code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def readlines(self, n, echo=None):
return [
self.until(b'\n', echo)
for _ in range(n)
]
|
Read *n* lines from channel.
Args:
n(int): The number of lines to read.
echo(bool): Whether to write the read data to stdout.
Returns:
list of bytes: *n* lines which include new line characters.
Raises:
EOFError: If the channel was closed before *n* lines were read.
|
juraj-google-style
|
def _preprocess_input(self, inputs, error_message, expected_nesting=1, dtype=None):
if inputs is None:
return None
if hasattr(inputs, 'numpy'):
inputs = inputs.numpy().tolist()
valid = isinstance(inputs, list)
current = inputs
for _ in range(expected_nesting):
if not valid or not current:
break
valid = valid and isinstance(current[0], list)
current = current[0] if current else None
if not valid:
raise ValueError(error_message)
return [np.array(item, dtype=dtype) for item in inputs]
|
Preprocess input by converting torch tensors to numpy arrays and validating structure.
Args:
inputs: The input to process
error_message: Error message if validation fails
expected_nesting: Expected nesting level (1 for points/labels, 2 for boxes)
dtype: Optional data type for numpy array conversion
Returns:
Processed input as list of numpy arrays or None
|
github-repos
|
def _ScanVolumeSystemRoot(self, scan_context, scan_node, base_path_specs):
if not scan_node or not scan_node.path_spec:
raise errors.ScannerError('Invalid scan node.')
if scan_node.type_indicator == definitions.TYPE_INDICATOR_APFS_CONTAINER:
volume_identifiers = self._GetAPFSVolumeIdentifiers(scan_node)
elif scan_node.type_indicator == definitions.TYPE_INDICATOR_VSHADOW:
volume_identifiers = self._GetVSSStoreIdentifiers(scan_node)
volume_identifiers.reverse()
else:
raise errors.ScannerError(
'Unsupported volume system type: {0:s}.'.format(
scan_node.type_indicator))
for volume_identifier in volume_identifiers:
location = '/{0:s}'.format(volume_identifier)
sub_scan_node = scan_node.GetSubNodeByLocation(location)
if not sub_scan_node:
raise errors.ScannerError(
'Scan node missing for volume identifier: {0:s}.'.format(
volume_identifier))
self._ScanVolume(scan_context, sub_scan_node, base_path_specs)
|
Scans a volume system root scan node for volume and file systems.
Args:
scan_context (SourceScannerContext): source scanner context.
scan_node (SourceScanNode): volume system root scan node.
base_path_specs (list[PathSpec]): file system base path specifications.
Raises:
ScannerError: if the scan node is invalid, the scan node type is not
supported or if a sub scan node cannot be retrieved.
|
juraj-google-style
|
def _make_gh_link_node(app, rawtext, role, kind, api_type, id, options=None):
url = ('%s/%s/%s' % (_BOKEH_GH, api_type, id))
options = (options or {})
set_classes(options)
node = nodes.reference(rawtext, (kind + utils.unescape(id)), refuri=url, **options)
return node
|
Return a link to a Bokeh Github resource.
Args:
app (Sphinx app) : current app
rawtext (str) : text being replaced with link node.
role (str) : role name
kind (str) : resource type (issue, pull, etc.)
api_type (str) : type for api link
id : (str) : id of the resource to link to
options (dict) : options dictionary passed to role function
|
codesearchnet
|
def __init__(self, baselines, scope='aggregated-baseline', summary_labels=()):
self.baselines = dict()
for name in sorted(baselines):
self.baselines[name] = Baseline.from_spec(
spec=baselines[name],
kwargs=dict(summary_labels=summary_labels))
self.linear = Linear(size=1, bias=0.0, scope='prediction', summary_labels=summary_labels)
super(AggregatedBaseline, self).__init__(scope, summary_labels)
|
Aggregated baseline.
Args:
baselines: Dict of per-state baseline specification dicts
|
juraj-google-style
|
def last_revision(self, mod: YangIdentifier) -> ModuleId:
revs = [mn for mn in self.modules if mn[0] == mod]
if not revs:
raise ModuleNotRegistered(mod)
return sorted(revs, key=lambda x: x[1])[-1]
|
Return the last revision of a module that's part of the data model.
Args:
mod: Name of a module or submodule.
Raises:
ModuleNotRegistered: If the module `mod` is not present in the
data model.
|
juraj-google-style
|
def topological_nodes(self):
return nx.lexicographical_topological_sort(self._multi_graph, key=(lambda x: str(x.qargs)))
|
Yield nodes in topological order.
Returns:
generator(DAGNode): node in topological order
|
codesearchnet
|
def rsolve(A, b, epsilon=_epsilon):
r
A = asarray(A, float)
b = asarray(b, float)
if A.shape[0] == 0:
return zeros((A.shape[1],))
if A.shape[1] == 0:
return zeros((0,))
try:
x = lstsq(A, b, rcond=epsilon)
r = sum(x[3] > epsilon)
if r == 0:
return zeros(A.shape[1])
return x[0]
except (ValueError, LinAlgError) as e:
warnings.warn(str(e), RuntimeWarning)
return solve(A, b)
|
r"""Robust solve for the linear equations.
Args:
A (array_like): Coefficient matrix.
b (array_like): Ordinate values.
Returns:
:class:`numpy.ndarray`: Solution ``x``.
|
juraj-google-style
|
def __init__(self, initial_learning_rate, decay_steps, end_learning_rate=0.0001, power=1.0, cycle=False, name=None):
super(PolynomialDecay, self).__init__()
self.initial_learning_rate = initial_learning_rate
self.decay_steps = decay_steps
self.end_learning_rate = end_learning_rate
self.power = power
self.cycle = cycle
self.name = name
|
Applies a polynomial decay to the learning rate.
Args:
initial_learning_rate: A scalar `float32` or `float64` `Tensor` or a
Python number. The initial learning rate.
decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
Must be positive. See the decay computation above.
end_learning_rate: A scalar `float32` or `float64` `Tensor` or a
Python number. The minimal end learning rate.
power: A scalar `float32` or `float64` `Tensor` or a
Python number. The power of the polynomial. Defaults to linear, 1.0.
cycle: A boolean, whether or not it should cycle beyond decay_steps.
name: String. Optional name of the operation. Defaults to
'PolynomialDecay'.
|
github-repos
|
def calculate_dimensionality_of_site(bonded_structure, site_index, inc_vertices=False):
def neighbours(comp_index):
return [(s.index, s.jimage) for s in bonded_structure.get_connected_sites(comp_index)]
def rank(vertices):
if (len(vertices) == 0):
return (- 1)
elif (len(vertices) == 1):
return 0
else:
vertices = np.array(list(vertices))
return np.linalg.matrix_rank((vertices[1:] - vertices[0]))
connected_sites = {i: neighbours(i) for i in range(bonded_structure.structure.num_sites)}
seen_vertices = set()
seen_comp_vertices = defaultdict(set)
queue = [(site_index, (0, 0, 0))]
while (len(queue) > 0):
(comp_i, image_i) = queue.pop(0)
if ((comp_i, image_i) in seen_vertices):
continue
seen_vertices.add((comp_i, image_i))
if (rank(seen_comp_vertices[comp_i].union({image_i})) > rank(seen_comp_vertices[comp_i])):
seen_comp_vertices[comp_i].add(image_i)
for (comp_j, image_j) in connected_sites[comp_i]:
image_j = tuple(np.add(image_j, image_i))
if ((comp_j, image_j) in seen_vertices):
continue
if (rank(seen_comp_vertices[comp_j].union({image_j})) > rank(seen_comp_vertices[comp_j])):
queue.append((comp_j, image_j))
if inc_vertices:
return (rank(seen_comp_vertices[site_index]), list(seen_comp_vertices[site_index]))
else:
return rank(seen_comp_vertices[site_index])
|
Calculates the dimensionality of the component containing the given site.
Implements directly the modified breadth-first-search algorithm described in
Algorithm 1 of:
P. Larsem, M. Pandey, M. Strange, K. W. Jacobsen, 2018, arXiv:1808.02114
Args:
bonded_structure (StructureGraph): A structure with bonds, represented
as a pymatgen structure graph. For example, generated using the
CrystalNN.get_bonded_structure() method.
site_index (int): The index of a site in the component of interest.
inc_vertices (bool, optional): Whether to return the vertices (site
images) of the component.
Returns:
(int or tuple): If inc_vertices is False, the dimensionality of the
component will be returned as an int. If inc_vertices is true, the
function will return a tuple of (dimensionality, vertices), where
vertices is a list of tuples. E.g. [(0, 0, 0), (1, 1, 1)].
|
codesearchnet
|
class OrderedEnqueuer(SequenceEnqueuer):
def __init__(self, sequence, use_multiprocessing=False, shuffle=False):
super(OrderedEnqueuer, self).__init__(sequence, use_multiprocessing)
self.shuffle = shuffle
def _get_executor_init(self, workers):
def pool_fn(seqs):
pool = get_pool_class(True)(workers, initializer=init_pool_generator, initargs=(seqs, None, get_worker_id_queue()))
_DATA_POOLS.add(pool)
return pool
return pool_fn
def _wait_queue(self):
while True:
time.sleep(0.1)
if self.queue.unfinished_tasks == 0 or self.stop_signal.is_set():
return
def _run(self):
sequence = list(range(len(self.sequence)))
self._send_sequence()
while True:
if self.shuffle:
random.shuffle(sequence)
with closing(self.executor_fn(_SHARED_SEQUENCES)) as executor:
for i in sequence:
if self.stop_signal.is_set():
return
self.queue.put(executor.apply_async(get_index, (self.uid, i)), block=True)
self._wait_queue()
if self.stop_signal.is_set():
return
self.sequence.on_epoch_end()
self._send_sequence()
def get(self):
while self.is_running():
try:
inputs = self.queue.get(block=True, timeout=5).get()
if self.is_running():
self.queue.task_done()
if inputs is not None:
yield inputs
except queue.Empty:
pass
except Exception as e:
self.stop()
raise e
|
Builds a Enqueuer from a Sequence.
Args:
sequence: A `tf.keras.utils.data_utils.Sequence` object.
use_multiprocessing: use multiprocessing if True, otherwise threading
shuffle: whether to shuffle the data at the beginning of each epoch
|
github-repos
|
def _update_job_info(cls, job_dir):
meta_file = os.path.join(job_dir, JOB_META_FILE)
meta = parse_json(meta_file)
if meta:
logging.debug("Update job info for %s" % meta["job_id"])
JobRecord.objects \
.filter(job_id=meta["job_id"]) \
.update(end_time=timestamp2date(meta["end_time"]))
|
Update information for given job.
Meta file will be loaded if exists, and the job information in
in db backend will be updated.
Args:
job_dir (str): Directory path of the job.
Return:
Updated dict of job meta info
|
juraj-google-style
|
def _remove_subsequent_result_because_of_batch_failure(self, sig):
batch = self._batches_by_txn_id[sig]
seen = []
for txn in batch.transactions:
txn_id = txn.header_signature
for poss_successor in self._scheduled.copy():
if not self.is_transaction_in_schedule(poss_successor):
continue
if self._is_txn_to_replay(txn_id, poss_successor, seen):
if self._txn_has_result(poss_successor):
del self._txn_results[poss_successor]
self._scheduled.remove(poss_successor)
self._txns_available[poss_successor] = \
self._transactions[poss_successor]
else:
self._outstanding.add(poss_successor)
seen.append(poss_successor)
|
Remove transactions from scheduled and txn_results for
successors of txns in a failed batch. These transactions will now,
or in the future be rescheduled in next_transaction; giving a
replay ability.
Args:
sig (str): Transaction header signature
|
juraj-google-style
|
def check_valid(line0, line1):
data = line0.strip().split(b' ')
if (len(data) <= 2):
return False
try:
map(float, data[2:])
except:
return False
return True
|
Check if a file is valid Glove format.
Args:
line0 (bytes): First line of the file
line1 (bytes): Second line of the file
Returns:
boo: ``True`` if it is valid. ``False`` if it is invalid.
|
codesearchnet
|
def load_fasta_file(filename):
with open(filename, "r") as handle:
records = list(SeqIO.parse(handle, "fasta"))
return records
|
Load a FASTA file and return the sequences as a list of SeqRecords
Args:
filename (str): Path to the FASTA file to load
Returns:
list: list of all sequences in the FASTA file as Biopython SeqRecord objects
|
juraj-google-style
|
def get_num_bytes(self, batch: Sequence[datatable.Frame]) -> int:
return sum((sys.getsizeof(element) for element in batch))
|
Returns:
The number of bytes of data for a batch.
|
github-repos
|
def is_not_negative() -> RuleChecker[Numeric]:
def _checker(value: Numeric) -> RuleOutput:
if value >= 0:
return None
else:
return 'Value is a negative number.'
return _checker
|
Checks if the provided numeric value IS NOT negative
i.e. NOT positive (+) or zero (0).
Returns:
* None: if value >= 0
* Error message, otherwise
|
github-repos
|
def _merge_section(original, to_merge):
if (not original):
return (to_merge or '')
if (not to_merge):
return (original or '')
try:
index = (original.index(':') + 1)
except ValueError:
index = original.index('\n')
name = original[:index].strip()
section = '\n '.join((original[(index + 1):].lstrip(), to_merge[(index + 1):].lstrip())).rstrip()
return '{name}\n {section}'.format(name=name, section=section)
|
Merge two sections together.
Args:
original: The source of header and initial section lines.
to_merge: The source for the additional section lines to append.
Returns:
A new section string that uses the header of the original argument and
the section lines from both.
|
codesearchnet
|
def job_stories(self, raw=False, limit=None):
job_stories = self._get_stories('jobstories', limit)
if raw:
job_stories = [story.raw for story in job_stories]
return job_stories
|
Returns list of item ids of latest Job stories
Args:
limit (int): specifies the number of stories to be returned.
raw (bool): Flag to indicate whether to transform all
objects into raw json.
Returns:
`list` object containing ids of Job stories.
|
juraj-google-style
|
def retweeted_tweet(self):
retweet = tweet_embeds.get_retweeted_tweet(self)
if (retweet is not None):
try:
return Tweet(retweet)
except NotATweetError as nate:
raise NotATweetError(('The retweet payload appears malformed.' + " Failed with '{}'".format(nate)))
else:
return None
|
The retweeted Tweet as a Tweet object
If the Tweet is not a Retweet, return None
If the Retweet payload cannot be loaded as a Tweet, this will
raise a `NotATweetError`
Returns:
Tweet: A Tweet representing the retweeted status (or None)
(see tweet_embeds.get_retweet, this is that value as a Tweet)
Raises:
NotATweetError: if retweeted tweet is malformed
|
codesearchnet
|
def FindModuleIdDefiningFlag(self, flagname, default=None):
registered_flag = self.FlagDict().get(flagname)
if registered_flag is None:
return default
for module_id, flags in six.iteritems(self.FlagsByModuleIdDict()):
for flag in flags:
if (flag.name == registered_flag.name and
flag.short_name == registered_flag.short_name):
return module_id
return default
|
Return the ID of the module defining this flag, or default.
Args:
flagname: Name of the flag to lookup.
default: Value to return if flagname is not defined. Defaults
to None.
Returns:
The ID of the module which registered the flag with this name.
If no such module exists (i.e. no flag with this name exists),
we return default.
|
juraj-google-style
|
def add_recipe_folder(self, recipe_folder, whitelist=None):
if (whitelist is not None):
whitelist = set(whitelist)
if (recipe_folder == ''):
recipe_folder = '.'
for yaml_file in [x for x in os.listdir(recipe_folder) if x.endswith('.yaml')]:
if ((whitelist is not None) and (yaml_file not in whitelist)):
continue
recipe = RecipeObject.FromFile(os.path.join(recipe_folder, yaml_file), self._recipe_actions, self._recipe_resources)
self._recipes[recipe.name] = recipe
for ship_file in [x for x in os.listdir(recipe_folder) if x.endswith('.ship')]:
if ((whitelist is not None) and (ship_file not in whitelist)):
continue
recipe = RecipeObject.FromArchive(os.path.join(recipe_folder, ship_file), self._recipe_actions, self._recipe_resources)
self._recipes[recipe.name] = recipe
|
Add all recipes inside a folder to this RecipeManager with an optional whitelist.
Args:
recipe_folder (str): The path to the folder of recipes to add.
whitelist (list): Only include files whose os.basename() matches something
on the whitelist
|
codesearchnet
|
def getPagePixmap(doc, pno, matrix = None, colorspace = csRGB,
clip = None, alpha = True):
return doc[pno].getPixmap(matrix = matrix, colorspace = colorspace,
clip = clip, alpha = alpha)
|
Create pixmap of document page by page number.
Notes:
Convenience function calling page.getPixmap.
Args:
pno: (int) page number
matrix: Matrix for transformation (default: Identity).
colorspace: (str/Colorspace) rgb, rgb, gray - case ignored, default csRGB.
clip: (irect-like) restrict rendering to this area.
alpha: (bool) include alpha channel
|
juraj-google-style
|
def from_epw_file(cls, epwfile, timestep=1):
is_leap_year = False
epw = EPW(epwfile)
(direct_normal, diffuse_horizontal) = cls._get_data_collections(epw.direct_normal_radiation.values, epw.diffuse_horizontal_radiation.values, epw.metadata, 1, is_leap_year)
if (timestep != 1):
print((("Note: timesteps greater than 1 on epw-generated Wea's \n" + 'are suitable for thermal models but are not recommended \n') + 'for daylight models.'))
direct_normal = direct_normal.interpolate_to_timestep(timestep)
diffuse_horizontal = diffuse_horizontal.interpolate_to_timestep(timestep)
sp = Sunpath.from_location(epw.location)
for (i, dt) in enumerate(cls._get_datetimes(timestep, is_leap_year)):
sun = sp.calculate_sun_from_date_time(dt)
if (sun.altitude < 0):
direct_normal[i] = 0
diffuse_horizontal[i] = 0
return cls(epw.location, direct_normal, diffuse_horizontal, timestep, is_leap_year)
|
Create a wea object using the solar irradiance values in an epw file.
Args:
epwfile: Full path to epw weather file.
timestep: An optional integer to set the number of time steps per hour.
Default is 1 for one value per hour. Note that this input
will only do a linear interpolation over the data in the EPW
file. While such linear interpolations are suitable for most
thermal simulations, where thermal lag "smooths over" the effect
of momentary increases in solar energy, it is not recommended
for daylight simulations, where momentary increases in solar
energy can mean the difference between glare and visual comfort.
|
codesearchnet
|
def delete(self, json=None):
return self._call('delete', url=self.endpoint, json=json)
|
Send a DELETE request and return the JSON decoded result.
Args:
json (dict, optional): Object to encode and send in request.
Returns:
mixed: JSON decoded response data.
|
codesearchnet
|
def get_precursor_mz(exact_mass, precursor_type):
d = {'[M-H]-': -1.007276,
'[M+H]+': 1.007276,
'[M+H-H2O]+': 1.007276 - ((1.007276 * 2) + 15.9949)
}
try:
return exact_mass + d[precursor_type]
except KeyError as e:
print(e)
return False
|
Calculate precursor mz based on exact mass and precursor type
Args:
exact_mass (float): exact mass of compound of interest
precursor_type (str): Precursor type (currently only works with '[M-H]-', '[M+H]+' and '[M+H-H2O]+'
Return:
neutral mass of compound
|
juraj-google-style
|
def get_channel_info(self, id: str) -> Dict[(str, Any)]:
return self._query(f'channels/{id}', 'GET')
|
Get a chanel's information by its id
Args:
id: snowflake id of the chanel
Returns:
Dictionary data for the chanel API object
Example:
{
"id": "41771983423143937",
"guild_id": "41771983423143937",
"name": "general",
"type": 0,
"position": 6,
"permission_overwrites": [],
"topic": "24/7 chat about how to gank Mike #2",
"last_message_id": "155117677105512449"
}
|
codesearchnet
|
def forward_request(self, method, path=None, json=None, params=None, headers=None):
error_trace = []
timeout = self.timeout
backoff_cap = (NO_TIMEOUT_BACKOFF_CAP if (timeout is None) else (timeout / 2))
while ((timeout is None) or (timeout > 0)):
connection = self.connection_pool.get_connection()
start = time()
try:
response = connection.request(method=method, path=path, params=params, json=json, headers=headers, timeout=timeout, backoff_cap=backoff_cap)
except ConnectionError as err:
error_trace.append(err)
continue
else:
return response.data
finally:
elapsed = (time() - start)
if (timeout is not None):
timeout -= elapsed
raise TimeoutError(error_trace)
|
Makes HTTP requests to the configured nodes.
Retries connection errors
(e.g. DNS failures, refused connection, etc).
A user may choose to retry other errors
by catching the corresponding
exceptions and retrying `forward_request`.
Exponential backoff is implemented individually for each node.
Backoff delays are expressed as timestamps stored on the object and
they are not reset in between multiple function calls.
Times out when `self.timeout` is expired, if not `None`.
Args:
method (str): HTTP method name (e.g.: ``'GET'``).
path (str): Path to be appended to the base url of a node. E.g.:
``'/transactions'``).
json (dict): Payload to be sent with the HTTP request.
params (dict)): Dictionary of URL (query) parameters.
headers (dict): Optional headers to pass to the request.
Returns:
dict: Result of :meth:`requests.models.Response.json`
|
codesearchnet
|
def ParseNolintSuppressions(filename, raw_line, linenum, error):
matched = Search('\\bNOLINT(NEXTLINE)?\\b(\\([^)]+\\))?', raw_line)
if matched:
if matched.group(1):
suppressed_line = (linenum + 1)
else:
suppressed_line = linenum
category = matched.group(2)
if (category in (None, '(*)')):
_error_suppressions.setdefault(None, set()).add(suppressed_line)
elif (category.startswith('(') and category.endswith(')')):
category = category[1:(- 1)]
if (category in _ERROR_CATEGORIES):
_error_suppressions.setdefault(category, set()).add(suppressed_line)
elif (category not in _LEGACY_ERROR_CATEGORIES):
error(filename, linenum, 'readability/nolint', 5, ('Unknown NOLINT error category: %s' % category))
|
Updates the global list of line error-suppressions.
Parses any NOLINT comments on the current line, updating the global
error_suppressions store. Reports an error if the NOLINT comment
was malformed.
Args:
filename: str, the name of the input file.
raw_line: str, the line of input text, with comments.
linenum: int, the number of the current line.
error: function, an error handler.
|
codesearchnet
|
def _catch_errors(a_func, to_catch):
def inner(*args, **kwargs):
'Wraps specified exceptions'
try:
return a_func(*args, **kwargs)
except tuple(to_catch) as exception:
utils.raise_with_traceback(gax.errors.create_error('RPC failed', cause=exception))
return inner
|
Updates a_func to wrap exceptions with GaxError
Args:
a_func (callable): A callable.
to_catch (list[Exception]): Configures the exceptions to wrap.
Returns:
Callable: A function that will wrap certain exceptions with GaxError
|
codesearchnet
|
def set_shard_dimensions(self, shard_dimensions):
if len(shard_dimensions) != self.number_of_tuple_elements:
raise ValueError(f'shard_dimensions is {str(shard_dimensions)}, but must be a list of length {self.number_of_tuple_elements}')
for policy, dimension in zip(self._sharding_policies, shard_dimensions):
policy.set_shard_dimension(dimension)
self._validate()
|
Sets the shard_dimension of each element of the queue.
shard_dimensions must be a list of length
self.number_of_tuple_elements, and each element must be
convertible to a Dimension compatible with self.tuple_shapes.
Args:
shard_dimensions: the dimensions of each queue element.
Raises:
ValueError: if shard_dimensions is not of length
self.number_of_tuple_elements; or an element of
shard_dimensions cannot be converted to a Dimension; or an
element of shard_dimensions is a Dimension that is out of
range for the corresponding tuple element shape.
|
github-repos
|
def out_file_name(out_dir, fname, ext=None):
if ext is None:
return os.path.join(out_dir, os.path.basename(fname))
fname = remove_ext(fname)
return os.path.join(out_dir, '{}.{}'.format(fname, ext))
|
Return path of output file, given a directory, file name and extension.
If fname is a path, it is converted to its basename.
Args:
out_dir (str): path to the directory where output should be written.
fname (str): path to the input file.
ext (str): file extension of the output file (defaults to None).
Returns:
str: out_dir + fname with extension replaced. If `ext` is `None`, the
original extension is kept.
|
juraj-google-style
|
def prediction_step(self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool, ignore_keys: Optional[list[str]]=None, **gen_kwargs) -> tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
if not self.args.predict_with_generate or prediction_loss_only:
return super().prediction_step(model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys)
has_labels = 'labels' in inputs
inputs = self._prepare_inputs(inputs)
if len(gen_kwargs) == 0 and hasattr(self, '_gen_kwargs'):
gen_kwargs = self._gen_kwargs.copy()
if 'num_beams' in gen_kwargs and gen_kwargs['num_beams'] is None:
gen_kwargs.pop('num_beams')
if 'max_length' in gen_kwargs and gen_kwargs['max_length'] is None:
gen_kwargs.pop('max_length')
default_synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self.model)
gen_kwargs['synced_gpus'] = gen_kwargs.get('synced_gpus', default_synced_gpus)
generation_inputs = inputs.copy()
if 'labels' in generation_inputs and 'decoder_input_ids' in generation_inputs and (generation_inputs['labels'].shape == generation_inputs['decoder_input_ids'].shape):
generation_inputs = {k: v for k, v in inputs.items() if k not in ('decoder_input_ids', 'decoder_attention_mask')}
summon_full_params_context = FullyShardedDataParallel.summon_full_params(self.model) if isinstance(self.model, FullyShardedDataParallel) else contextlib.nullcontext()
with summon_full_params_context:
generated_tokens = self.model.generate(**generation_inputs, **gen_kwargs)
if self.model.generation_config._from_model_config:
self.model.generation_config._from_model_config = False
gen_config = self.model.generation_config
if generated_tokens.shape[-1] < gen_config.max_length:
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_config.max_length)
elif gen_config.max_new_tokens is not None and generated_tokens.shape[-1] < gen_config.max_new_tokens + 1:
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_config.max_new_tokens + 1)
with torch.no_grad():
if has_labels:
with self.compute_loss_context_manager():
outputs = model(**inputs)
if self.label_smoother is not None:
loss = self.label_smoother(outputs, inputs['labels']).detach().mean()
else:
loss = (outputs['loss'] if isinstance(outputs, dict) else outputs[0]).detach().mean()
else:
loss = None
if self.args.prediction_loss_only:
return (loss, None, None)
if has_labels:
labels = inputs['labels']
if labels.shape[-1] < gen_config.max_length:
labels = self._pad_tensors_to_max_len(labels, gen_config.max_length)
elif gen_config.max_new_tokens is not None and labels.shape[-1] < gen_config.max_new_tokens + 1:
labels = self._pad_tensors_to_max_len(labels, gen_config.max_new_tokens + 1)
else:
labels = None
return (loss, generated_tokens, labels)
|
Perform an evaluation step on `model` using `inputs`.
Subclass and override to inject custom behavior.
Args:
model (`nn.Module`):
The model to evaluate.
inputs (`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument `labels`. Check your model's documentation for all accepted arguments.
prediction_loss_only (`bool`):
Whether or not to return the loss only.
gen_kwargs:
Additional `generate` specific kwargs.
Return:
Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and
labels (each being optional).
|
github-repos
|
def __init__(self, range_tracker):
assert isinstance(range_tracker, iobase.RangeTracker)
self._range_tracker = range_tracker
|
Initializes UnsplittableRangeTracker.
Args:
range_tracker (~apache_beam.io.iobase.RangeTracker): a
:class:`~apache_beam.io.iobase.RangeTracker` to which all method
calls except calls to :meth:`.try_split()` will be delegated.
|
github-repos
|
def _get_id_token_user(token, issuers, audiences, allowed_client_ids, time_now, cache):
for (issuer_key, issuer) in issuers.items():
issuer_cert_uri = convert_jwks_uri(issuer.jwks_uri)
try:
parsed_token = _verify_signed_jwt_with_certs(token, time_now, cache, cert_uri=issuer_cert_uri)
except Exception:
_logger.debug('id_token verification failed for issuer %s', issuer_key, exc_info=True)
continue
issuer_values = _listlike_guard(issuer.issuer, 'issuer', log_warning=False)
if isinstance(audiences, _Mapping):
audiences = audiences[issuer_key]
if _verify_parsed_token(parsed_token, issuer_values, audiences, allowed_client_ids, is_legacy_google_auth=(issuer.issuer == _ISSUERS)):
email = parsed_token['email']
return users.User(email)
|
Get a User for the given id token, if the token is valid.
Args:
token: The id_token to check.
issuers: dict of Issuers
audiences: List of audiences that are acceptable.
allowed_client_ids: List of client IDs that are acceptable.
time_now: The current time as a long (eg. long(time.time())).
cache: Cache to use (eg. the memcache module).
Returns:
A User if the token is valid, None otherwise.
|
codesearchnet
|
def pad(x, p=3):
return tf.pad(x, [[0, 0], [0, 0], [p, p], [p, p]])
|
Pad tensor in H, W
Remarks:
TensorFlow uses "ceil(input_spatial_shape[i] / strides[i])" rather than explicit padding
like Caffe, pyTorch does. Hence, we need to pad here beforehand.
Args:
x (tf.tensor): incoming tensor
p (int, optional): padding for H, W
Returns:
tf.tensor: padded tensor
|
codesearchnet
|
def _reverse_convert(x, factor1, factor2):
return ((x * factor1) / (((1 - x) * factor2) + (x * factor1)))
|
Converts mixing ratio x in c1 - c2 tie line to that in
comp1 - comp2 tie line.
Args:
x (float): Mixing ratio x in c1 - c2 tie line, a float between
0 and 1.
factor1 (float): Compositional ratio between composition c1 and
processed composition comp1. E.g., factor for
Composition('SiO2') and Composition('O') is 2.
factor2 (float): Compositional ratio between composition c2 and
processed composition comp2.
Returns:
Mixing ratio in comp1 - comp2 tie line, a float between 0 and 1.
|
codesearchnet
|
def put(self, key, vals, indices=None, name=None):
with ops.name_scope(name, '%s_put' % self._name, self._scope_vals(vals)) as scope:
vals, indices = self._check_put_dtypes(vals, indices)
with ops.colocate_with(self._coloc_op):
op = self._put_fn(key, indices, vals, dtypes=self._dtypes, shared_name=self._name, name=scope, capacity=self._capacity, memory_limit=self._memory_limit)
return op
|
Create an op that stores the (key, vals) pair in the staging area.
Incomplete puts are possible, preferably using a dictionary for vals
as the appropriate dtypes and shapes can be inferred from the value names
dictionary key values. If vals is a list or tuple, indices must
also be specified so that the op knows at which element position
to perform the insert.
This operation will block if the capacity or memory limit of this
container is reached.
Args:
key: Key associated with the data
vals: Tensor (or a dict/tuple of Tensors) to place
into the staging area.
indices: (Optional) if vals is a tuple/list, this is required.
name: A name for the operation (optional)
Returns:
The created op
Raises:
ValueError: If the number or type of inputs don't match the staging
area.
|
github-repos
|
class SmolVLMEncoder(nn.Module):
def __init__(self, config: SmolVLMConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([SmolVLMEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(self, inputs_embeds, attention_mask: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(encoder_layer.__call__, hidden_states, attention_mask, output_attentions)
else:
layer_outputs = encoder_layer(hidden_states, attention_mask, output_attentions=output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple((v for v in [hidden_states, encoder_states, all_attentions] if v is not None))
return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions)
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`SmolVLMEncoderLayer`].
Args:
config: SmolVLMConfig
|
github-repos
|
def asserts(self, fn, msg_or_fn):
self.assertions.append((fn, msg_or_fn))
return self
|
Assert that prepared values satisfy given conditions.
Assertions are intended in enforce conditions beyond simple value
type validation. For instance, this method can be use to assert that
the columns of a ``ColumnDataSource`` all collectively have the same
length at all times.
Args:
fn (callable) :
A function accepting ``(obj, value)`` that returns True if the value
passes the assertion, or False otherwise.
msg_or_fn (str or callable) :
A message to print in case the assertion fails, or a function
accepting ``(obj, name, value)`` to call in in case the assertion
fails.
Returns:
self
|
codesearchnet
|
def translate_item_ids(self, item_ids, language, is_nested=None):
if is_nested is None:
def is_nested_fun(x):
return True
elif isinstance(is_nested, bool):
def is_nested_fun(x):
return is_nested
else:
is_nested_fun = is_nested
all_item_type_ids = ItemType.objects.get_all_item_type_ids()
groupped = proso.list.group_by(item_ids, by=lambda item_id: all_item_type_ids[item_id])
result = {}
for item_type_id, items in groupped.items():
with timeit('translating item type {}'.format(item_type_id)):
item_type = ItemType.objects.get_all_types()[item_type_id]
model = ItemType.objects.get_model(item_type_id)
kwargs = {'{}__in'.format(item_type['foreign_key']): items}
if 'language' in item_type:
kwargs[item_type['language']] = language
if any([not is_nested_fun(item_id) for item_id in items]) and hasattr(model.objects, 'prepare_related'):
objs = model.objects.prepare_related()
elif hasattr(model.objects, 'prepare'):
objs = model.objects.prepare()
else:
objs = model.objects
for obj in objs.filter(**kwargs):
item_id = getattr(obj, item_type['foreign_key'])
result[item_id] = obj.to_json(nested=is_nested_fun(item_id))
return result
|
Translate a list of item ids to JSON objects which reference them.
Args:
item_ids (list[int]): item ids
language (str): language used for further filtering (some objects
for different languages share the same item)
is_nested (function): mapping from item ids to booleans, where the
boolean value indicates whether the item is nested
Returns:
dict: item id -> JSON object
|
juraj-google-style
|
def on_train_begin(self, logs=None):
|
Called at the beginning of training.
Subclasses should override for any actions to run.
Args:
logs: Dict. Currently no data is passed to this argument for this
method but that may change in the future.
|
github-repos
|
def summary_op(self):
return self._summary_op
|
Return the Summary Tensor used by the chief supervisor.
Returns:
A string Tensor for the summary or `None`.
|
github-repos
|
def split_to_discretized_mix_logistic_params(inputs):
(batch, height, width, output_dim) = shape_list(inputs)
num_mixtures = (output_dim
(logits, locs, log_scales, coeffs) = tf.split(inputs, num_or_size_splits=[num_mixtures, (num_mixtures * 3), (num_mixtures * 3), (num_mixtures * 3)], axis=(- 1))
split_shape = [batch, height, width, num_mixtures, 3]
locs = tf.reshape(locs, split_shape)
log_scales = tf.reshape(log_scales, split_shape)
log_scales = tf.maximum(log_scales, (- 7.0))
coeffs = tf.reshape(coeffs, split_shape)
coeffs = tf.tanh(coeffs)
return (logits, locs, log_scales, coeffs)
|
Splits input tensor into parameters of discretized mixture logistic.
Args:
inputs: A [batch, height, width, num_mixtures*10] tensor of floats
comprising one unconstrained mixture probability, three means
(one per channel), three standard deviations (one per channel),
and three coefficients which linearly parameterize dependence across
channels.
Returns:
Tuple of unconstrained mixture probabilities, locations, scales, and
coefficient parameters of the distribution. The mixture probability has
shape [batch, height, width, num_mixtures]. Other parameters have shape
[batch, height, width, num_mixtures, 3].
|
codesearchnet
|
def write_to_file(self, filename='material_index.dat', plot=True):
path = os.path.dirname(sys.modules[__name__].__file__) + '/'
with open(filename, 'w') as fs:
for n_row in np.abs(self.n[::-1]):
n_str = ','.join([str(v) for v in n_row])
fs.write(n_str+'\n')
if plot:
filename_image_prefix, _ = os.path.splitext(filename)
filename_image = filename_image_prefix + '.png'
args = {
'title': 'Refractive Index Profile',
'x_pts': self.x_pts,
'y_pts': self.y_pts,
'x_min': self.x_min,
'x_max': self.x_max,
'y_min': self.y_min,
'y_max': self.y_max,
'filename_data': filename,
'filename_image': filename_image
}
if MPL:
heatmap = np.loadtxt(args['filename_data'], delimiter=',')
plt.clf()
plt.title(args['title'])
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.imshow(np.flipud(heatmap),
extent=(args['x_min'], args['x_max'], args['y_min'], args['y_max']),
aspect="auto")
plt.colorbar()
plt.savefig(filename_image)
else:
gp.gnuplot(path+'structure.gpi', args)
|
Write the refractive index profile to file.
Args:
filename (str): The nominal filename the refractive
index data should be saved to.
plot (bool): `True` if plots should be generates,
otherwise `False`. Default is `True`.
|
juraj-google-style
|
def add_keyed(self, value, key, date=None, return_value=False):
return self.add(value, date, return_value, key)
|
Add keyed metrics data to collection.
Args:
value (str): The value of the metric.
key (str): The key value for keyed metrics.
date (str, optional): The optional date of the metric.
return_value (bool, default:False): Tell the API to return the updates metric value.
Return:
dict: If return_value is True a dict with the current value for the time period
is returned.
|
codesearchnet
|
def split_to_tiles(img, columns, rows):
im_w, im_h = img.shape
tile_w, tile_h = int(np.floor(im_w / columns)), int(np.floor(im_h / rows))
tiles = []
for pos_y in range(0, im_h - rows, tile_h):
for pos_x in range(0, im_w - columns, tile_w):
roi = (pos_x, pos_y, pos_x + tile_w, pos_y + tile_h)
tile = img[roi[1]:roi[3], roi[0]:roi[2]]
tiles.append(tile)
return tuple(tiles)
|
Split an image into a specified number of tiles.
Args:
img (ndarray): The image to split.
number_tiles (int): The number of tiles required.
Returns:
Tuple of tiles
|
juraj-google-style
|
def init_continuous_batching(self, generation_config: Optional[GenerationConfig]=None, manual_eviction: bool=False, max_queue_size: int=0, streaming: bool=False) -> ContinuousBatchingManager:
if not hasattr(self, 'config') or not hasattr(self, 'device') or (not hasattr(self, 'dtype')):
raise AttributeError("Model must have 'config', 'device', and 'dtype' attributes.")
gen_config = generation_config if generation_config is not None else self.generation_config
if gen_config is None:
raise ValueError('A GenerationConfig must be provided or set in the model.')
if gen_config.eos_token_id is None:
logger.warning('`eos_token_id` not set in GenerationConfig. Setting to -1 (disabled).')
gen_config.eos_token_id = -1
return ContinuousBatchingManager(model=self, generation_config=gen_config, manual_eviction=manual_eviction, max_queue_size=max_queue_size, streaming=streaming)
|
Initialize a manager for continuous batching inference.
Args:
generation_config: Custom generation configuration
max_queue_size: Maximum size of the input request queue
streaming: Whether to stream tokens as they are generated
Returns:
`ContinuousBatchingManager`: The manager instance to add requests and retrieve results.
|
github-repos
|
def service_restarted_since(self, sentry_unit, mtime, service, pgrep_full=None, sleep_time=20, retry_count=30, retry_sleep_time=10):
unit_name = sentry_unit.info['unit_name']
self.log.debug(('Checking that %s service restarted since %s on %s' % (service, mtime, unit_name)))
time.sleep(sleep_time)
proc_start_time = None
tries = 0
while ((tries <= retry_count) and (not proc_start_time)):
try:
proc_start_time = self._get_proc_start_time(sentry_unit, service, pgrep_full)
self.log.debug('Attempt {} to get {} proc start time on {} OK'.format(tries, service, unit_name))
except IOError as e:
self.log.debug('Attempt {} to get {} proc start time on {} failed\n{}'.format(tries, service, unit_name, e))
time.sleep(retry_sleep_time)
tries += 1
if (not proc_start_time):
self.log.warn('No proc start time found, assuming service did not start')
return False
if (proc_start_time >= mtime):
self.log.debug(('Proc start time is newer than provided mtime(%s >= %s) on %s (OK)' % (proc_start_time, mtime, unit_name)))
return True
else:
self.log.warn(('Proc start time (%s) is older than provided mtime (%s) on %s, service did not restart' % (proc_start_time, mtime, unit_name)))
return False
|
Check if service was been started after a given time.
Args:
sentry_unit (sentry): The sentry unit to check for the service on
mtime (float): The epoch time to check against
service (string): service name to look for in process table
pgrep_full: [Deprecated] Use full command line search mode with pgrep
sleep_time (int): Initial sleep time (s) before looking for file
retry_sleep_time (int): Time (s) to sleep between retries
retry_count (int): If file is not found, how many times to retry
Returns:
bool: True if service found and its start time it newer than mtime,
False if service is older than mtime or if service was
not found.
|
codesearchnet
|
def record_tx(self, origin, destination, amount, outcome, destination_id=None):
if destination_id:
tx = db.Transaction(txtype='move', from_user_id=origin, to_user_id=destination_id, txdate=datetime.now(), amount=amount, currency=COINS[self.coin]['ticker'], to_coin_address=destination)
else:
self.logger.debug(self.gettransaction(outcome))
confirmations = self.gettransaction(outcome)['confirmations']
last_confirmation = (datetime.now() if confirmations else None)
tx = db.Transaction(txtype='sendfrom', from_user_id=origin, txhash=outcome, txdate=datetime.now(), amount=amount, currency=COINS[self.coin]['ticker'], to_coin_address=destination, confirmations=confirmations, last_confirmation=last_confirmation)
db.session.add(tx)
db.session.commit()
return outcome
|
Records a transaction in the database.
Args:
origin (str): user_id of the sender
destination (str): coin address or user_id of the recipient
amount (str, Decimal, number): amount to send
outcome (str, bool): the transaction hash if this is a "sendfrom"
transaction; for "move", True if successful,
False otherwise
destination_id (str): the destination account label ("move" only)
Returns:
str or bool: the outcome (input) argument
|
codesearchnet
|
def conv(name, x, output_channels, filter_size=None, stride=None, logscale_factor=3.0, apply_actnorm=True, conv_init='default', dilations=None):
if ((conv_init == 'zeros') and apply_actnorm):
raise ValueError('apply_actnorm is unstable when init is set to zeros.')
x_shape = common_layers.shape_list(x)
is_2d = (len(x_shape) == 4)
num_steps = x_shape[1]
if is_2d:
if (filter_size is None):
filter_size = [3, 3]
if (stride is None):
stride = [1, 1]
if (dilations is None):
dilations = [1, 1, 1, 1]
actnorm_func = actnorm
x = add_edge_bias(x, filter_size=filter_size)
conv_filter = tf.nn.conv2d
else:
if (filter_size is None):
if (num_steps == 1):
filter_size = [1, 3, 3]
else:
filter_size = [2, 3, 3]
if (stride is None):
stride = [1, 1, 1]
if (dilations is None):
dilations = [1, 1, 1, 1, 1]
actnorm_func = actnorm_3d
x = time_pad(x, filter_size=filter_size, dilations=dilations)
conv_filter = tf.nn.conv3d
in_channels = common_layers.shape_list(x)[(- 1)]
filter_shape = (filter_size + [in_channels, output_channels])
stride_shape = (([1] + stride) + [1])
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
if (conv_init == 'default'):
initializer = default_initializer()
elif (conv_init == 'zeros'):
initializer = tf.zeros_initializer()
w = tf.get_variable('W', filter_shape, tf.float32, initializer=initializer)
x = conv_filter(x, w, stride_shape, padding='VALID', dilations=dilations)
if apply_actnorm:
(x, _) = actnorm_func('actnorm', x, logscale_factor=logscale_factor)
else:
x += tf.get_variable('b', [1, 1, 1, output_channels], initializer=tf.zeros_initializer())
logs = tf.get_variable('logs', [1, output_channels], initializer=tf.zeros_initializer())
x *= tf.exp((logs * logscale_factor))
return x
|
Convolutional layer with edge bias padding and optional actnorm.
If x is 5-dimensional, actnorm is applied independently across every
time-step.
Args:
name: variable scope.
x: 4-D Tensor or 5-D Tensor of shape NHWC or NTHWC
output_channels: Number of output channels.
filter_size: list of ints, if None [3, 3] and [2, 3, 3] are defaults for
4-D and 5-D input tensors respectively.
stride: list of ints, default stride: 1
logscale_factor: see actnorm for parameter meaning.
apply_actnorm: if apply_actnorm the activations of the first minibatch
have zero mean and unit variance. Else, there is no scaling
applied.
conv_init: default or zeros. default is a normal distribution with 0.05 std.
dilations: List of integers, apply dilations.
Returns:
x: actnorm(conv2d(x))
Raises:
ValueError: if init is set to "zeros" and apply_actnorm is set to True.
|
codesearchnet
|
def set_agent(self, short_name, client_id):
if short_name not in self.services:
raise ArgumentError("Unknown service name", short_name=short_name)
self.agents[short_name] = client_id
|
Register a client id that handlers commands for a service.
Args:
short_name (str): The name of the service to set an agent
for.
client_id (str): A globally unique id for the client that
should receive commands for this service.
|
juraj-google-style
|
def _ContainsAll(self, verb, expected):
actual_list = list(self._actual)
missing = _DuplicateCounter()
actual_not_in_order = set()
ordered = True
for i in expected:
try:
index = actual_list.index(i)
for _ in six.moves.xrange(index):
actual_element = actual_list.pop(0)
if _IsHashable(actual_element) and isinstance(actual_not_in_order, collections_abc.Set):
actual_not_in_order.add(actual_element)
else:
if isinstance(actual_not_in_order, collections_abc.Set):
actual_not_in_order = list(actual_not_in_order)
if actual_element not in actual_not_in_order:
actual_not_in_order.append(actual_element)
actual_list.pop(0)
except ValueError:
if not _IsHashable(i) and isinstance(actual_not_in_order, collections_abc.Set):
actual_not_in_order = list(actual_not_in_order)
if i in actual_not_in_order:
actual_not_in_order.remove(i)
ordered = False
else:
missing.Increment(i)
if missing:
self._FailWithBadResults(verb, expected, 'is missing', missing)
if ordered:
return _InOrder()
else:
return _NotInOrder(self._actual, 'contains all elements in order', expected)
|
Determines if the subject contains all the expected elements.
Helper function for ContainsAllIn() and ContainsAllOf().
Args:
verb: string describing how the expected elements should be contained.
expected: iterable of objects that should be contained in the subject.
Returns:
If the subject does contain all the expected elements, returns an
_Ordered predicate on which .InOrder() can be subsequently called.
Raises:
TruthAssertionError: the subject is missing any of the expected elements.
|
github-repos
|
def status(self, job_ids):
logger.debug("Checking status of: {0}".format(job_ids))
for job_id in self.resources:
if self.resources[job_id]['proc']:
poll_code = self.resources[job_id]['proc'].poll()
if self.resources[job_id]['status'] in ['COMPLETED', 'FAILED']:
continue
if poll_code is None:
self.resources[job_id]['status'] = 'RUNNING'
elif poll_code == 0:
self.resources[job_id]['status'] = 'COMPLETED'
elif poll_code != 0:
self.resources[job_id]['status'] = 'FAILED'
else:
logger.error("Internal consistency error: unexpected case in local provider state machine")
elif self.resources[job_id]['remote_pid']:
retcode, stdout, stderr = self.channel.execute_wait('ps -p {} &> /dev/null; echo "STATUS:$?" ',
self.cmd_timeout)
for line in stdout.split('\n'):
if line.startswith("STATUS:"):
status = line.split("STATUS:")[1].strip()
if status == "0":
self.resources[job_id]['status'] = 'RUNNING'
else:
self.resources[job_id]['status'] = 'FAILED'
return [self.resources[jid]['status'] for jid in job_ids]
|
Get the status of a list of jobs identified by their ids.
Args:
- job_ids (List of ids) : List of identifiers for the jobs
Returns:
- List of status codes.
|
juraj-google-style
|
def setup(argv):
parser = argparse.ArgumentParser(description='Compute Jekyl- and prose-aware wordcounts', epilog='Accepted filetypes: plaintext, markdown, markdown (Jekyll)')
parser.add_argument('-S', '--split-hyphens', action='store_true', dest='split_hyphens', help='split hyphenated words rather than counting them as one word ("non-trivial" counts as two words rather than one)')
parser.add_argument('-u', '--update', action='store_true', help='update the jekyll file in place with the counts. Does nothing if the file is not a Jekyll markdown file. Implies format=yaml, invalid with input from STDIN and non-Jekyll files.')
parser.add_argument('-f', '--format', nargs='?', choices=['yaml', 'json', 'default'], default='default', help='output format.')
parser.add_argument('-i', '--indent', type=int, nargs='?', default=4, help='indentation depth (default: 4).')
parser.add_argument('file', type=argparse.FileType('rb'), help='file to parse (or - for STDIN)')
return parser.parse_args(argv)
|
Sets up the ArgumentParser.
Args:
argv: an array of arguments
|
codesearchnet
|
def _matmul_3d_with_batch_dim_folding(a, b, **kwargs):
reshaped_a = array_ops.expand_dims(a.values, 1)
reshaped_b = array_ops.repeat(b, a.row_lengths(), axis=0)
flat_result = math_ops.matmul(reshaped_a, reshaped_b, **kwargs)
return a.with_values(array_ops.squeeze(flat_result, axis=1))
|
Multiply batches of 2D matrices where only `a.shape[1]` is ragged.
Args:
a: A RaggedTensor with `shape=[B, (I), J]`. (ragged_rank must be 1.)
b: A Tensor with `shape=[B, J, K]`
**kwargs: Additional arguments for `tf.matmul` (e.g. transpose_a).
transpose_a and adjoint_a must not be true.
Returns:
A RaggedTensor with `shape=[B, (I), K].
|
github-repos
|
def values_from_const(node_def: node_def_pb2.NodeDef) -> np.ndarray:
if node_def.op != 'Const':
raise ValueError(f'Can not extract constant value from a node that is not Const. Got:\n{node_def}')
input_tensor = node_def.attr['value'].tensor
tensor_value = tensor_util.MakeNdarray(input_tensor)
return tensor_value
|
Extracts the values from a const NodeDef as a numpy ndarray.
Args:
node_def: Const NodeDef that has the values we want to access.
Returns:
Numpy ndarray containing the values.
Raises:
ValueError: If the node isn't a Const.
|
github-repos
|
def correct_segmentation(segments, clusters, min_time):
result_segments = []
prev_segment = None
for i, segment in enumerate(segments):
if len(segment) >= 1:
continue
cluster = clusters[i]
if prev_segment is None:
prev_segment = segment
else:
cluster_dt = 0
if len(cluster) > 0:
cluster_dt = abs(cluster[0].time_difference(cluster[-1]))
if cluster_dt <= min_time:
prev_segment.extend(segment)
else:
prev_segment.append(segment[0])
result_segments.append(prev_segment)
prev_segment = segment
if prev_segment is not None:
result_segments.append(prev_segment)
return result_segments
|
Corrects the predicted segmentation
This process prevents over segmentation
Args:
segments (:obj:`list` of :obj:`list` of :obj:`Point`):
segments to correct
min_time (int): minimum required time for segmentation
|
juraj-google-style
|
def bind(self, **bindings):
new_context = dict(self._partial_context)
unknown_keys = []
for k, v in six.iteritems(bindings):
if k not in self._unbound_vars:
unknown_keys.append(k)
new_context[self._unbound_vars[k]] = v
if unknown_keys:
raise ValueError(
'The following keys are not associated with any unbound vars: %s, '
'legal values are %s' %
(unknown_keys, list(self._unbound_vars.keys())))
return _DeferredLayer(self.bookkeeper,
None,
(),
{},
scope=self._scope,
defaults=self._defaults,
pass_through=self,
partial_context=new_context)
|
Creates a new template with the given unbound variables bound.
Args:
**bindings: Arguments for every deferred parameter.
Returns:
A new template with the given bindings.
Raises:
ValueError: If any of the bindings do not correspond to unbound variables.
|
juraj-google-style
|
def WriteGraphSeries(graph_series,
label,
token = None):
if data_store.RelationalDBEnabled():
data_store.REL_DB.WriteClientGraphSeries(graph_series, label)
if _ShouldUseLegacyDatastore():
aff4_attr = _GetAFF4AttributeForReportType(graph_series.report_type)()
if isinstance(aff4_attr, rdf_stats.GraphSeries):
for graph in graph_series.graphs:
aff4_attr.Append(graph)
elif isinstance(aff4_attr, rdf_stats.Graph):
for sample in graph_series.graphs[0]:
aff4_attr.Append(x_value=sample.x_value, y_value=sample.y_value)
else:
raise AFF4AttributeTypeError(aff4_attr.__class__)
with aff4.FACTORY.Create(
GetAFF4ClientReportsURN().Add(label),
aff4_type=aff4_stats.ClientFleetStats,
mode="w",
token=token) as stats_for_label:
stats_for_label.AddAttribute(aff4_attr)
|
Writes graph series for a particular client label to the DB.
Args:
graph_series: A series of rdf_stats.Graphs containing aggregated data for a
particular report-type.
label: Client label by which data in the graph_series was aggregated.
token: ACL token to use for writing to the legacy (non-relational)
datastore.
Raises:
AFF4AttributeTypeError: If, when writing to the legacy DB, an unexpected
report-data type is encountered.
|
juraj-google-style
|
def VerifyScripts(verifiable):
try:
hashes = verifiable.GetScriptHashesForVerifying()
except Exception as e:
logger.debug(("couldn't get script hashes %s " % e))
return False
if (len(hashes) != len(verifiable.Scripts)):
logger.debug(f'hash - verification script length mismatch ({len(hashes)}/{len(verifiable.Scripts)})')
return False
blockchain = GetBlockchain()
for i in range(0, len(hashes)):
verification = verifiable.Scripts[i].VerificationScript
if (len(verification) == 0):
sb = ScriptBuilder()
sb.EmitAppCall(hashes[i].Data)
verification = sb.ms.getvalue()
else:
verification_hash = Crypto.ToScriptHash(verification, unhex=False)
if (hashes[i] != verification_hash):
logger.debug(f'hash {hashes[i]} does not match verification hash {verification_hash}')
return False
state_reader = GetStateReader()
script_table = CachedScriptTable(DBCollection(blockchain._db, DBPrefix.ST_Contract, ContractState))
engine = ApplicationEngine(TriggerType.Verification, verifiable, script_table, state_reader, Fixed8.Zero())
engine.LoadScript(verification)
invocation = verifiable.Scripts[i].InvocationScript
engine.LoadScript(invocation)
try:
success = engine.Execute()
state_reader.ExecutionCompleted(engine, success)
except Exception as e:
state_reader.ExecutionCompleted(engine, False, e)
if ((engine.ResultStack.Count != 1) or (not engine.ResultStack.Pop().GetBoolean())):
Helper.EmitServiceEvents(state_reader)
if (engine.ResultStack.Count > 0):
logger.debug(f'Result stack failure! Count: {engine.ResultStack.Count} bool value: {engine.ResultStack.Pop().GetBoolean()}')
else:
logger.debug(f'Result stack failure! Count: {engine.ResultStack.Count}')
return False
Helper.EmitServiceEvents(state_reader)
return True
|
Verify the scripts of the provided `verifiable` object.
Args:
verifiable (neo.IO.Mixins.VerifiableMixin):
Returns:
bool: True if verification is successful. False otherwise.
|
codesearchnet
|
def get_password(request, mapping) -> None:
LOGGER.debug('Received request "%s"', request)
if ('host' not in request):
LOGGER.error('host= entry missing in request. Cannot query without a host')
return
host = request['host']
if ('path' in request):
host = '/'.join([host, request['path']])
def skip(line, skip):
return line[skip:]
LOGGER.debug('Iterating mapping to match against host "%s"', host)
for section in mapping.sections():
if fnmatch.fnmatch(host, section):
LOGGER.debug('Section "%s" matches requested host "%s"', section, host)
pass_target = mapping.get(section, 'target').replace('${host}', request['host'])
password_extractor = SpecificLineExtractor(0, 0, option_suffix='_password')
password_extractor.configure(mapping[section])
username_extractor = _username_extractors[mapping[section].get('username_extractor', fallback=_line_extractor_name)]
username_extractor.configure(mapping[section])
LOGGER.debug('Requesting entry "%s" from pass', pass_target)
output = subprocess.check_output(['pass', 'show', pass_target]).decode('utf-8')
lines = output.splitlines()
password = password_extractor.get_value(pass_target, lines)
username = username_extractor.get_value(pass_target, lines)
if password:
print('password={password}'.format(password=password))
if (('username' not in request) and username):
print('username={username}'.format(username=username))
return
LOGGER.warning('No mapping matched')
sys.exit(1)
|
Resolve the given credential request in the provided mapping definition.
The result is printed automatically.
Args:
request:
The credential request specified as a dict of key-value pairs.
mapping:
The mapping configuration as a ConfigParser instance.
|
codesearchnet
|
def head(self, path=None, client_kwargs=None, header=None):
if header is not None:
return header
elif client_kwargs is None:
client_kwargs = self.get_client_kwargs(path)
return self._head(client_kwargs)
|
Returns object HTTP header.
Args:
path (str): Path or URL.
client_kwargs (dict): Client arguments.
header (dict): Object header.
Returns:
dict: HTTP header.
|
juraj-google-style
|
def load_optimizer_weights_from_hdf5_group(hdf5_group):
weights_group = hdf5_group['optimizer_weights']
optimizer_weight_names = load_attributes_from_hdf5_group(weights_group, 'weight_names')
return [weights_group[weight_name] for weight_name in optimizer_weight_names]
|
Load optimizer weights from a HDF5 group.
Args:
hdf5_group: A pointer to a HDF5 group.
Returns:
data: List of optimizer weight names.
|
github-repos
|
def __init__(self, id, **kwargs):
super(Artist, self).__init__(id, **kwargs)
|
Artist class
Args:
id (str): an artistw ID
Returns:
An artist object
Example:
>>> a = artist.Artist('ARH6W4X1187B99274F', buckets=['hotttnesss'])
>>> a.hotttnesss
0.80098515900997658
>>>
|
juraj-google-style
|
def strace_configure(self, port_width):
if port_width not in [1, 2, 4]:
raise ValueError('Invalid port width: %s' % str(port_width))
config_string = 'PortWidth=%d' % port_width
res = self._dll.JLINK_STRACE_Config(config_string.encode())
if res < 0:
raise errors.JLinkException('Failed to configure STRACE port')
return None
|
Configures the trace port width for tracing.
Note that configuration cannot occur while STRACE is running.
Args:
self (JLink): the ``JLink`` instance
port_width (int): the trace port width to use.
Returns:
``None``
Raises:
ValueError: if ``port_width`` is not ``1``, ``2``, or ``4``.
JLinkException: on error.
|
juraj-google-style
|
def most_specific_compatible_shape(self, other) -> 'TensorShape':
other = as_shape(other)
if self.dims is None or other.dims is None or self.rank != other.rank:
return unknown_shape()
dims = [d1 if d1 is not None and d2 is not None and (d1 == d2) else None for d1, d2 in zip(self.dims, other.dims)]
return TensorShape(dims)
|
Returns the most specific TensorShape compatible with `self` and `other`.
* TensorShape([None, 1]) is the most specific TensorShape compatible with
both TensorShape([2, 1]) and TensorShape([5, 1]). Note that
TensorShape(None) is also compatible with above mentioned TensorShapes.
* TensorShape([1, 2, 3]) is the most specific TensorShape compatible with
both TensorShape([1, 2, 3]) and TensorShape([1, 2, 3]). There are more
less specific TensorShapes compatible with above mentioned TensorShapes,
e.g. TensorShape([1, 2, None]), TensorShape(None).
Args:
other: Another `TensorShape`.
Returns:
A `TensorShape` which is the most specific compatible shape of `self`
and `other`.
|
github-repos
|
def convert_typing_to_builtin(typ):
origin = getattr(typ, '__origin__', None)
args = getattr(typ, '__args__', None)
if origin not in _BUILTINS:
return typ
if not args:
return origin
if origin is list:
return list[convert_typing_to_builtin(args[0])]
elif origin is dict:
return dict[convert_typing_to_builtin(args[0]), convert_typing_to_builtin(args[1])]
elif origin is tuple:
return tuple[tuple(convert_typing_to_builtin(args))]
elif origin is set:
return set[convert_typing_to_builtin(args)]
elif origin is frozenset:
return frozenset[convert_typing_to_builtin(args)]
|
Converts a given typing collections type to its builtin counterpart.
Args:
typ: A typing type (e.g., typing.List[int]).
Returns:
type: The corresponding builtin type (e.g., list[int]).
|
github-repos
|
def add_path_argument(cls, group, argname, dest=None, help_=None):
prefixed = '%s-%s' % (cls.argument_prefix, argname)
if dest is None:
dest = prefixed.replace('-', '_')
final_dest = dest[len(cls.argument_prefix) + 1:]
else:
final_dest = dest
dest = '%s_%s' % (cls.argument_prefix, dest)
group.add_argument('--%s' % prefixed, action='store',
dest=dest, help=help_)
cls.path_arguments[dest] = final_dest
|
Subclasses may call this to expose a path argument.
Args:
group: arparse.ArgumentGroup, the extension argument group
argname: str, the name of the argument, will be namespaced.
dest: str, similar to the `dest` argument of
`argparse.ArgumentParser.add_argument`, will be namespaced.
help_: str, similar to the `help` argument of
`argparse.ArgumentParser.add_argument`.
|
juraj-google-style
|
def saver(self):
return self._saver
|
Return the Saver used by the supervisor.
Returns:
A Saver object.
|
github-repos
|
def _get_depencency_var_name(self, dependency):
for (dep_path, var_name) in self.dependencies:
if (dep_path == dependency):
return var_name
|
Returns the variable name assigned to the given dependency or None if the dependency has
not yet been registered.
Args:
dependency (str): Thet dependency that needs to be imported.
Returns:
str or None
|
codesearchnet
|
def extremum_icohpvalue(self, summed_spin_channels=True, spin=Spin.up):
if not self._are_coops:
extremum = sys.float_info.max
else:
extremum = -sys.float_info.max
if not self._is_spin_polarized:
if spin == Spin.down:
warnings.warn("This spin channel does not exist. I am switching to Spin.up")
spin = Spin.up
for value in self._icohplist.values():
if not value.is_spin_polarized or not summed_spin_channels:
if not self._are_coops:
if value.icohpvalue(spin) < extremum:
extremum = value.icohpvalue(spin)
else:
if value.icohpvalue(spin) > extremum:
extremum = value.icohpvalue(spin)
else:
if not self._are_coops:
if value.summed_icohp < extremum:
extremum = value.summed_icohp
else:
if value.summed_icohp > extremum:
extremum = value.summed_icohp
return extremum
|
get ICOHP/ICOOP of strongest bond
Args:
summed_spin_channels: Boolean to indicate whether the ICOHPs/ICOOPs of both spin channels should be summed
spin: if summed_spin_channels is equal to False, this spin indicates which spin channel should be returned
Returns:
lowest ICOHP/largest ICOOP value (i.e. ICOHP/ICOOP value of strongest bond)
|
juraj-google-style
|
def get_plot(self, normalize_rxn_coordinate=True, label_barrier=True):
plt = pretty_plot(12, 8)
scale = 1 if not normalize_rxn_coordinate else 1 / self.r[-1]
x = np.arange(0, np.max(self.r), 0.01)
y = self.spline(x) * 1000
relative_energies = self.energies - self.energies[0]
plt.plot(self.r * scale, relative_energies * 1000, 'ro',
x * scale, y, 'k-', linewidth=2, markersize=10)
plt.xlabel("Reaction coordinate")
plt.ylabel("Energy (meV)")
plt.ylim((np.min(y) - 10, np.max(y) * 1.02 + 20))
if label_barrier:
data = zip(x * scale, y)
barrier = max(data, key=lambda d: d[1])
plt.plot([0, barrier[0]], [barrier[1], barrier[1]], 'k--')
plt.annotate('%.0f meV' % (np.max(y) - np.min(y)),
xy=(barrier[0] / 2, barrier[1] * 1.02),
xytext=(barrier[0] / 2, barrier[1] * 1.02),
horizontalalignment='center')
plt.tight_layout()
return plt
|
Returns the NEB plot. Uses Henkelman's approach of spline fitting
each section of the reaction path based on tangent force and energies.
Args:
normalize_rxn_coordinate (bool): Whether to normalize the
reaction coordinate to between 0 and 1. Defaults to True.
label_barrier (bool): Whether to label the maximum barrier.
Returns:
matplotlib.pyplot object.
|
juraj-google-style
|
def sg_init(sess):
r
sess.run(tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer()))
|
r""" Initializes session variables.
Args:
sess: Session to initialize.
|
juraj-google-style
|
def _CompositeMapByteStream(
self, byte_stream, byte_offset=0, context=None, **unused_kwargs):
context_state = getattr(context, 'state', {})
attribute_index = context_state.get('attribute_index', 0)
mapped_values = context_state.get('mapped_values', None)
subcontext = context_state.get('context', None)
if not mapped_values:
mapped_values = self._structure_values_class()
if not subcontext:
subcontext = DataTypeMapContext(values={
type(mapped_values).__name__: mapped_values})
members_data_size = 0
for attribute_index in range(attribute_index, self._number_of_attributes):
attribute_name = self._attribute_names[attribute_index]
data_type_map = self._data_type_maps[attribute_index]
member_definition = self._data_type_definition.members[attribute_index]
condition = getattr(member_definition, 'condition', None)
if condition:
namespace = dict(subcontext.values)
namespace['__builtins__'] = {}
try:
condition_result = eval(condition, namespace)
except Exception as exception:
raise errors.MappingError(
'Unable to evaluate condition with error: {0!s}'.format(
exception))
if not isinstance(condition_result, bool):
raise errors.MappingError(
'Condition does not result in a boolean value')
if not condition_result:
continue
if isinstance(member_definition, data_types.PaddingDefinition):
_, byte_size = divmod(
members_data_size, member_definition.alignment_size)
if byte_size > 0:
byte_size = member_definition.alignment_size - byte_size
data_type_map.byte_size = byte_size
try:
value = data_type_map.MapByteStream(
byte_stream, byte_offset=byte_offset, context=subcontext)
setattr(mapped_values, attribute_name, value)
except errors.ByteStreamTooSmallError as exception:
context_state['attribute_index'] = attribute_index
context_state['context'] = subcontext
context_state['mapped_values'] = mapped_values
raise errors.ByteStreamTooSmallError(exception)
except Exception as exception:
raise errors.MappingError(exception)
supported_values = getattr(member_definition, 'values', None)
if supported_values and value not in supported_values:
raise errors.MappingError(
'Value: {0!s} not in supported values: {1:s}'.format(
value, ', '.join([
'{0!s}'.format(value) for value in supported_values])))
byte_offset += subcontext.byte_size
members_data_size += subcontext.byte_size
if attribute_index != (self._number_of_attributes - 1):
context_state['attribute_index'] = attribute_index
context_state['context'] = subcontext
context_state['mapped_values'] = mapped_values
error_string = (
'Unable to read: {0:s} from byte stream at offset: {1:d} '
'with error: missing attribute: {2:d}').format(
self._data_type_definition.name, byte_offset, attribute_index)
raise errors.ByteStreamTooSmallError(error_string)
if context:
context.byte_size = members_data_size
context.state = {}
return mapped_values
|
Maps a sequence of composite data types on a byte stream.
Args:
byte_stream (bytes): byte stream.
byte_offset (Optional[int]): offset into the byte stream where to start.
context (Optional[DataTypeMapContext]): data type map context.
Returns:
object: mapped value.
Raises:
MappingError: if the data type definition cannot be mapped on
the byte stream.
|
juraj-google-style
|
def GetMessages(self, formatter_mediator, event):
if self.DATA_TYPE != event.data_type:
raise errors.WrongFormatter('Unsupported data type: {0:s}.'.format(
event.data_type))
event_values = event.CopyToDict()
restore_point_event_type = event_values.get(
'restore_point_event_type', None)
if restore_point_event_type is not None:
event_values['restore_point_event_type'] = (
self._RESTORE_POINT_EVENT_TYPES.get(
restore_point_event_type, 'UNKNOWN'))
restore_point_type = event_values.get('restore_point_type', None)
if restore_point_type is not None:
event_values['restore_point_type'] = (
self._RESTORE_POINT_EVENT_TYPES.get(restore_point_type, 'UNKNOWN'))
return self._ConditionalFormatMessages(event_values)
|
Determines the formatted message strings for an event object.
Args:
formatter_mediator (FormatterMediator): mediates the interactions
between formatters and other components, such as storage and Windows
EventLog resources.
event (EventObject): event.
Returns:
tuple(str, str): formatted message string and short message string.
Raises:
WrongFormatter: if the event object cannot be formatted by the formatter.
|
juraj-google-style
|
def _ReadEncodedData(self, read_size):
encoded_data = self._file_object.read(read_size)
read_count = len(encoded_data)
self._encoded_data = b''.join([self._encoded_data, encoded_data])
self._decoded_data, self._encoded_data = (
self._decoder.Decode(self._encoded_data))
self._decoded_data_size = len(self._decoded_data)
return read_count
|
Reads encoded data from the file-like object.
Args:
read_size (int): number of bytes of encoded data to read.
Returns:
int: number of bytes of encoded data read.
|
juraj-google-style
|
def spawn_reader_writer(get_data_fn, put_data_fn):
def _reader_thread():
while True:
out = get_data_fn()
put_data_fn(out)
if (not out):
break
t = threading.Thread(target=_reader_thread)
t.daemon = True
t.start()
return t
|
Spawn a thread that reads from a data source and writes to a sink.
The thread will terminate if it receives a Falsey value from the source.
Args:
get_data_fn: Data-reading function. Called repeatedly until it returns
False-y to indicate that the thread should terminate.
put_data_fn: Data-writing function.
Returns: threading.Thread
|
codesearchnet
|
def save_hdf5(X, y, path):
with h5py.File(path, 'w') as f:
is_sparse = 1 if sparse.issparse(X) else 0
f['issparse'] = is_sparse
f['target'] = y
if is_sparse:
if not sparse.isspmatrix_csr(X):
X = X.tocsr()
f['shape'] = np.array(X.shape)
f['data'] = X.data
f['indices'] = X.indices
f['indptr'] = X.indptr
else:
f['data'] = X
|
Save data as a HDF5 file.
Args:
X (numpy or scipy sparse matrix): Data matrix
y (numpy array): Target vector.
path (str): Path to the HDF5 file to save data.
|
juraj-google-style
|
def Downsampled(cls, stats, interval=None):
interval = interval or cls.DEFAULT_SAMPLING_INTERVAL
result = cls(stats)
result.cpu_samples = cls._Downsample(
kind=CpuSample, samples=stats.cpu_samples, interval=interval)
result.io_samples = cls._Downsample(
kind=IOSample, samples=stats.io_samples, interval=interval)
return result
|
Constructs a copy of given stats but downsampled to given interval.
Args:
stats: A `ClientStats` instance.
interval: A downsampling interval.
Returns:
A downsampled `ClientStats` instance.
|
juraj-google-style
|
def delete(self, id_or_uri, timeout=-1):
return self._client.delete(id_or_uri, timeout=timeout)
|
Deletes SNMPv1 trap forwarding destination based on {Id}.
Args:
id_or_uri: dict object to delete
timeout:
Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation
in OneView, just stop waiting for its completion.
Returns:
bool: Indicates if the resource was successfully deleted.
|
juraj-google-style
|
def print_logs(redis_client, threads_stopped):
pubsub_client = redis_client.pubsub(ignore_subscribe_messages=True)
pubsub_client.subscribe(ray.gcs_utils.LOG_FILE_CHANNEL)
localhost = services.get_node_ip_address()
try:
num_consecutive_messages_received = 0
while True:
if threads_stopped.is_set():
return
msg = pubsub_client.get_message()
if msg is None:
num_consecutive_messages_received = 0
threads_stopped.wait(timeout=0.01)
continue
num_consecutive_messages_received += 1
data = json.loads(ray.utils.decode(msg["data"]))
if data["ip"] == localhost:
for line in data["lines"]:
print("{}{}(pid={}){} {}".format(
colorama.Style.DIM, colorama.Fore.CYAN, data["pid"],
colorama.Style.RESET_ALL, line))
else:
for line in data["lines"]:
print("{}{}(pid={}, ip={}){} {}".format(
colorama.Style.DIM, colorama.Fore.CYAN, data["pid"],
data["ip"], colorama.Style.RESET_ALL, line))
if (num_consecutive_messages_received % 100 == 0
and num_consecutive_messages_received > 0):
logger.warning(
"The driver may not be able to keep up with the "
"stdout/stderr of the workers. To avoid forwarding logs "
"to the driver, use 'ray.init(log_to_driver=False)'.")
finally:
pubsub_client.close()
|
Prints log messages from workers on all of the nodes.
Args:
redis_client: A client to the primary Redis shard.
threads_stopped (threading.Event): A threading event used to signal to
the thread that it should exit.
|
juraj-google-style
|
def _object_table(self, object_id):
if not isinstance(object_id, ray.ObjectID):
object_id = ray.ObjectID(hex_to_binary(object_id))
message = self._execute_command(object_id, "RAY.TABLE_LOOKUP",
ray.gcs_utils.TablePrefix.OBJECT, "",
object_id.binary())
if message is None:
return {}
gcs_entry = ray.gcs_utils.GcsTableEntry.GetRootAsGcsTableEntry(
message, 0)
assert gcs_entry.EntriesLength() > 0
entry = ray.gcs_utils.ObjectTableData.GetRootAsObjectTableData(
gcs_entry.Entries(0), 0)
object_info = {
"DataSize": entry.ObjectSize(),
"Manager": entry.Manager(),
}
return object_info
|
Fetch and parse the object table information for a single object ID.
Args:
object_id: An object ID to get information about.
Returns:
A dictionary with information about the object ID in question.
|
juraj-google-style
|
def run_validation(options):
if (options.files == sys.stdin):
results = validate(options.files, options)
return [FileValidationResults(is_valid=results.is_valid, filepath='stdin', object_results=results)]
files = get_json_files(options.files, options.recursive)
results = [validate_file(fn, options) for fn in files]
return results
|
Validate files based on command line options.
Args:
options: An instance of ``ValidationOptions`` containing options for
this validation run.
|
codesearchnet
|
def extract(self, path_or_paths):
with self._extractor.tqdm():
return _map_promise(self._extract, path_or_paths)
|
Extract given path(s).
Args:
path_or_paths: path or `list`/`dict` of path of file to extract. Each
path can be a `str` or `tfds.download.Resource`.
If not explicitly specified in `Resource`, the extraction method is deduced
from downloaded file name.
Returns:
extracted_path(s): `str`, The extracted paths matching the given input
path_or_paths.
|
juraj-google-style
|
def toString(self):
output = ''
if (self.childs or self.isOpeningTag()):
output += self.tagToString()
for c in self.childs:
output += c.toString()
if (self.endtag is not None):
output += self.endtag.tagToString()
elif (not self.isEndTag()):
output += self.tagToString()
return output
|
Returns almost original string.
If you want prettified string, try :meth:`.prettify`.
Returns:
str: Complete representation of the element with childs, endtag \
and so on.
|
codesearchnet
|
def add_test_class(self, config, test_class, tests=None, name_suffix=None):
if self._log_dir != config.log_path:
raise Error('TestRunner\'s log folder is "%s", but a test config with a different log folder ("%s") was added.' % (self._log_dir, config.log_path))
if self._testbed_name != config.testbed_name:
raise Error('TestRunner\'s test bed is "%s", but a test config with a different test bed ("%s") was added.' % (self._testbed_name, config.testbed_name))
self._test_run_infos.append(TestRunner._TestRunInfo(config=config, test_class=test_class, tests=tests, test_class_name_suffix=name_suffix))
|
Adds tests to the execution plan of this TestRunner.
Args:
config: config_parser.TestRunConfig, configuration to execute this
test class with.
test_class: class, test class to execute.
tests: list of strings, optional list of test names within the
class to execute.
name_suffix: string, suffix to append to the class name for
reporting. This is used for differentiating the same class
executed with different parameters in a suite.
Raises:
Error: if the provided config has a log_path or testbed_name which
differs from the arguments provided to this TestRunner's
constructor.
|
github-repos
|
def WriteSessionCompletion(self, aborted=False):
self._RaiseIfNotWritable()
if self._storage_type != definitions.STORAGE_TYPE_SESSION:
raise IOError('Unsupported storage type.')
self._session.aborted = aborted
session_completion = self._session.CreateSessionCompletion()
self._storage_file.WriteSessionCompletion(session_completion)
|
Writes session completion information.
Args:
aborted (Optional[bool]): True if the session was aborted.
Raises:
IOError: if the storage type is not supported or
when the storage writer is closed.
OSError: if the storage type is not supported or
when the storage writer is closed.
|
juraj-google-style
|
def _remove_structure_prefix(self, prefix, line):
return line[len(prefix):].strip()
|
Helper function for removing the structure prefix for parsing.
Args:
prefix: string, a _InstrumentationStructurePrefixes to remove from
the raw output.
line: string, the raw line from the instrumentation output.
Returns:
A string containing a key value pair descripting some property
of the current instrumentation test method.
|
github-repos
|
class InputExample:
guid: str
words: list[str]
labels: Optional[list[str]]
|
A single training/test example for token classification.
Args:
guid: Unique id for the example.
words: list. The words of the sequence.
labels: (Optional) list. The labels for each word of the sequence. This should be
specified for train and dev examples, but not for test examples.
|
github-repos
|
def as_proto_cls(proto_cls):
def decorator(cls):
'Decorator applied to the class.'
class ProtoCls(object):
'Base class simulating the protobuf.'
def __init__(self, *args, **kwargs):
super(ProtoCls, self).__setattr__('_ProtoCls__proto', proto_cls(*args, **kwargs))
def __getattr__(self, attr_name):
return getattr(self.__proto, attr_name)
def __setattr__(self, attr_name, new_value):
try:
return setattr(self.__proto, attr_name, new_value)
except AttributeError:
return super(ProtoCls, self).__setattr__(attr_name, new_value)
def __eq__(self, other):
return (self.__proto, other.get_proto())
def get_proto(self):
return self.__proto
def __repr__(self):
return '<{cls_name}\n{proto_repr}\n>'.format(cls_name=cls.__name__, proto_repr=repr(self.__proto))
decorator_cls = type(cls.__name__, (cls, ProtoCls), {'__doc__': cls.__doc__})
return decorator_cls
return decorator
|
Simulate proto inheritance.
By default, protobuf do not support direct inheritance, so this decorator
simulates inheritance to the class to which it is applied.
Example:
```
@as_proto_class(proto.MyProto)
class A(object):
def custom_method(self):
return self.proto_field * 10
p = proto.MyProto(proto_field=123)
a = A()
a.CopyFrom(p) # a is like a proto object
assert a.proto_field == 123
a.custom_method() # But has additional methods
```
Args:
proto_cls: The protobuf class to inherit from
Returns:
decorated_cls: The decorated class
|
codesearchnet
|
def linear(m=1, b=0):
def f(i):
return ((m * i) + b)
return partial(force, sequence=_advance(f))
|
Return a driver function that can advance a sequence of linear values.
.. code-block:: none
value = m * i + b
Args:
m (float) : a slope for the linear driver
x (float) : an offset for the linear driver
|
codesearchnet
|
def _overwrite_model_variables_with_average_value(self, trainable_variables):
trainable_variables = [v.value if isinstance(v, backend.Variable) else v for v in trainable_variables]
for var, average_var in zip(trainable_variables, self._model_variables_moving_average):
self._distribution_strategy.extended.update(var, lambda a, b: a.assign(b), args=(average_var,))
|
Overwrite model variables with their moving average values.
This function overwrites variables on each device.
Args:
var_list: list of model variables.
|
github-repos
|
def validate_options(options):
if not options:
return
for k, v in options.iteritems():
if not isinstance(k, str):
raise TypeError('option %r should be a str.' % k)
if not any(k.lower().startswith(valid) for valid in _GCS_OPTIONS):
raise ValueError('option %s is not supported.' % k)
if not isinstance(v, basestring):
raise TypeError('value %r for option %s should be of type basestring.' %
(v, k))
|
Validate Google Cloud Storage options.
Args:
options: a str->basestring dict of options to pass to Google Cloud Storage.
Raises:
ValueError: if option is not supported.
TypeError: if option is not of type str or value of an option
is not of type basestring.
|
juraj-google-style
|
def set_storage(self, storage):
if isinstance(storage, BaseStorage):
self.storage = storage
elif isinstance(storage, dict):
if (('backend' not in storage) and ('root_dir' in storage)):
storage['backend'] = 'FileSystem'
try:
backend_cls = getattr(storage_package, storage['backend'])
except AttributeError:
try:
backend_cls = import_module(storage['backend'])
except ImportError:
self.logger.error('cannot find backend module %s', storage['backend'])
sys.exit()
kwargs = storage.copy()
del kwargs['backend']
self.storage = backend_cls(**kwargs)
else:
raise TypeError('"storage" must be a storage object or dict')
|
Set storage backend for downloader
For full list of storage backend supported, please see :mod:`storage`.
Args:
storage (dict or BaseStorage): storage backend configuration or instance
|
codesearchnet
|
def DeleteGRRTempFile(path):
precondition.AssertType(path, Text)
if (not os.path.isabs(path)):
raise ErrorBadPath('Path must be absolute')
prefix = config.CONFIG['Client.tempfile_prefix']
directories = [GetTempDirForRoot(root) for root in config.CONFIG['Client.tempdir_roots']]
if (not _CheckIfPathIsValidForDeletion(path, prefix=prefix, directories=directories)):
msg = "Can't delete temp file %s. Filename must start with %s or lie within any of %s."
raise ErrorNotTempFile((msg % (path, prefix, ';'.join(directories))))
if os.path.exists(path):
files.FILE_HANDLE_CACHE.Flush()
os.remove(path)
else:
raise ErrorNotAFile(('%s does not exist.' % path))
|
Delete a GRR temp file.
To limit possible damage the path must be absolute and either the
file must be within any of the Client.tempdir_roots or the file name
must begin with Client.tempfile_prefix.
Args:
path: path string to file to be deleted.
Raises:
OSError: Permission denied, or file not found.
ErrorBadPath: Path must be absolute.
ErrorNotTempFile: Filename must start with Client.tempfile_prefix.
ErrorNotAFile: File to delete does not exist.
|
codesearchnet
|
def apply_with_summary(input_layer, operation, *op_args, **op_kwargs):
return layers.apply_activation(input_layer.bookkeeper, input_layer.tensor, operation, activation_args=op_args, activation_kwargs=op_kwargs)
|
Applies the given operation to `input_layer` and create a summary.
Args:
input_layer: The input layer for this op.
operation: An operation that takes a tensor and the supplied args.
*op_args: Extra arguments for operation.
**op_kwargs: Keyword arguments for the operation.
Returns:
A new layer with operation applied.
|
codesearchnet
|
def open(self, **params):
logger.info('opening telnet')
self.port = params['port']
self.ip = params['ip']
self.tn = None
self._init()
|
Open telnet connection
Args:
params (dict), must contain two parameters "ip" - ip address or hostname and "port" - port number
Example:
params = {'port': 23, 'ip': 'localhost'}
|
codesearchnet
|
def resample(self, data, cache_dir=None, mask_area=None, **kwargs):
if ((mask_area is None) and isinstance(self.source_geo_def, SwathDefinition)):
mask_area = True
if mask_area:
if isinstance(self.source_geo_def, SwathDefinition):
geo_dims = self.source_geo_def.lons.dims
else:
geo_dims = ('y', 'x')
flat_dims = [dim for dim in data.dims if (dim not in geo_dims)]
if np.issubdtype(data.dtype, np.integer):
kwargs['mask'] = (data == data.attrs.get('_FillValue', np.iinfo(data.dtype.type).max))
else:
kwargs['mask'] = data.isnull()
kwargs['mask'] = kwargs['mask'].all(dim=flat_dims)
cache_id = self.precompute(cache_dir=cache_dir, **kwargs)
return self.compute(data, cache_id=cache_id, **kwargs)
|
Resample `data` by calling `precompute` and `compute` methods.
Only certain resampling classes may use `cache_dir` and the `mask`
provided when `mask_area` is True. The return value of calling the
`precompute` method is passed as the `cache_id` keyword argument
of the `compute` method, but may not be used directly for caching. It
is up to the individual resampler subclasses to determine how this
is used.
Args:
data (xarray.DataArray): Data to be resampled
cache_dir (str): directory to cache precomputed results
(default False, optional)
mask_area (bool): Mask geolocation data where data values are
invalid. This should be used when data values
may affect what neighbors are considered valid.
Returns (xarray.DataArray): Data resampled to the target area
|
codesearchnet
|
def GetNTFSFileEntryByPathSpec(self, path_spec):
location = getattr(path_spec, 'location', None)
mft_attribute = getattr(path_spec, 'mft_attribute', None)
mft_entry = getattr(path_spec, 'mft_entry', None)
if ((mft_attribute is not None) and (mft_entry is not None)):
fsntfs_file_entry = self._fsntfs_volume.get_file_entry(mft_entry)
elif (location is not None):
fsntfs_file_entry = self._fsntfs_volume.get_file_entry_by_path(location)
else:
raise errors.PathSpecError('Path specification missing location and MFT entry.')
return fsntfs_file_entry
|
Retrieves the NTFS file entry for a path specification.
Args:
path_spec (PathSpec): a path specification.
Returns:
pyfsntfs.file_entry: NTFS file entry.
Raises:
PathSpecError: if the path specification is missing location and
MFT entry.
|
codesearchnet
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.