
summary += '\nDefaults:'
if self.default_values:
for name, value in self.default_values.items():
summary += f'\n {name}: {value!r}'
else:
summary += '\n None'
return summary | Returns a string summarizing this function's signature.
Args:
default_values: If true, then include default values in the signature.
Returns:
A `string`. | github-repos |
def get_variables(self, include_submodules=False, include_nontrainable=False):
if include_nontrainable:
model_variables = [self.all_variables[key] for key in sorted(self.all_variables)]
states_preprocessing_variables = [
variable for name in sorted(self.states_preprocessing)
for variable in self.states_preprocessing[name].get_variables()
]
model_variables += states_preprocessing_variables
actions_exploration_variables = [
variable for name in sorted(self.actions_exploration)
for variable in self.actions_exploration[name].get_variables()
]
model_variables += actions_exploration_variables
if self.reward_preprocessing is not None:
reward_preprocessing_variables = self.reward_preprocessing.get_variables()
model_variables += reward_preprocessing_variables
else:
model_variables = [self.variables[key] for key in sorted(self.variables)]
return model_variables | Returns the TensorFlow variables used by the model.
Args:
include_submodules: Includes variables of submodules (e.g. baseline, target network)
if true.
include_nontrainable: Includes non-trainable variables if true.
Returns:
List of variables. | juraj-google-style |
def format_search_results(self, search_results):
formatted_lines = []
for search_result in search_results:
lines = self._format_search_result(search_result)
formatted_lines.extend(lines)
return formatted_lines | Format search results.
Args:
search_results (list of `ResourceSearchResult`): Search to format.
Returns:
List of 2-tuple: Text and color to print in. | juraj-google-style |
def load_lines(filename):
with open(filename, 'r', encoding='utf-8') as f:
return [line.rstrip('\n') for line in f.readlines()] | Load a text file as an array of lines.
Args:
filename: Path to the input file.
Returns:
An array of strings, each representing an individual line. | juraj-google-style |
def check_layout(tensor: tensor_lib.Tensor, layout: layout_lib.Layout) -> None:
if fetch_layout(tensor) != layout:
raise ValueError('Layout of tensor: ' + str(fetch_layout(tensor)) + ', did not match expected layout: ' + str(layout)) | Asserts that the layout of the DTensor is `layout`.
Args:
tensor: A DTensor whose layout is to be checked.
layout: The `Layout` to compare against.
Raises:
ValueError: If the layout of `tensor` does not match the supplied `layout`. | github-repos |
def get_user(
self, identified_with, identifier, req, resp, resource, uri_kwargs
):
stored_value = self.kv_store.get(
self._get_storage_key(identified_with, identifier)
)
if stored_value is not None:
user = self.serialization.loads(stored_value.decode())
else:
user = None
return user | Get user object for given identifier.
Args:
identified_with (object): authentication middleware used
to identify the user.
identifier: middleware specifix user identifier (string or tuple
in case of all built in authentication middleware classes).
Returns:
dict: user object stored in Redis if it exists, otherwise ``None`` | juraj-google-style |
def select_all(self, serial_numbers):
sheet = self.table
col = self.db_sheet_cols.id
rows = sheet.loc[:, col].isin(serial_numbers)
return sheet.loc[rows, :] | Select rows for identification for a list of serial_number.
Args:
serial_numbers: list (or ndarray) of serial numbers
Returns:
pandas.DataFrame | juraj-google-style |
def from_table(table, fields=None):
if fields is None:
fields = '*'
elif isinstance(fields, list):
fields = ','.join(fields)
return Query('SELECT %s FROM %s' % (fields, table._repr_sql_())) | Return a Query for the given Table object
Args:
table: the Table object to construct a Query out of
fields: the fields to return. If None, all fields will be returned. This can be a string
which will be injected into the Query after SELECT, or a list of field names.
Returns:
A Query object that will return the specified fields from the records in the Table. | juraj-google-style |
def create_window(size=None, samples=16, *, fullscreen=False, title=None, threaded=True) -> Window:
if size is None:
width, height = 1280, 720
else:
width, height = size
if samples < 0 or (samples & (samples - 1)) != 0:
raise Exception('Invalid number of samples: %d' % samples)
window = Window.__new__(Window)
window.wnd = glwnd.create_window(width, height, samples, fullscreen, title, threaded)
return window | Create the main window.
Args:
size (tuple): The width and height of the window.
samples (int): The number of samples.
Keyword Args:
fullscreen (bool): Fullscreen?
title (bool): The title of the window.
threaded (bool): Threaded?
Returns:
Window: The main window. | juraj-google-style |
def _check_wires_list(self, wires, node):
if len(set(wires)) != len(wires):
raise DAGCircuitError("duplicate wires")
wire_tot = len(node.qargs) + len(node.cargs)
if node.condition is not None:
wire_tot += node.condition[0].size
if len(wires) != wire_tot:
raise DAGCircuitError("expected %d wires, got %d"
% (wire_tot, len(wires))) | Check that a list of wires is compatible with a node to be replaced.
- no duplicate names
- correct length for operation
Raise an exception otherwise.
Args:
wires (list[register, index]): gives an order for (qu)bits
in the input circuit that is replacing the node.
node (DAGNode): a node in the dag
Raises:
DAGCircuitError: if check doesn't pass. | juraj-google-style |
def recipe_archive(config, auth_write, archive_days, archive_bucket, archive_path, archive_delete):
archive(config, {'auth': auth_write, 'days': archive_days, 'storage': {'bucket': archive_bucket, 'path': archive_path}, 'delete': archive_delete}) | Wipe old information from a Storage bucket based on last update time.
Args:
auth_write (authentication) - Credentials used for writing data.
archive_days (integer) - NA
archive_bucket (string) - NA
archive_path (string) - NA
archive_delete (boolean) - NA | github-repos |
def clean(decrypted: bytes) -> str:
r
last = decrypted[-1]
if isinstance(last, int):
return decrypted[:-last].decode('utf8')
return decrypted[:-ord(last)].decode('utf8') | r"""Strip padding from decrypted value.
Remove number indicated by padding
e.g. if last is '\x0e' then ord('\x0e') == 14, so take off 14.
Args:
decrypted: decrypted value
Returns:
Decrypted stripped of junk padding | juraj-google-style |
def delete_existing_policy(self, scaling_policy, server_group):
self.log.info("Deleting policy %s on %s", scaling_policy['policyName'], server_group)
delete_dict = {
"application":
self.app,
"description":
"Delete scaling policy",
"job": [{
"policyName": scaling_policy['policyName'],
"serverGroupName": server_group,
"credentials": self.env,
"region": self.region,
"provider": "aws",
"type": "deleteScalingPolicy",
"user": "foremast-autoscaling-policy"
}]
}
wait_for_task(json.dumps(delete_dict)) | Given a scaling_policy and server_group, deletes the existing scaling_policy.
Scaling policies need to be deleted instead of upserted for consistency.
Args:
scaling_policy (json): the scaling_policy json from Spinnaker that should be deleted
server_group (str): the affected server_group | juraj-google-style |
def save_output_in_cache(name, filename, output):
cache_filename = _get_cache_filename(name, filename)
with _open_for_write(cache_filename) as f:
f.write(output) | Saves output in the cache location.
Args:
name: string: name of the linter.
filename: string: path of the filename for which we are saving the output.
output: string: full output (not yet filetered) of the lint command. | juraj-google-style |
def _GetEventLogProviderKey(self, log_source):
table_names = ['event_log_providers']
column_names = ['event_log_provider_key']
condition = 'log_source == "{0:s}"'.format(log_source)
values_list = list(self._database_file.GetValues(
table_names, column_names, condition))
number_of_values = len(values_list)
if number_of_values == 0:
return None
if number_of_values == 1:
values = values_list[0]
return values['event_log_provider_key']
raise RuntimeError('More than one value found in database.') | Retrieves the Event Log provider key.
Args:
log_source (str): Event Log source.
Returns:
str: Event Log provider key or None if not available.
Raises:
RuntimeError: if more than one value is found in the database. | juraj-google-style |
def _close_on_stop(self, sess, cancel_op, coord):
coord.wait_for_stop()
try:
sess.run(cancel_op)
except Exception as e:
logging.vlog(1, 'Ignored exception: %s', str(e)) | Close the queue when the Coordinator requests stop.
Args:
sess: A Session.
cancel_op: The Operation to run.
coord: Coordinator. | github-repos |
def PushAttributeContainer(self, serialized_data):
self._list.append(serialized_data)
self.data_size += len(serialized_data)
self.next_sequence_number += 1 | Pushes a serialized attribute container onto the list.
Args:
serialized_data (bytes): serialized attribute container data. | juraj-google-style |
def encode_message(self, message):
message.check_initialized()
return json.dumps(message, cls=MessageJSONEncoder, protojson_protocol=self) | Encode Message instance to JSON string.
Args:
Message instance to encode in to JSON string.
Returns:
String encoding of Message instance in protocol JSON format.
Raises:
messages.ValidationError if message is not initialized. | codesearchnet |
def populate_sites( self, number_of_atoms, selected_sites=None ):
if number_of_atoms > self.number_of_sites:
raise ValueError
if selected_sites:
atoms = [ atom.Atom( initial_site = site ) for site in random.sample( [ s for s in self.sites if s.label in selected_sites ], number_of_atoms ) ]
else:
atoms = [ atom.Atom( initial_site = site ) for site in random.sample( self.sites, number_of_atoms ) ]
self.number_of_occupied_sites = number_of_atoms
return atoms | Populate the lattice sites with a specific number of atoms.
Args:
number_of_atoms (Int): The number of atoms to populate the lattice sites with.
selected_sites (:obj:List, optional): List of site labels if only some sites are to be occupied. Defaults to None.
Returns:
None | juraj-google-style |
def exists(self, filename):
if is_package(filename):
filepath = os.path.join(self.connection['mount_point'], 'Packages', filename)
else:
filepath = os.path.join(self.connection['mount_point'], 'Scripts', filename)
return os.path.exists(filepath) | Report whether a file exists on the distribution point.
Determines file type by extension.
Args:
filename: Filename you wish to check. (No path! e.g.:
"AdobeFlashPlayer-14.0.0.176.pkg") | codesearchnet |
def compiler_ir_generator(stage='hlo', device_name=None, platform_name=None):
if device_name is not None:
if platform_name is not None:
raise ValueError('device_name and platform_name cannot be provided at the same time.')
warnings.warn('device_name is being deprecated. Use platform_name.')
device_name = maybe_get_device_name(device_name)
res_bytes = context.context().get_compiler_ir(device_name=device_name, platform_name=platform_name, function_name=fn_name, flat_args=filtered_flat_specs, captured_inputs=concrete_fn.captured_inputs, stage=stage)
if stage in ('stablehlo_serialized', 'hlo_serialized', 'optimized_hlo_serialized', 'optimized_hlo_proto_serialized'):
return res_bytes
else:
return res_bytes.decode('utf-8') | Gets the compiler IR bytes.
Args:
stage: The exported stage for the given function.
device_name: The name of the device with the form as
"/job:localhost/replica:0/task:0/device:CPU:0", "/device:TPU:0" etc.
When this is used, actual device is needed for getting the compiler IR.
platform_name: The name of the platform, e.g. "TPU". See the comment in
`get_compiler_ir` in `context.py`.
Returns:
The compiler IR bytes. | github-repos |
def is_connectable(host: str, port: Union[(int, str)]) -> bool:
socket_ = None
try:
socket_ = socket.create_connection((host, port), 1)
result = True
except socket.timeout:
result = False
finally:
if socket_:
socket_.close()
return result | Tries to connect to the device to see if it is connectable.
Args:
host: The host to connect.
port: The port to connect.
Returns:
True or False. | codesearchnet |
def GetTSKVsPartByPathSpec(tsk_volume, path_spec):
location = getattr(path_spec, 'location', None)
part_index = getattr(path_spec, 'part_index', None)
start_offset = getattr(path_spec, 'start_offset', None)
partition_index = None
if part_index is None:
if location is not None:
if location.startswith('/p'):
try:
partition_index = int(location[2:], 10) - 1
except ValueError:
pass
if partition_index is None or partition_index < 0:
location = None
if location is None and start_offset is None:
return None, None
bytes_per_sector = TSKVolumeGetBytesPerSector(tsk_volume)
current_part_index = 0
current_partition_index = 0
tsk_vs_part = None
tsk_vs_part_list = list(tsk_volume)
number_of_tsk_vs_parts = len(tsk_vs_part_list)
if number_of_tsk_vs_parts > 0:
if (part_index is not None and
(part_index < 0 or part_index >= number_of_tsk_vs_parts)):
return None, None
for tsk_vs_part in tsk_vs_part_list:
if TSKVsPartIsAllocated(tsk_vs_part):
if partition_index is not None:
if partition_index == current_partition_index:
break
current_partition_index += 1
if part_index is not None and part_index == current_part_index:
break
if start_offset is not None:
start_sector = TSKVsPartGetStartSector(tsk_vs_part)
if start_sector is not None:
start_sector *= bytes_per_sector
if start_sector == start_offset:
break
current_part_index += 1
if tsk_vs_part is None or current_part_index >= number_of_tsk_vs_parts:
return None, None
if not TSKVsPartIsAllocated(tsk_vs_part):
current_partition_index = None
return tsk_vs_part, current_partition_index | Retrieves the TSK volume system part object from the TSK volume object.
Args:
tsk_volume (pytsk3.Volume_Info): TSK volume information.
path_spec (PathSpec): path specification.
Returns:
tuple: contains:
pytsk3.TSK_VS_PART_INFO: TSK volume system part information or
None on error.
int: partition index or None if not available. | juraj-google-style |
def getUserSid(username):
if six.PY2:
username = _to_unicode(username)
domain = win32api.GetComputerName()
if (username.find('\\') != (- 1)):
domain = username.split('\\')[0]
username = username.split('\\')[(- 1)]
domain = domain.upper()
return win32security.ConvertSidToStringSid(win32security.LookupAccountName(None, ((domain + '\\') + username))[0]) | Get the Security ID for the user
Args:
username (str): The user name for which to look up the SID
Returns:
str: The user SID
CLI Example:
.. code-block:: bash
salt '*' user.getUserSid jsnuffy | codesearchnet |
def get_scheduler(name: Union[str, SchedulerType], optimizer: Optimizer, num_warmup_steps: Optional[int]=None, num_training_steps: Optional[int]=None, scheduler_specific_kwargs: Optional[dict]=None):
name = SchedulerType(name)
schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]
if optimizer is not None and isinstance(optimizer, LayerWiseDummyOptimizer):
optimizer_dict = optimizer.optimizer_dict
scheduler_dict = {}
for param in optimizer_dict.keys():
scheduler_dict[param] = get_scheduler(name, optimizer=optimizer_dict[param], num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, scheduler_specific_kwargs=scheduler_specific_kwargs)
def scheduler_hook(param):
scheduler_dict[param].step()
for param in optimizer_dict.keys():
if param.requires_grad:
param.register_post_accumulate_grad_hook(scheduler_hook)
return LayerWiseDummyScheduler(optimizer_dict=optimizer_dict, lr=optimizer.defaults['lr'])
if name == SchedulerType.CONSTANT:
return schedule_func(optimizer)
if scheduler_specific_kwargs is None:
scheduler_specific_kwargs = {}
if name == SchedulerType.REDUCE_ON_PLATEAU:
return schedule_func(optimizer, **scheduler_specific_kwargs)
if num_warmup_steps is None:
raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.')
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps)
if name == SchedulerType.INVERSE_SQRT:
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps)
if name == SchedulerType.WARMUP_STABLE_DECAY:
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, **scheduler_specific_kwargs)
if num_training_steps is None:
raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.')
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, **scheduler_specific_kwargs) | Unified API to get any scheduler from its name.
Args:
name (`str` or `SchedulerType`):
The name of the scheduler to use.
optimizer (`torch.optim.Optimizer`):
The optimizer that will be used during training.
num_warmup_steps (`int`, *optional*):
The number of warmup steps to do. This is not required by all schedulers (hence the argument being
optional), the function will raise an error if it's unset and the scheduler type requires it.
num_training_steps (`int``, *optional*):
The number of training steps to do. This is not required by all schedulers (hence the argument being
optional), the function will raise an error if it's unset and the scheduler type requires it.
scheduler_specific_kwargs (`dict`, *optional*):
Extra parameters for schedulers such as cosine with restarts. Mismatched scheduler types and scheduler
parameters will cause the scheduler function to raise a TypeError. | github-repos |
def platform_config_dir():
if LINUX:
dpath_ = os.environ.get('XDG_CONFIG_HOME', '~/.config')
elif DARWIN:
dpath_ = '~/Library/Application Support'
elif WIN32:
dpath_ = os.environ.get('APPDATA', '~/AppData/Roaming')
else:
raise NotImplementedError(('Unknown Platform %r' % (sys.platform,)))
dpath = normpath(expanduser(dpath_))
return dpath | Returns a directory which should be writable for any application
This should be used for persistent configuration files.
Returns:
PathLike : path to the cahce dir used by the current operating system | codesearchnet |
def map_uniprot_resnum_to_pdb(uniprot_resnum, chain_id, sifts_file):
parser = etree.XMLParser(ns_clean=True)
tree = etree.parse(sifts_file, parser)
root = tree.getroot()
my_pdb_resnum = None
my_pdb_annotation = False
ent = '.
for chain in root.findall(ent):
if (chain.attrib['entityId'] == chain_id):
ures = ('.
my_uniprot_residue = chain.findall(ures)
if (len(my_uniprot_residue) == 1):
parent = my_uniprot_residue[0].getparent()
pres = '.
my_pdb_residue = parent.findall(pres)
my_pdb_resnum = int(my_pdb_residue[0].attrib['dbResNum'])
anno = '.
my_pdb_annotation = parent.findall(anno)
if (len(my_pdb_annotation) == 1):
my_pdb_annotation = my_pdb_annotation[0].text
if (my_pdb_annotation == 'Not_Observed'):
my_pdb_annotation = False
else:
my_pdb_annotation = True
else:
return (None, False)
return (my_pdb_resnum, my_pdb_annotation) | Map a UniProt residue number to its corresponding PDB residue number.
This function requires that the SIFTS file be downloaded,
and also a chain ID (as different chains may have different mappings).
Args:
uniprot_resnum (int): integer of the residue number you'd like to map
chain_id (str): string of the PDB chain to map to
sifts_file (str): Path to the SIFTS XML file
Returns:
(tuple): tuple containing:
mapped_resnum (int): Mapped residue number
is_observed (bool): Indicates if the 3D structure actually shows the residue | codesearchnet |
def wait_for_tx(self, tx, max_seconds=120):
tx_hash = None
if isinstance(tx, (str, UInt256)):
tx_hash = str(tx)
elif isinstance(tx, Transaction):
tx_hash = tx.Hash.ToString()
else:
raise AttributeError("Supplied tx is type '%s', but must be Transaction or UInt256 or str" % type(tx))
wait_event = Event()
time_start = time.time()
while True:
_tx, height = Blockchain.Default().GetTransaction(tx_hash)
if height > -1:
return True
wait_event.wait(3)
seconds_passed = time.time() - time_start
if seconds_passed > max_seconds:
raise TxNotFoundInBlockchainError("Transaction with hash %s not found after %s seconds" % (tx_hash, int(seconds_passed))) | Wait for tx to show up on blockchain
Args:
tx (Transaction or UInt256 or str): Transaction or just the hash
max_seconds (float): maximum seconds to wait for tx to show up. default: 120
Returns:
True: if transaction was found
Raises:
AttributeError: if supplied tx is not Transaction or UInt256 or str
TxNotFoundInBlockchainError: if tx is not found in blockchain after max_seconds | juraj-google-style |
def get_icloud_folder_location():
yosemite_icloud_path = '~/Library/Mobile Documents/com~apple~CloudDocs/'
icloud_home = os.path.expanduser(yosemite_icloud_path)
if (not os.path.isdir(icloud_home)):
error('Unable to find your iCloud Drive =(')
return str(icloud_home) | Try to locate the iCloud Drive folder.
Returns:
(str) Full path to the iCloud Drive folder. | codesearchnet |
def kms_encrypt(value, key, aws_config=None):
aws_config = (aws_config or {})
aws = boto3.session.Session(**aws_config)
client = aws.client('kms')
enc_res = client.encrypt(KeyId=key, Plaintext=value)
return n(b64encode(enc_res['CiphertextBlob'])) | Encrypt and value with KMS key.
Args:
value (str): value to encrypt
key (str): key id or alias
aws_config (optional[dict]): aws credentials
dict of arguments passed into boto3 session
example:
aws_creds = {'aws_access_key_id': aws_access_key_id,
'aws_secret_access_key': aws_secret_access_key,
'region_name': 'us-east-1'}
Returns:
str: encrypted cipher text | codesearchnet |
def transform_table(self, table, table_meta, missing=None):
if missing is None:
missing = self.missing
else:
self.missing = missing
warnings.warn(DEPRECATION_MESSAGE.format('transform_table'), DeprecationWarning)
content = {}
columns = []
table_name = table_meta['name']
for field in table_meta['fields']:
column_name = field['name']
if missing and table[column_name].isnull().any():
null_transformer = transformers.NullTransformer(field)
clean_column = null_transformer.fit_transform(table[column_name])
null_name = '?' + column_name
columns.append(null_name)
content[null_name] = clean_column[null_name].values
column = clean_column[column_name]
else:
column = table[column_name].to_frame()
transformer = self.transformers[(table_name, column_name)]
content[column_name] = transformer.transform(column)[column_name].values
columns.append(column_name)
return pd.DataFrame(content, columns=columns) | Apply the stored transformers to `table`.
Args:
table(pandas.DataFrame): Contents of the table to be transformed.
table_meta(dict): Metadata for the given table.
missing(bool): Wheter or not use NullTransformer to handle missing values.
Returns:
pandas.DataFrame: Transformed table. | juraj-google-style |
def recipe_dcm_run(config, auth_read, account, report_id, report_name):
dcm(config, {'auth': auth_read, 'report_run_only': True, 'report': {'account': account, 'report_id': report_id, 'name': report_name}}) | Trigger a CM report run
Args:
auth_read (authentication) - Credentials used for reading data.
account (integer) - CM network id.
report_id (integer) - CM report id, empty if using name.
report_name (string) - CM report name, empty if using id instead. | github-repos |
def AssignTasksToClient(self, client_id):
rules = data_store.REL_DB.ReadAllForemanRules()
if not rules:
return 0
last_foreman_run = self._GetLastForemanRunTime(client_id)
latest_rule_creation_time = max(rule.creation_time for rule in rules)
if latest_rule_creation_time <= last_foreman_run:
return 0
self._SetLastForemanRunTime(client_id, latest_rule_creation_time)
relevant_rules = []
expired_rules = False
now = rdfvalue.RDFDatetime.Now()
for rule in rules:
if rule.expiration_time < now:
expired_rules = True
continue
if rule.creation_time <= last_foreman_run:
continue
relevant_rules.append(rule)
actions_count = 0
if relevant_rules:
client_data = data_store.REL_DB.ReadClientFullInfo(client_id)
if client_data is None:
return
for rule in relevant_rules:
if rule.Evaluate(client_data):
actions_count += self._RunAction(rule, client_id)
if expired_rules:
data_store.REL_DB.RemoveExpiredForemanRules()
return actions_count | Examines our rules and starts up flows based on the client.
Args:
client_id: Client id of the client for tasks to be assigned.
Returns:
Number of assigned tasks. | juraj-google-style |
def _make_columnar(self, x):
if tensorshape_util.rank(x.shape) is not None:
if tensorshape_util.rank(x.shape) == 1:
x = x[tf.newaxis, :]
return x
shape = tf.shape(input=x)
maybe_expanded_shape = tf.concat([
shape[:-1],
distribution_util.pick_vector(
tf.equal(tf.rank(x), 1), [1], np.array([], dtype=np.int32)),
shape[-1:],
], 0)
return tf.reshape(x, maybe_expanded_shape) | Ensures non-scalar input has at least one column.
Example:
If `x = [1, 2, 3]` then the output is `[[1], [2], [3]]`.
If `x = [[1, 2, 3], [4, 5, 6]]` then the output is unchanged.
If `x = 1` then the output is unchanged.
Args:
x: `Tensor`.
Returns:
columnar_x: `Tensor` with at least two dimensions. | juraj-google-style |
def task_ordinal_at_coordinates(self, device_coordinates):
return self._topology_tasks[tuple(device_coordinates)] | Returns the TensorFlow task number attached to `device_coordinates`.
Args:
device_coordinates: An integer sequence describing a device's physical
coordinates in the TPU fabric.
Returns:
Returns the TensorFlow task number that contains the TPU device with those
physical coordinates. | github-repos |
def unpack(self, buff, offset=0):
super().unpack(buff, offset)
try:
self.oxm_field = self._unpack_oxm_field()
except ValueError as exception:
raise UnpackException(exception)
self.oxm_hasmask = (self.oxm_field_and_mask & 1) == 1
start = offset + 4
end = start + self.oxm_length
self.oxm_value = buff[start:end] | Unpack the buffer into a OxmTLV.
Args:
buff (bytes): The binary data to be unpacked.
offset (int): If we need to shift the beginning of the data. | juraj-google-style |
def mpim_open(self, *, users: List[str], **kwargs) -> SlackResponse:
kwargs.update({"users": users})
return self.api_call("mpim.open", json=kwargs) | This method opens a multiparty direct message.
Args:
users (list): A lists of user ids. The ordering of the users
is preserved whenever a MPIM group is returned.
e.g. ['W1234567890', 'U2345678901', 'U3456789012'] | juraj-google-style |
def get_artist_location(self, cache=True):
if not (cache and ('artist_location' in self.cache)):
response = self.get_attribute('profile', bucket='artist_location')
self.cache['artist_location'] = response['songs'][0]['artist_location']
return self.cache['artist_location'] | Get the location of a song's artist.
Args:
cache (bool): A boolean indicating whether or not the cached value should be used (if available). Defaults to True.
Returns:
An artist location object.
Example:
>>> s = song.Song('SOQKVPH12A58A7AF4D')
>>> s.artist_location
{u'latitude': 34.053489999999996, u'location': u'Los Angeles, CA', u'longitude': -118.24532000000001}
>>> | juraj-google-style |
def apply(self, func, axis, *args, **kwargs):
if callable(func):
return self._callable_func(func, axis, *args, **kwargs)
elif isinstance(func, dict):
return self._dict_func(func, axis, *args, **kwargs)
elif is_list_like(func):
return self._list_like_func(func, axis, *args, **kwargs)
else:
pass | Apply func across given axis.
Args:
func: The function to apply.
axis: Target axis to apply the function along.
Returns:
A new PandasQueryCompiler. | codesearchnet |
def advance_for_next_slice(self, recovery_slice=False):
if recovery_slice:
self.slice_id += 2
self.input_reader = self.input_reader.from_json(self._input_reader_json)
else:
self.slice_id += 1 | Advance relavent states for next slice.
Args:
recovery_slice: True if this slice is running recovery logic.
See handlers.MapperWorkerCallbackHandler._attempt_slice_recovery
for more info. | juraj-google-style |
def find_record(self, model_class, record_id, reload=False):
cached_model = self.peek_record(model_class, record_id)
if ((cached_model is not None) and (reload is False)):
return cached_model
else:
return self._get_record(model_class, record_id) | Return a instance of model_class from the API or the local cache.
Args:
model_class (:class:`cinder_data.model.CinderModel`): A subclass of
:class:`cinder_data.model.CinderModel` of your chosen model.
record_id (int): The id of the record requested.
reload (bool, optional): Don't return the cached version if reload==True.
Returns:
:class:`cinder_data.model.CinderModel`: An instance of model_class or None. | codesearchnet |
def split_vector_ctype(ctype):
if (not is_vector_ctype(ctype)):
raise ValueError('The given ctype is not a vector type.')
for vector_length in [2, 3, 4, 8, 16]:
if ctype.endswith(str(vector_length)):
vector_str_len = len(str(vector_length))
return (ctype[:(- vector_str_len)], int(ctype[(- vector_str_len):])) | Split a vector ctype into a raw ctype and the vector length.
If the given ctype is not a vector type, we raise an error. I
Args:
ctype (str): the ctype to possibly split into a raw ctype and the vector length
Returns:
tuple: the raw ctype and the vector length | codesearchnet |
def reward(self, state: Sequence[tf.Tensor], action: Sequence[tf.Tensor], next_state: Sequence[tf.Tensor]) -> tf.Tensor:
scope = self.reward_scope(state, action, next_state)
r = self.compile_reward(scope).tensor
with self.graph.as_default():
with tf.name_scope('reward'):
return tf.expand_dims(r, (- 1)) | Compiles the reward function given the current `state`, `action` and
`next_state`.
Args:
state (Sequence[tf.Tensor]): A tuple of current state tensors.
action (Sequence[tf.Tensor]): A tuple of action tensors.
next_state (Sequence[tf.Tensor]): A tuple of next state tensors.
Returns:
(:obj:`tf.Tensor`): A tensor representing the reward function. | codesearchnet |
def request_with_retry(func, *args, **kwargs):
max_retries = kwargs.pop('max_retries', 30)
sleep = 2
retry_count = 0
while True:
try:
response = func(*args, **kwargs)
response.raise_for_status()
return response
except (requests.exceptions.ConnectionError,
requests.exceptions.HTTPError,
requests.exceptions.Timeout) as e:
if retry_count == max_retries:
return e
retry_count += 1
delay = sleep + random.random() * 0.25 * sleep
if isinstance(e, requests.exceptions.HTTPError) and e.response.status_code == 429:
logger.info(
"Rate limit exceeded, retrying in %s seconds" % delay)
else:
logger.warning('requests_with_retry encountered retryable exception: %s. args: %s, kwargs: %s',
e, args, kwargs)
time.sleep(delay)
sleep *= 2
if sleep > MAX_SLEEP_SECONDS:
sleep = MAX_SLEEP_SECONDS
except requests.exceptions.RequestException as e:
logger.error(response.json()['error'])
logger.exception(
'requests_with_retry encountered unretryable exception: %s', e)
return e | Perform a requests http call, retrying with exponential backoff.
Args:
func: An http-requesting function to call, like requests.post
max_retries: Maximum retries before giving up. By default we retry 30 times in ~2 hours before dropping the chunk
*args: passed through to func
**kwargs: passed through to func | juraj-google-style |
def _get_param_matcher(self, callable_type):
callable_param_count = collections.Counter(self.ctx.annotation_utils.get_type_parameters(callable_type))
if isinstance(callable_type, abstract.CallableClass):
callable_param_count.subtract(self.ctx.annotation_utils.get_type_parameters(callable_type.get_formal_type_parameter(abstract_utils.ARGS)))
def match(left, right, subst):
if not isinstance(left, abstract.TypeParameter) or not isinstance(right, abstract.TypeParameter) or right.constraints or right.bound or (callable_param_count[right] != 1):
return None
self._type_params.seen.add(right)
subst = subst.copy()
subst[right.full_name] = self.ctx.program.NewVariable([self.ctx.convert.empty], [], self._node)
return subst
return match | Helper for matching the parameters of a callable.
Args:
callable_type: The callable being matched against.
Returns:
A special param matcher: (left, right, subst) -> Optional[subst].
left: An argument to be matched against a parameter of callable_type.
right: A parameter of callable_type.
subst: The current substitution dictionary.
If the matcher returns a non-None subst dict, then the match has succeeded
via special matching rules for single TypeVars. Otherwise, the caller
should next attempt normal matching on the inputs. (See
_match_signature_against_callable for a usage example.) | github-repos |
def set_messages(self, messages: Sequence[CachedMessage]) -> None:
uids = {msg.uid for msg in messages}
expunged = self._messages._uids - uids
return self.add_updates(messages, expunged) | This is the non-optimized alternative to :meth:`.add_updates` for
backend implementations that cannot detect their own updates and must
instead compare the entire state of the mailbox.
The ``messages`` list should contain the entire set of messages in the
mailbox, ordered by UID. Any UID that previously existed and is not
included in ``messages`` will be expunged.
Args:
messages: The entire set of cached message objects. | juraj-google-style |
def _getfullargspec(target):
return _convert_maybe_argspec_to_fullargspec(getargspec(target)) | A python2 version of getfullargspec.
Args:
target: the target object to inspect.
Returns:
A FullArgSpec with empty kwonlyargs, kwonlydefaults and annotations. | github-repos |
def update_headers(self, headers):
check_type(headers, dict, may_be_none=False)
self._req_session.headers.update(headers) | Update the HTTP headers used for requests in this session.
Note: Updates provided by the dictionary passed as the `headers`
parameter to this method are merged into the session headers by adding
new key-value pairs and/or updating the values of existing keys. The
session headers are not replaced by the provided dictionary.
Args:
headers(dict): Updates to the current session headers. | codesearchnet |
async def puts(self, items, seqn=None):
size = 0
for chunk in s_common.chunks(items, 1000):
metrics = self._items.save(chunk)
self._metrics.add(metrics)
await self.fire('cryotank:puts', numrecords=len(chunk))
size += len(chunk)
await asyncio.sleep(0)
if seqn is not None:
iden, offs = seqn
self.setOffset(iden, offs + size)
return size | Add the structured data from items to the CryoTank.
Args:
items (list): A list of objects to store in the CryoTank.
seqn (iden, offs): An iden / offset pair to record.
Returns:
int: The ending offset of the items or seqn. | juraj-google-style |
def fresh(t, non_generic):
mappings = {}
def freshrec(tp):
p = prune(tp)
if isinstance(p, TypeVariable):
if is_generic(p, non_generic):
if (p not in mappings):
mappings[p] = TypeVariable()
return mappings[p]
else:
return p
elif isinstance(p, dict):
return p
elif isinstance(p, Collection):
return Collection(*[freshrec(x) for x in p.types])
elif isinstance(p, Scalar):
return Scalar([freshrec(x) for x in p.types])
elif isinstance(p, TypeOperator):
return TypeOperator(p.name, [freshrec(x) for x in p.types])
elif isinstance(p, MultiType):
return MultiType([freshrec(x) for x in p.types])
else:
assert False, 'missing freshrec case {}'.format(type(p))
return freshrec(t) | Makes a copy of a type expression.
The type t is copied. The generic variables are duplicated and the
non_generic variables are shared.
Args:
t: A type to be copied.
non_generic: A set of non-generic TypeVariables | codesearchnet |
def conversations_replies(self, *, channel: str, ts: str, **kwargs) -> SlackResponse:
kwargs.update({'channel': channel, 'ts': ts})
return self.api_call('conversations.replies', http_verb='GET', params=kwargs) | Retrieve a thread of messages posted to a conversation
Args:
channel (str): Conversation ID to fetch thread from. e.g. 'C1234567890'
ts (str): Unique identifier of a thread's parent message. e.g. '1234567890.123456' | codesearchnet |
def _bfd_rx(self, **kwargs):
int_type = kwargs['int_type']
method_name = 'interface_%s_bfd_interval_min_rx' % int_type
bfd_rx = getattr(self._interface, method_name)
config = bfd_rx(**kwargs)
if kwargs['delete']:
tag = 'min-rx'
config.find('.
pass
return config | Return the BFD minimum receive interval XML.
You should not use this method.
You probably want `BGP.bfd`.
Args:
min_rx (str): BFD receive interval in milliseconds (300, 500, etc)
delete (bool): Remove the configuration if ``True``.
Returns:
XML to be passed to the switch.
Raises:
None | juraj-google-style |
def __init__(self,
block_shape,
block_rows,
name='block_diagonal_matrix'):
super(BlockDiagonalMatrix, self).__init__(
block_shape=block_shape,
block_rows=block_rows,
include_diagonal=True,
include_off_diagonal=False,
name=name) | Constructs a new `BlockDiagonalMatrix` module.
Args:
block_shape: tuple, 2-dimensional tuple indicating the shape of each
individual block.
block_rows: int, the number of blocks in each row (and column) of the
output matrix.
name: string, name of the module. | juraj-google-style |
def luhn(base, num_only=False, allow_lower_case=False):
if num_only:
alphabet = _ALPHABET[:10]
else:
alphabet = _ALPHABET
if allow_lower_case:
base = base.upper()
try:
pre_calc = (_PRE_CALC[alphabet.index(c)] for c in reversed(base))
cum = 0
parity = 1
for elem in pre_calc:
val, parity = elem[parity]
cum += val
except ValueError:
pass
else:
return 10 - cum % 10
if num_only:
msg = 'The string given must only contain digits.'
elif allow_lower_case:
msg = 'The string given must only contain digits and ascii letters.'
else:
msg = 'The string given must only contain digits and upper case ' \
'ascii letters.'
raise ValueError(msg) | Return the Luhn check digit for the given string.
Args:
base(str): string for which to calculate the check digit
num_only(bool): allow only digits in `base` (default: False)
allow_lower_case(bool): allow lower case letters in `base`
(default: False)
Returns:
int: Luhn check digit
Raises:
ValueError: given `base` contains an unallowed character | juraj-google-style |
def create_prefetch(self, addresses):
with self._lock:
for add in addresses:
self._state[add] = _ContextFuture(address=add, wait_for_tree=True) | Create futures needed before starting the process of reading the
address's value from the merkle tree.
Args:
addresses (list of str): addresses in the txn's inputs that
aren't in any base context (or any in the chain). | codesearchnet |
def insert(self, start_time: int, schedule: ScheduleComponent) -> 'ScheduleComponent':
return ops.insert(self, start_time, schedule) | Return a new schedule with `schedule` inserted within `self` at `start_time`.
Args:
start_time: time to be inserted
schedule: schedule to be inserted | juraj-google-style |
def series_with_permutation(self, other):
combined_permutation = tuple([self.permutation[p]
for p in other.permutation])
return CPermutation.create(combined_permutation) | Compute the series product with another channel permutation circuit
Args:
other (CPermutation):
Returns:
Circuit: The composite permutation circuit (could also be the
identity circuit for n channels) | juraj-google-style |
def decstr2int(dec_str, decimals):
if not isinstance(decimals, int):
raise TypeError('decimals must be an integer')
try:
dollars, cents = dec_str.split('.')
except ValueError:
if '.' not in dec_str:
dollars = dec_str
cents = '0'
else:
raise ValueError('Invalid decimal string')
else:
if len(cents) < decimals:
cents = cents.ljust(decimals, '0')
elif decimals < 1:
cents = '0'
elif len(cents) > decimals:
cents = cents[:decimals]
try:
cents = int(cents)
except:
cents = 0
try:
return int(int(dollars) * (10 ** decimals)) + cents
except:
raise ValueError('Invalid decimal string') | Returns an integer that has the value of the decimal string:
dec_str*10^decimals
Arguments:
dec_str (string) that represents a decimal number
decimals (int): number of decimals for creating the integer output
Returns:
(int)
Raises:
ValueError if dec_string is not a valid decimal string
TypeError if decimals is not an integer
Note: values may be truncated (not rounded). | juraj-google-style |
def download_extract_tar(tar_url, folder, tar_filename=''):
try:
makedirs(folder)
except OSError:
if (not isdir(folder)):
raise
data_file = tar_filename
if (not data_file):
(fd, data_file) = mkstemp('.tar.gz')
download(tar_url, os.fdopen(fd, 'wb'))
else:
download(tar_url, data_file)
with tarfile.open(data_file) as tar:
tar.extractall(path=folder) | Download and extract the tar at the url to the given folder
Args:
tar_url (str): URL of tar file to download
folder (str): Location of parent directory to extract to. Doesn't have to exist
tar_filename (str): Location to download tar. Default is to a temp file | codesearchnet |
def id_range(self):
if (len(self._anchor_points) == 0):
return (0, 0)
return (self._anchor_points[0].reading_id, self._anchor_points[(- 1)].reading_id) | Get the range of archor reading_ids.
Returns:
(int, int): The lowest and highest reading ids.
If no reading ids have been loaded, (0, 0) is returned. | codesearchnet |
def request_json(link, outfile, force_rerun_flag, outdir=None):
if (not outdir):
outdir = ''
outfile = op.join(outdir, outfile)
if force_rerun(flag=force_rerun_flag, outfile=outfile):
text_raw = requests.get(link)
my_dict = text_raw.json()
with open(outfile, 'w') as f:
json.dump(my_dict, f)
log.debug('Loaded and saved {} to {}'.format(link, outfile))
else:
with open(outfile, 'r') as f:
my_dict = json.load(f)
log.debug('Loaded {}'.format(outfile))
return my_dict | Download a file in JSON format from a web request
Args:
link: Link to web request
outfile: Name of output file
outdir: Directory of output file
force_rerun_flag: If true, redownload the file
Returns:
dict: contents of the JSON request | codesearchnet |
def get_script_module(script_information, package='pylabcontrol', verbose=False):
(module, _, _, _, _, _, _) = Script.get_script_information(script_information=script_information, package=package, verbose=verbose)
return module | wrapper to get the module for a script
Args:
script_information: information of the script. This can be
- a dictionary
- a Script instance
- name of Script class
package (optional): name of the package to which the script belongs, i.e. pylabcontrol or b26toolkit only used when script_information is a string
Returns:
module | codesearchnet |
def async_call(self, *args, **kwargs):
def after_autoconnect_callback(future):
if self.is_connected():
self._call(*args, **kwargs)
else:
pass
if ('callback' not in kwargs):
kwargs['callback'] = discard_reply_cb
if (not self.is_connected()):
if self.autoconnect:
connect_future = self.connect()
cb = after_autoconnect_callback
self.__connection._ioloop.add_future(connect_future, cb)
else:
error = ConnectionError('you are not connected and autoconnect=False')
kwargs['callback'](error)
else:
self._call(*args, **kwargs) | Calls a redis command, waits for the reply and call a callback.
Following options are available (not part of the redis command itself):
- callback
Function called (with the result as argument) when the result
is available. If not set, the reply is silently discarded. In
case of errors, the callback is called with a
TornadisException object as argument.
Args:
*args: full redis command as variable length argument list or
a Pipeline object (as a single argument).
**kwargs: options as keyword parameters.
Examples:
>>> def cb(result):
pass
>>> client.async_call("HSET", "key", "field", "val", callback=cb) | codesearchnet |
def event_date(self, event_date):
if not self.can_update():
self._tcex.handle_error(910, [self.type])
event_date = self._utils.format_datetime(event_date, date_format='%Y-%m-%dT%H:%M:%SZ')
self._data['eventDate'] = event_date
request = {'eventDate': event_date}
return self.tc_requests.update(self.api_type, self.api_sub_type, self.unique_id, request) | Updates the event_date.
Args:
event_date: Converted to %Y-%m-%dT%H:%M:%SZ date format.
Returns: | juraj-google-style |
def parsed_top_level_errors(parsed, errors, component_type: str='') -> Errors:
fn_cnt = 0
rel_cnt = 0
nested_cnt = 0
for key in parsed:
if (parsed[key]['type'] == 'Function'):
fn_cnt += 1
if (parsed[key]['type'] == 'Relation'):
rel_cnt += 1
if (parsed[key]['type'] == 'Nested'):
nested_cnt += 1
if (not component_type):
if (nested_cnt > 1):
errors.append(('Error', 'Too many nested objects - can only have one per BEL Assertion'))
if nested_cnt:
if (rel_cnt > 2):
errors.append(('Error', 'Too many relations - can only have two in a nested BEL Assertion'))
elif (fn_cnt > 4):
errors.append(('Error', 'Too many BEL subject and object candidates'))
elif (rel_cnt > 1):
errors.append(('Error', 'Too many relations - can only have one in a BEL Assertion'))
elif (fn_cnt > 2):
errors.append(('Error', 'Too many BEL subject and object candidates'))
elif (component_type == 'subject'):
if (rel_cnt > 0):
errors.append(('Error', 'Too many relations - cannot have any in a BEL Subject'))
elif (fn_cnt > 1):
errors.append(('Error', 'Too many BEL subject candidates - can only have one'))
elif (component_type == 'object'):
if nested_cnt:
if (rel_cnt > 1):
errors.append(('Error', 'Too many relations - can only have one in a nested BEL object'))
elif (fn_cnt > 2):
errors.append(('Error', 'Too many BEL subject and object candidates in a nested BEL object'))
elif (rel_cnt > 0):
errors.append(('Error', 'Too many relations - cannot have any in a BEL Subject'))
elif (fn_cnt > 1):
errors.append(('Error', 'Too many BEL subject candidates - can only have one'))
return errors | Check full parse for errors
Args:
parsed:
errors:
component_type: Empty string or 'subject' or 'object' to indicate that we
are parsing the subject or object field input | codesearchnet |
def extraction_data_statistics(path):
with functions.DBContextManager(path) as session:
extraction = session.query(models.Extraction).first()
(X, y) = extraction.return_main_dataset()
functions.verify_dataset(X, y)
if (extraction.test_dataset['method'] == 'split_from_main'):
(X, X_test, y, y_test) = train_test_split(X, y, test_size=extraction.test_dataset['split_ratio'], random_state=extraction.test_dataset['split_seed'], stratify=y)
elif (extraction.test_dataset['method'] == 'source'):
if (('source' not in extraction.test_dataset) or (not extraction.test_dataset['source'])):
raise exceptions.UserError('Source is empty')
extraction_code = extraction.test_dataset['source']
extraction_function = functions.import_object_from_string_code(extraction_code, 'extract_test_dataset')
(X_test, y_test) = extraction_function()
else:
(X_test, y_test) = (None, None)
extraction_code = extraction.meta_feature_generation['source']
return_splits_iterable = functions.import_object_from_string_code(extraction_code, 'return_splits_iterable')
number_of_splits = 0
test_indices = []
try:
for (train_idx, test_idx) in return_splits_iterable(X, y):
number_of_splits += 1
test_indices.append(test_idx)
except Exception as e:
raise exceptions.UserError('User code exception', exception_message=str(e))
test_indices = np.concatenate(test_indices)
(X, y) = (X[test_indices], y[test_indices])
extraction_code = extraction.stacked_ensemble_cv['source']
return_splits_iterable = functions.import_object_from_string_code(extraction_code, 'return_splits_iterable')
number_of_splits_stacked_cv = 0
try:
for (train_idx, test_idx) in return_splits_iterable(X, y):
number_of_splits_stacked_cv += 1
except Exception as e:
raise exceptions.UserError('User code exception', exception_message=str(e))
data_stats = dict()
data_stats['train_data_stats'] = functions.verify_dataset(X, y)
if (X_test is not None):
data_stats['test_data_stats'] = functions.verify_dataset(X_test, y_test)
else:
data_stats['test_data_stats'] = None
data_stats['holdout_data_stats'] = {'number_of_splits': number_of_splits}
data_stats['stacked_ensemble_cv_stats'] = {'number_of_splits': number_of_splits_stacked_cv}
extraction.data_statistics = data_stats
session.add(extraction)
session.commit() | Generates data statistics for the given data extraction setup stored
in Xcessiv notebook.
This is in rqtasks.py but not as a job yet. Temporarily call this directly
while I'm figuring out Javascript lel.
Args:
path (str, unicode): Path to xcessiv notebook | codesearchnet |
def call(method: Method, *args: Any, **kwargs: Any) -> Any:
return validate_args(method, *args, **kwargs)(*args, **kwargs) | Validates arguments and then calls the method.
Args:
method: The method to call.
*args, **kwargs: Arguments to the method.
Returns:
The "result" part of the JSON-RPC response (the return value from the method).
Raises:
TypeError: If arguments don't match function signature. | codesearchnet |
def get_access_token(self, http=None, additional_claims=None):
if (additional_claims is None):
if ((self.access_token is None) or self.access_token_expired):
self.refresh(None)
return client.AccessTokenInfo(access_token=self.access_token, expires_in=self._expires_in())
else:
(token, unused_expiry) = self._create_token(additional_claims)
return client.AccessTokenInfo(access_token=token, expires_in=self._MAX_TOKEN_LIFETIME_SECS) | Create a signed jwt.
Args:
http: unused
additional_claims: dict, additional claims to add to
the payload of the JWT.
Returns:
An AccessTokenInfo with the signed jwt | codesearchnet |
def AddStopTime(self, stop, problems=None, schedule=None, **kwargs):
if (problems is None):
problems = problems_module.default_problem_reporter
stoptime = self.GetGtfsFactory().StopTime(problems=problems, stop=stop, **kwargs)
self.AddStopTimeObject(stoptime, schedule) | Add a stop to this trip. Stops must be added in the order visited.
Args:
stop: A Stop object
kwargs: remaining keyword args passed to StopTime.__init__
Returns:
None | codesearchnet |
async def get_final_ranking(self) -> OrderedDict:
if (self._state != TournamentState.complete.value):
return None
ranking = {}
for p in self.participants:
if (p.final_rank in ranking):
ranking[p.final_rank].append(p)
else:
ranking[p.final_rank] = [p]
return OrderedDict(sorted(ranking.items(), key=(lambda t: t[0]))) | Get the ordered players ranking
Returns:
collections.OrderedDict[rank, List[Participant]]:
Raises:
APIException | codesearchnet |
def _snapshot_device_function_stack_metadata(self) -> list[traceable_stack.TraceableObject]:
snapshot = []
for obj in self._device_function_stack.peek_traceable_objs():
obj_copy = obj.copy_metadata()
obj_copy.obj = obj.obj.display_name
snapshot.append(obj_copy)
return snapshot | Return device function stack as a list of TraceableObjects.
Returns:
[traceable_stack.TraceableObject, ...] where each TraceableObject's .obj
member is a displayable name for the user's argument to Graph.device, and
the filename and lineno members point to the code location where
Graph.device was called directly or indirectly by the user. | github-repos |
def _is_autocomplete_valid(cur_commands, alias_command):
parent_command = ' '.join(cur_commands[1:])
with open(GLOBAL_ALIAS_TAB_COMP_TABLE_PATH, 'r') as tab_completion_table_file:
try:
tab_completion_table = json.loads(tab_completion_table_file.read())
return alias_command in tab_completion_table and parent_command in tab_completion_table[alias_command]
except Exception:
return False | Determine whether autocomplete can be performed at the current state.
Args:
parser: The current CLI parser.
cur_commands: The current commands typed in the console.
alias_command: The alias command.
Returns:
True if autocomplete can be performed. | juraj-google-style |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.