code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
async def get_mailbox(self, name: str, selected: SelectedMailbox = None) \ -> Tuple[MailboxInterface, Optional[SelectedMailbox]]: ...
Retrieves a :class:`~pymap.interfaces.mailbox.MailboxInterface` object corresponding to an existing mailbox owned by the user. Raises an exception if the mailbox does not yet exist. Args: name: The name of the mailbox. selected: If applicable, the currently selected mailbox name. Raises: :class:`~pymap.exceptions.MailboxNotFound`
juraj-google-style
def _GetApprovals(self, approval_type, offset, count, filter_func=None, token=None): approvals_base_urn = aff4.ROOT_URN.Add("users").Add( token.username).Add("approvals").Add(approval_type) all_children = aff4.FACTORY.RecursiveMultiListChildren([approvals_base_urn]) approvals_urns = [] for subject, children in all_children: if children: continue approvals_urns.append(subject) approvals_urns.sort(key=lambda x: x.age, reverse=True) approvals = list( aff4.FACTORY.MultiOpen( approvals_urns, mode="r", aff4_type=aff4_security.Approval, age=aff4.ALL_TIMES, token=token)) approvals_by_urn = {} for approval in approvals: approvals_by_urn[approval.symlink_urn or approval.urn] = approval cur_offset = 0 sorted_approvals = [] for approval_urn in approvals_urns: try: approval = approvals_by_urn[approval_urn] except KeyError: continue if filter_func is not None and not filter_func(approval): continue cur_offset += 1 if cur_offset <= offset: continue if count and len(sorted_approvals) >= count: break sorted_approvals.append(approval) subjects_urns = [a.Get(a.Schema.SUBJECT) for a in approvals] subjects_by_urn = {} for subject in aff4.FACTORY.MultiOpen(subjects_urns, mode="r", token=token): subjects_by_urn[subject.urn] = subject return sorted_approvals, subjects_by_urn
Gets all approvals for a given user and approval type. Args: approval_type: The type of approvals to get. offset: The starting index within the collection. count: The number of items to return. filter_func: A predicate function, returning True if a specific approval should be included in the result and False otherwise. token: The token identifying the user. Returns: A list of approvals of the given approval type.
juraj-google-style
def get_avro_schema_from_table_schema(schema): dict_table_schema = get_dict_table_schema(schema) return bigquery_avro_tools.get_record_schema_from_dict_table_schema('root', dict_table_schema)
Transform the table schema into an Avro schema. Args: schema (str, dict, ~apache_beam.io.gcp.internal.clients.bigquery.bigquery_v2_messages.TableSchema): The TableSchema to convert to Avro schema. This can either be a dict or string or in the TableSchema format. Returns: Dict[str, Any]: An Avro schema, which can be used by fastavro.
github-repos
def zip_file(self, app_path, app_name, tmp_path): zip_file = os.path.join(app_path, self.args.outdir, app_name) zip_file_zip = '{}.zip'.format(zip_file) zip_file_tcx = '{}.tcx'.format(zip_file) shutil.make_archive(zip_file, 'zip', tmp_path, app_name) shutil.move(zip_file_zip, zip_file_tcx) self._app_packages.append(zip_file_tcx) self.package_data['package'].append({'action': 'App Package:', 'output': zip_file_tcx})
Zip the App with tcex extension. Args: app_path (str): The path of the current project. app_name (str): The name of the App. tmp_path (str): The temp output path for the zip.
codesearchnet
def extend(self, table, keys=None): if keys: for k in keys: if k not in self._Header(): raise IndexError("Unknown key: '%s'", k) extend_with = [] for column in table.header: if column not in self.header: extend_with.append(column) if not extend_with: return for column in extend_with: self.AddColumn(column) if not keys: for row1, row2 in zip(self, table): for column in extend_with: row1[column] = row2[column] return for row1 in self: for row2 in table: for k in keys: if row1[k] != row2[k]: break else: for column in extend_with: row1[column] = row2[column] break
Extends all rows in the texttable. The rows are extended with the new columns from the table. Args: table: A texttable, the table to extend this table by. keys: A set, the set of columns to use as the key. If None, the row index is used. Raises: IndexError: If key is not a valid column name.
juraj-google-style
def write_journal(self, journal_file_path): with open(journal_file_path, "w") as jrn_file: jrn_file.write(self._journal_contents)
Write the constructed journal in to the provided file. Args: journal_file_path (str): full path to output journal file
juraj-google-style
def import_aliases(alias_source): alias_table = get_alias_table() if is_url(alias_source): alias_source = retrieve_file_from_url(alias_source) alias_table.read(alias_source) os.remove(alias_source) else: alias_table.read(alias_source) _commit_change(alias_table)
Import aliases from a file or an URL. Args: alias_source: The source of the alias. It can be a filepath or an URL.
codesearchnet
def _prepare_feed_values(model, inputs, targets, sample_weights, mode): if model._distribution_strategy: if isinstance(inputs, (data_types.DatasetV1, data_types.DatasetV2)): inputs = distributed_training_utils_v1.get_iterator(inputs, model._distribution_strategy) def get_distributed_inputs(): return distributed_training_utils_v1._prepare_feed_values(model, inputs, targets, sample_weights, mode) if context.executing_eagerly(): return get_distributed_inputs else: return get_distributed_inputs() if isinstance(inputs, (data_types.DatasetV1, data_types.DatasetV2, iterator_ops.Iterator)): inputs, targets, sample_weights = model._standardize_user_data(inputs, extract_tensors_from_dataset=True) inputs = training_utils_v1.ModelInputs(inputs).as_list() targets = list(targets or []) sample_weights = list(sample_weights or []) ins = inputs + targets + sample_weights if mode == ModeKeys.TRAIN and (not isinstance(backend.symbolic_learning_phase(), int)): ins += [True] return ins
Prepare feed values to the model execution function. Args: model: Model to prepare feed values for. inputs: List or dict of model inputs. targets: Optional list of model targets. sample_weights: Optional list of sample weight arrays. mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. Returns: Feed values for the model in the given mode.
github-repos
def xray_driver_removed_handler(self, unused_channel, data): gcs_entries = ray.gcs_utils.GcsTableEntry.GetRootAsGcsTableEntry( data, 0) driver_data = gcs_entries.Entries(0) message = ray.gcs_utils.DriverTableData.GetRootAsDriverTableData( driver_data, 0) driver_id = message.DriverId() logger.info("Monitor: " "XRay Driver {} has been removed.".format( binary_to_hex(driver_id))) self._xray_clean_up_entries_for_driver(driver_id)
Handle a notification that a driver has been removed. Args: unused_channel: The message channel. data: The message data.
juraj-google-style
def accept_alert(self, text=None, wait=None): wait = (wait or capybara.default_max_wait_time) with self.driver.accept_modal('alert', text=text, wait=wait): (yield)
Execute the wrapped code, accepting an alert. Args: text (str | RegexObject, optional): Text to match against the text in the modal. wait (int | float, optional): Maximum time to wait for the modal to appear after executing the wrapped code. Raises: ModalNotFound: If a modal dialog hasn't been found.
codesearchnet
def check_for_missing_options(config): for section_name, section in config: for option_name, option in section: if option.required and option.value is None: raise exc.MissingRequiredOption( "Option {0} in namespace {1} is required.".format( option_name, section_name, ) ) return config
Iter over a config and raise if a required option is still not set. Args: config (confpy.core.config.Configuration): The configuration object to validate. Raises: MissingRequiredOption: If any required options are not set in the configuration object. Required options with default values are considered set and will not cause this function to raise.
juraj-google-style
def condensed(network, state): result = [] covered_nodes = set() for c in reversed(sorted(complexes(network, state))): if (not any(((n in covered_nodes) for n in c.subsystem.node_indices))): result.append(c) covered_nodes = (covered_nodes | set(c.subsystem.node_indices)) return result
Return a list of maximal non-overlapping complexes. Args: network (Network): The |Network| of interest. state (tuple[int]): The state of the network (a binary tuple). Returns: list[SystemIrreducibilityAnalysis]: A list of |SIA| for non-overlapping complexes with maximal |big_phi| values.
codesearchnet
def issubset(self, other): other = self._cast_to_frameset(other) if other is NotImplemented: return NotImplemented return self.items <= other.items
Check if the contents of `self` is a subset of the contents of `other.` Args: other (:class:`FrameSet`): Returns: bool: :class:`NotImplemented`: if `other` fails to convert to a :class:`FrameSet`
juraj-google-style
def turtle_to_texture(turtle_program, turn_amount=DEFAULT_TURN, initial_angle=DEFAULT_INITIAL_ANGLE, resolution=1): generator = branching_turtle_generator(turtle_program, turn_amount, initial_angle, resolution) return texture_from_generator(generator)
Makes a texture from a turtle program. Args: turtle_program (str): a string representing the turtle program; see the docstring of `branching_turtle_generator` for more details turn_amount (float): amount to turn in degrees initial_angle (float): initial orientation of the turtle resolution (int): if provided, interpolation amount for visible lines Returns: texture: A texture.
codesearchnet
def load(self, steps_dir=None, step_file=None, step_list=None): self._closed() self.steps_library.load(steps_dir=steps_dir, step_file=step_file, step_list=step_list)
Load CWL steps into the WorkflowGenerator's steps library. Adds steps (command line tools and workflows) to the ``WorkflowGenerator``'s steps library. These steps can be used to create workflows. Args: steps_dir (str): path to directory containing CWL files. All CWL in the directory are loaded. step_file (str): path to a file containing a CWL step that will be added to the steps library.
juraj-google-style
def search(*, include_disabled=True, account_ids=None, account_type_id=None, properties=None, return_query=False): qry = db.Account.order_by(desc(Account.enabled), Account.account_type_id, Account.account_name) if (not include_disabled): qry = qry.filter((Account.enabled == 1)) if account_ids: if (type(account_ids) not in (list, tuple)): account_ids = [account_ids] qry = qry.filter(Account.account_id.in_(account_ids)) if account_type_id: qry = qry.filter((Account.account_type_id == account_type_id)) if properties: for (prop_name, value) in properties.items(): alias = aliased(AccountProperty) qry = qry.join(alias, (Account.account_id == alias.account_id)) if (type(value) == list): where_clause = [] for item in value: where_clause.append((alias.value == item)) qry = qry.filter(and_((alias.name == prop_name), or_(*where_clause)).self_group()) else: qry = qry.filter(and_((alias.name == prop_name), (alias.value == value)).self_group()) if return_query: return qry total = qry.count() return (total, list(map(BaseAccount.get_typed_account, qry.all())))
Search for accounts based on the provided filters Args: include_disabled (`bool`): Include disabled accounts (default: True) account_ids: (`list` of `int`): List of account IDs account_type_id (`int`): Account Type ID to limit results to properties (`dict`): A `dict` containing property name and value pairs. Values can be either a str or a list of strings, in which case a boolean OR search is performed on the values return_query (`bool`): Returns the query object prior to adding the limit and offset functions. Allows for sub-classes to amend the search feature with extra conditions. The calling function must handle pagination on its own Returns: `list` of `Account`, `sqlalchemy.orm.Query`
codesearchnet
def raw_filter(self, filters): return SearchResult(self, self._api.get(self._href, **{"filter[]": filters}))
Sends all filters to the API. No fancy, just a wrapper. Any advanced functionality shall be implemented as another method. Args: filters: List of filters (strings) Returns: :py:class:`SearchResult`
juraj-google-style
def verify_response(response, status_code, content_type=None): status = int(response.status.split(' ', 1)[0]) if status != status_code: return False if content_type is None: return True for header, value in response.headers: if header.lower() == 'content-type': return value == content_type return False
Verifies that a response has the expected status and content type. Args: response: The ResponseTuple to be checked. status_code: An int, the HTTP status code to be compared with response status. content_type: A string with the acceptable Content-Type header value. None allows any content type. Returns: True if both status_code and content_type match, else False.
juraj-google-style
def roll50(msg): d = hex2bin(data(msg)) if (d[0] == '0'): return None sign = int(d[1]) value = bin2int(d[2:11]) if sign: value = (value - 512) angle = ((value * 45.0) / 256.0) return round(angle, 1)
Roll angle, BDS 5,0 message Args: msg (String): 28 bytes hexadecimal message (BDS50) string Returns: float: angle in degrees, negative->left wing down, positive->right wing down
codesearchnet
def _read_wrappers(self, name): io_attr = getattr(self._io, name) def read_wrapper(*args, **kwargs): "Wrap all read calls to the stream object.\n\n We do this to track the read pointer separate from the write\n pointer. Anything that wants to read from the stream object\n while we're in append mode goes through this.\n\n Args:\n *args: pass through args\n **kwargs: pass through kwargs\n Returns:\n Wrapped stream object method\n " self._io.seek(self._read_seek, self._read_whence) ret_value = io_attr(*args, **kwargs) self._read_seek = self._io.tell() self._read_whence = 0 self._io.seek(0, 2) return ret_value return read_wrapper
Wrap a stream attribute in a read wrapper. Returns a read_wrapper which tracks our own read pointer since the stream object has no concept of a different read and write pointer. Args: name: The name of the attribute to wrap. Should be a read call. Returns: The read_wrapper function.
codesearchnet
def get_if_not_set(self, addresses): with self._lock: results = [] for add in addresses: results.append(self._get_if_not_set(add)) return results
Returns the value at an address if it was an input to the txn but never set. It returns None if that address was never set in the merkle database, or if the address is not within the context. Args: addresses (list of str): The full 70 character addresses. Returns: (list): bytes at that address but not set within the context
codesearchnet
def __init__(self, arm_id_list): [self.__beta_dist_dict.setdefault(key, BetaDist()) for key in arm_id_list]
Initialization Args: arm_id_list: List of arms Master id.
juraj-google-style
def daemon_mode(self, args, options): cws = ControlWebSocket(self, args, options) cws.start() if 'cmdsock' in args and args['cmdsock']: lcs = LocalControlSocket(self, args, options) lcs.start() lcs.join() cws.join()
Open a ControlWebSocket to SushiBar server and listend for remote commands. Args: args (dict): chef command line arguments options (dict): additional compatibility mode options given on command line
juraj-google-style
def wwpn_alloc(self): wwpn_int = self._wwpn_pool.alloc() wwpn = ('AFFEAFFE0000' + '{:04X}'.format(wwpn_int)) return wwpn
Allocates a WWPN unique to this partition, in the range of 0xAFFEAFFE00008000 to 0xAFFEAFFE0000FFFF. Returns: string: The WWPN as 16 hexadecimal digits in upper case. Raises: ValueError: No more WWPNs available in that range.
codesearchnet
def parameterize( self, country: Optional[str] = "South Sudan", state: Optional[str] = None, year: Optional[int] = None, month: Optional[int] = None, unit: Optional[str] = None, fallback_aggaxes: List[str] = ["year", "month"], aggfunc: Callable = np.mean, ): valid_axes = ("country", "state", "year", "month") if any(map(lambda axis: axis not in valid_axes, fallback_aggaxes)): raise ValueError( "All elements of the fallback_aggaxes set must be one of the " f"following: {valid_axes}" ) for n in self.nodes(data=True): for indicator in n[1]["indicators"].values(): indicator.mean, indicator.unit = get_indicator_value( indicator, country, state, year, month, unit, fallback_aggaxes, aggfunc, ) indicator.stdev = 0.1 * abs(indicator.mean)
Parameterize the analysis graph. Args: country year month fallback_aggaxes: An iterable of strings denoting the axes upon which to perform fallback aggregation if the desired constraints cannot be met. aggfunc: The function that will be called to perform the aggregation if there are multiple matches.
juraj-google-style
def _aspect_preserving_resize(image, smallest_side): smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32) shape = tf.shape(image) height = shape[0] width = shape[1] new_height, new_width = _smallest_size_at_least(height, width, smallest_side) image = tf.expand_dims(image, 0) resized_image = tf.image.resize_images( image, size=[new_height, new_width], method=tf.image.ResizeMethod.BICUBIC) resized_image = tf.squeeze(resized_image) resized_image.set_shape([None, None, 3]) return resized_image
Resize images preserving the original aspect ratio. Args: image: A 3-D image `Tensor`. smallest_side: A python integer or scalar `Tensor` indicating the size of the smallest side after resize. Returns: resized_image: A 3-D tensor containing the resized image.
juraj-google-style
def wait_for_job(self, job, poll=5): desc = _wait_until_training_done(lambda last_desc: _train_done(self.sagemaker_client, job, last_desc), None, poll) self._check_job_status(job, desc, 'TrainingJobStatus') return desc
Wait for an Amazon SageMaker training job to complete. Args: job (str): Name of the training job to wait for. poll (int): Polling interval in seconds (default: 5). Returns: (dict): Return value from the ``DescribeTrainingJob`` API. Raises: ValueError: If the training job fails.
juraj-google-style
def addSingleTraitTerm(self,K=None,is_noise=False,normalize=True,Ks=None): assert self.P == 1, 'Incompatible number of traits' assert K!=None or is_noise, 'Specify covariance structure' if is_noise: assert self.noisPos==None, 'noise term already exists' K = SP.eye(self.Nt) self.noisPos = self.n_terms else: assert K.shape[0]==self.Nt, 'Incompatible shape' assert K.shape[1]==self.Nt, 'Incompatible shape' if Ks!=None: assert Ks.shape[0]==self.N, 'Incompatible shape' if normalize: Norm = 1/K.diagonal().mean() K *= Norm if Ks!=None: Ks *= Norm self.vd.addTerm(limix.CSingleTraitTerm(K)) if Ks!=None: self.setKstar(self.n_terms,Ks) self.n_terms+=1 self.gp = None self.init = False self.fast = False self.optimum = None self.cache['Sigma'] = None self.cache['Hessian'] = None self.cache['Lparams'] = None self.cache['paramsST']= None
add random effects term for single trait models (no trait-trait covariance matrix) Args: K: NxN sample covariance matrix is_noise: bool labeling the noise term (noise term has K=eye) normalize: if True, K and Ks are scales such that K.diagonal().mean()==1 Ks: NxN test cross covariance for predictions
juraj-google-style
def freeze(script_path, target_dir='frozen', **kw): cmds = [] freeze_start_time = time.time() logging.debug(('/\\%s%s Output%s/\\' % (('-' * 10), 'Pyinstaller', ('-' * 10)))) orig_dir = os.path.abspath('.') script_path = os.path.abspath(script_path) try: os.chdir(target_dir) cmds += _freeze_config() pyinst_path = ('%s/thirdparty/pyinstaller' % __path__[0]) cur_cmd = ('python -O %s/pyinstaller.py %s --skip-configure' % (pyinst_path, script_path)) cmds.append(cur_cmd) if _run(cur_cmd): _freeze_config(force=True) cur_cmd = ('python -O %s/pyinstaller.py %s' % (pyinst_path, script_path)) _run(cur_cmd) finally: os.chdir(orig_dir) logging.debug(('\\/%s%s Output%s\\/' % (('-' * 10), 'Pyinstaller', ('-' * 10)))) logging.info(('Pyinstaller took [%f] seconds' % (time.time() - freeze_start_time))) return cmds
Wraps pyinstaller and provides an easy to use interface Args: script_path: Absolute path to python script to be frozen. Returns: List of freeze commands ran Raises: subprocess.CalledProcessError: Freeze error. OSError: Freeze not found.
codesearchnet
def list(self, **kwargs): resp = self.client.api.secrets(**kwargs) return [self.prepare_model(obj) for obj in resp]
List secrets. Similar to the ``docker secret ls`` command. Args: filters (dict): Server-side list filtering options. Returns: (list of :py:class:`Secret`): The secrets. Raises: :py:class:`docker.errors.APIError` If the server returns an error.
juraj-google-style
def get_point(self, *position): array = _ffi.new(self._arrayType, position) if self._useOctaves: return ((self._noiseFunc(self._noise, array, self._octaves) + 1) * 0.5) return ((self._noiseFunc(self._noise, array) + 1) * 0.5)
Return the noise value of a specific position. Example usage: value = noise.getPoint(x, y, z) Args: position (Tuple[float, ...]): The point to sample at. Returns: float: The noise value at position. This will be a floating point in the 0.0-1.0 range.
codesearchnet
def select_files(self, what='o'): choices = collections.OrderedDict([('i', self.input_file), ('o', self.output_file), ('f', self.files_file), ('j', self.job_file), ('l', self.log_file), ('e', self.stderr_file), ('q', self.qout_file)]) if (what == 'all'): return [getattr(v, 'path') for v in choices.values()] selected = [] for c in what: try: selected.append(getattr(choices[c], 'path')) except KeyError: logger.warning(('Wrong keyword %s' % c)) return selected
Helper function used to select the files of a task. Args: what: string with the list of characters selecting the file type Possible choices: i ==> input_file, o ==> output_file, f ==> files_file, j ==> job_file, l ==> log_file, e ==> stderr_file, q ==> qout_file, all ==> all files.
codesearchnet
def probe_services(self, handle, conn_id, callback): self._command_task.async_command(['_probe_services', handle], callback, {'connection_id': conn_id, 'handle': handle})
Given a connected device, probe for its GATT services and characteristics Args: handle (int): a handle to the connection on the BLED112 dongle conn_id (int): a unique identifier for this connection on the DeviceManager that owns this adapter. callback (callable): Callback to be called when this procedure finishes
juraj-google-style
def make_grid(tensor, nrow=8, padding=2, pad_value=0): if (not (isinstance(tensor, np.ndarray) or (isinstance(tensor, list) and all((isinstance(t, np.ndarray) for t in tensor))))): raise TypeError('tensor or list of tensors expected, got {}'.format(type(tensor))) if isinstance(tensor, list): tensor = np.stack(tensor, 0) if (tensor.ndim == 2): tensor = tensor.reshape((1, tensor.shape[0], tensor.shape[1])) if (tensor.ndim == 3): if (tensor.shape[0] == 1): tensor = np.concatenate((tensor, tensor, tensor), 0) tensor = tensor.reshape((1, tensor.shape[0], tensor.shape[1], tensor.shape[2])) if ((tensor.ndim == 4) and (tensor.shape[1] == 1)): tensor = np.concatenate((tensor, tensor, tensor), 1) if (tensor.shape[0] == 1): return np.squeeze(tensor) nmaps = tensor.shape[0] xmaps = min(nrow, nmaps) ymaps = int(math.ceil((float(nmaps) / xmaps))) (height, width) = (int((tensor.shape[2] + padding)), int((tensor.shape[3] + padding))) grid = (np.ones((3, ((height * ymaps) + padding), ((width * xmaps) + padding))) * pad_value) k = 0 for y in range(ymaps): for x in range(xmaps): if (k >= nmaps): break grid[(:, ((y * height) + padding):((y + 1) * height), ((x * width) + padding):((x + 1) * width))] = tensor[k] k = (k + 1) return grid
Make a grid of images, via numpy. Args: tensor (Tensor or list): 4D mini-batch Tensor of shape (B x C x H x W) or a list of images all of the same size. nrow (int, optional): Number of images displayed in each row of the grid. The Final grid size is (B / nrow, nrow). Default is 8. padding (int, optional): amount of padding. Default is 2. pad_value (float, optional): Value for the padded pixels.
codesearchnet
def bipartition(seq): return [(tuple(seq[i] for i in part0_idx), tuple(seq[j] for j in part1_idx)) for part0_idx, part1_idx in bipartition_indices(len(seq))]
Return a list of bipartitions for a sequence. Args: a (Iterable): The sequence to partition. Returns: list[tuple[tuple]]: A list of tuples containing each of the two partitions. Example: >>> bipartition((1,2,3)) [((), (1, 2, 3)), ((1,), (2, 3)), ((2,), (1, 3)), ((1, 2), (3,))]
juraj-google-style
def optimize(self, sensor_graph, model): passes = self._order_pases(self._known_passes.keys()) for opt_name in passes: rerun = True pass_instance = self._known_passes[opt_name][0]() while rerun: rerun = pass_instance.run(sensor_graph, model=model)
Optimize a sensor graph by running optimization passes. The passes are run one at a time and modify the sensor graph for future passes. Args: sensor_graph (SensorGraph): The graph to be optimized model (DeviceModel): The device that we are optimizing for, that OptimizationPass objects are free to use to guide their optimizations.
juraj-google-style
def definition_name(cls): outer_definition_name = cls.outer_definition_name() if (outer_definition_name is None): return six.text_type(cls.__name__) return (u'%s.%s' % (outer_definition_name, cls.__name__))
Helper method for creating definition name. Names will be generated to include the classes package name, scope (if the class is nested in another definition) and class name. By default, the package name for a definition is derived from its module name. However, this value can be overriden by placing a 'package' attribute in the module that contains the definition class. For example: package = 'some.alternate.package' class MyMessage(Message): ... >>> MyMessage.definition_name() some.alternate.package.MyMessage Returns: Dot-separated fully qualified name of definition.
codesearchnet
def _initialize_mtf_dimension_name_to_size_gcd(self, mtf_graph): mtf_dimension_name_to_size_gcd = {} for mtf_operation in mtf_graph.operations: for mtf_tensor in mtf_operation.outputs: for mtf_dimension in mtf_tensor.shape.dims: mtf_dimension_name_to_size_gcd[mtf_dimension.name] = fractions.gcd(mtf_dimension_name_to_size_gcd.get(mtf_dimension.name, mtf_dimension.size), mtf_dimension.size) return mtf_dimension_name_to_size_gcd
Initializer for self._mtf_dimension_name_to_size_gcd. Args: mtf_graph: an mtf.Graph. Returns: A {string: int}, mapping the name of an MTF dimension to the greatest common divisor of all the sizes it has. All these sizes being evenly divisible by some x is equivalent to the GCD being divisible by x.
codesearchnet
def _cast_indexed_slice_indices(a, b): if isinstance(a, indexed_slices.IndexedSlices) and isinstance(b, indexed_slices.IndexedSlices) and (a.indices.dtype != b.indices.dtype): a._indices = math_ops.cast(a.indices, dtypes.int64) b._indices = math_ops.cast(b.indices, dtypes.int64)
Cast IndexedSlice.indices from int32 to int64 where necessary. If `a` and `b` are both IndexedSlices, and their indices have different dtypes, then cast both their dtypes to `int64` (modifies `a` and `b` in-place). Otherwise, does nothing. Args: a: A value, which may be an IndexedSlices. b: A value, which may be an IndexedSlices.
github-repos
def translate_pname(self, pname: PrefName, mid: ModuleId) -> QualName: loc, nid = self.resolve_pname(pname, mid) return (loc, self.namespace(nid))
Translate a prefixed name to a qualified name. Args: pname: Name with an optional prefix. mid: Identifier of the module in which `pname` appears. Raises: ModuleNotRegistered: If `mid` is not registered in the data model. UnknownPrefix: If the prefix specified in `pname` is not declared.
juraj-google-style
def get(self, field_paths=None, transaction=None): if isinstance(field_paths, six.string_types): raise ValueError("'field_paths' must be a sequence of paths, not a string.") if (field_paths is not None): mask = common_pb2.DocumentMask(field_paths=sorted(field_paths)) else: mask = None firestore_api = self._client._firestore_api try: document_pb = firestore_api.get_document(self._document_path, mask=mask, transaction=_helpers.get_transaction_id(transaction), metadata=self._client._rpc_metadata) except exceptions.NotFound: data = None exists = False create_time = None update_time = None else: data = _helpers.decode_dict(document_pb.fields, self._client) exists = True create_time = document_pb.create_time update_time = document_pb.update_time return DocumentSnapshot(reference=self, data=data, exists=exists, read_time=None, create_time=create_time, update_time=update_time)
Retrieve a snapshot of the current document. See :meth:`~.firestore_v1beta1.client.Client.field_path` for more information on **field paths**. If a ``transaction`` is used and it already has write operations added, this method cannot be used (i.e. read-after-write is not allowed). Args: field_paths (Optional[Iterable[str, ...]]): An iterable of field paths (``.``-delimited list of field names) to use as a projection of document fields in the returned results. If no value is provided, all fields will be returned. transaction (Optional[~.firestore_v1beta1.transaction.\ Transaction]): An existing transaction that this reference will be retrieved in. Returns: ~.firestore_v1beta1.document.DocumentSnapshot: A snapshot of the current document. If the document does not exist at the time of `snapshot`, the snapshot `reference`, `data`, `update_time`, and `create_time` attributes will all be `None` and `exists` will be `False`.
codesearchnet
def _is_callable(self, node, obj): val = obj.data if isinstance(val, abstract.AMBIGUOUS_OR_EMPTY): return (node, None) if isinstance(val, abstract.Class): return (node, True) node, ret = self.ctx.attribute_handler.get_attribute(node, val, '__call__', valself=obj) return (node, ret is not None)
Check if the object is callable. Args: node: The given node. obj: A BaseValue, the arg of a callable() call. Returns: (node, result) where result = True if the object is callable, False if it is not, and None if it is ambiguous.
github-repos
def sg_accuracy(tensor, opt): r assert opt.target is not None, 'target is mandatory.' opt += tf.sg_opt(k=1) out = tf.identity(tf.equal(tensor.sg_argmax(), tf.cast(opt.target, tf.int64)).sg_float(), name='acc') return out
r"""Returns accuracy of predictions. Args: tensor: A `Tensor`. Probability distributions or unscaled prediction scores. opt: target: A 'Tensor`. Labels. Returns: A `Tensor` of the same shape as `tensor`. Each value will be 1 if correct else 0. For example, ``` tensor = [[20.1, 18, -4.2], [0.04, 21.1, 31.3]] target = [[0, 1]] tensor.sg_accuracy(target=target) => [[ 1. 0.]] ```
juraj-google-style
def run_with_time_limit(self, cmd, time_limit=SUBMISSION_TIME_LIMIT): if time_limit < 0: return self.run_without_time_limit(cmd) container_name = str(uuid.uuid4()) cmd = [DOCKER_BINARY, 'run', DOCKER_NVIDIA_RUNTIME, '--detach', '--name', container_name] + cmd logging.info('Docker command: %s', ' '.join(cmd)) logging.info('Time limit %d seconds', time_limit) retval = subprocess.call(cmd) start_time = time.time() elapsed_time_sec = 0 while is_docker_still_running(container_name): elapsed_time_sec = int(time.time() - start_time) if elapsed_time_sec < time_limit: time.sleep(1) else: kill_docker_container(container_name) logging.warning('Submission was killed because run out of time') logging.info('Elapsed time of submission: %d', elapsed_time_sec) logging.info('Docker retval: %d', retval) if retval != 0: logging.warning('Docker returned non-zero retval: %d', retval) raise WorkerError('Docker returned non-zero retval ' + str(retval)) return elapsed_time_sec
Runs docker command and enforces time limit. Args: cmd: list with the command line arguments which are passed to docker binary after run time_limit: time limit, in seconds. Negative value means no limit. Returns: how long it took to run submission in seconds Raises: WorkerError: if error occurred during execution of the submission
juraj-google-style
def __init__(self, video, quality=None, download_dir=None, templates=None) -> None: self.video = video self.quality = quality or DEFAULT_OPTIONS['quality'] self.download_dir = download_dir or DEFAULT_OPTIONS['download_dir'] self.templates = templates or DEFAULT_OPTIONS['templates'] if self.quality not in ('worst', 'best'): raise WrongQualityError
Create a VideoDownloader for a given video. Args: video (Video): Video object. quality (str): Quality of the video (best/worst). Audio quality defaults to best. download_dir (str): Destination directory for the downloaded video. templates (dict): Dictionary of templates needed to generate a download path.
juraj-google-style
def build_subresource_uri(self, resource_id_or_uri=None, subresource_id_or_uri=None, subresource_path=''): if (subresource_id_or_uri and ('/' in subresource_id_or_uri)): return subresource_id_or_uri else: if (not resource_id_or_uri): raise exceptions.HPOneViewValueError(RESOURCE_ID_OR_URI_REQUIRED) resource_uri = self.build_uri(resource_id_or_uri) uri = '{}/{}/{}'.format(resource_uri, subresource_path, str((subresource_id_or_uri or ''))) uri = uri.replace(' if uri.endswith('/'): uri = uri[:(- 1)] return uri
Helps to build a URI with resource path and its sub resource path. Args: resoure_id_or_uri: ID/URI of the main resource. subresource_id__or_uri: ID/URI of the sub resource. subresource_path: Sub resource path to be added with the URI. Returns: Returns URI
codesearchnet
def config_tab(backend): status = backend.status().to_dict() config = backend.configuration().to_dict() config_dict = {**status, **config} upper_list = ['n_qubits', 'operational', 'status_msg', 'pending_jobs', 'basis_gates', 'local', 'simulator'] lower_list = list(set(config_dict.keys()).difference(upper_list)) lower_list.remove('gates') upper_str = "<table>" upper_str += footer = "</table>" upper_str += "<tr><th>Property</th><th>Value</th></tr>" for key in upper_list: upper_str += "<tr><td><font style='font-weight:bold'>%s</font></td><td>%s</td></tr>" % ( key, config_dict[key]) upper_str += footer upper_table = widgets.HTML( value=upper_str, layout=widgets.Layout(width='100%', grid_area='left')) image_widget = widgets.Output( layout=widgets.Layout(display='flex-inline', grid_area='right', padding='10px 10px 10px 10px', width='auto', max_height='300px', align_items='center')) if not config['simulator']: with image_widget: gate_map = plot_gate_map(backend) display(gate_map) plt.close(gate_map) lower_str = "<table>" lower_str += lower_str += "<tr><th></th><th></th></tr>" for key in lower_list: if key != 'name': lower_str += "<tr><td>%s</td><td>%s</td></tr>" % ( key, config_dict[key]) lower_str += footer lower_table = widgets.HTML(value=lower_str, layout=widgets.Layout( width='auto', grid_area='bottom')) grid = widgets.GridBox(children=[upper_table, image_widget, lower_table], layout=widgets.Layout( grid_template_rows='auto auto', grid_template_columns='25% 25% 25% 25%', grid_template_areas=, grid_gap='0px 0px')) return grid
The backend configuration widget. Args: backend (IBMQbackend): The backend. Returns: grid: A GridBox widget.
juraj-google-style
def report_progress(stream=None): if stream is None: stream = sys.stderr for reporter in _reporters: reporter(stream)
Report progress from any currently installed reporters. Args: stream: The text stream (default: sys.stderr) to which progress will be reported.
juraj-google-style
def get_raw_data_feature_spec(self, input_types: dict[str, type]) -> dict[str, tf.io.VarLenFeature]: raw_data_feature_spec = {} for key, value in input_types.items(): raw_data_feature_spec[key] = self._get_raw_data_feature_spec_per_column(typ=value, col_name=key) return raw_data_feature_spec
Return a DatasetMetadata object to be used with tft_beam.AnalyzeAndTransformDataset. Args: input_types: A dictionary of column names and types. Returns: A DatasetMetadata object.
github-repos
def get_tensor(self): return load_tensor_from_event_file(self.file_path)
Get tensor from the dump (`Event`) file. Returns: The tensor loaded from the dump (`Event`) file.
github-repos
def WriteValuesToJSONFile(self, state, values): value_counters = {} max_post_size = config.CONFIG["BigQuery.max_file_post_size"] for value in values: class_name = value.__class__.__name__ output_tracker, created = self._GetTempOutputFileHandles(class_name) value_counters[class_name] = value_counters.get(class_name, -1) + 1 if not value_counters[class_name] % max_post_size output_tracker.gzip_filehandle.flush() if os.path.getsize(output_tracker.gzip_filehandle.name) > max_post_size: self.Flush(state) value_counters[class_name] = 0 output_tracker, created = self._GetTempOutputFileHandles(class_name) if not output_tracker.schema: output_tracker.schema = self.RDFValueToBigQuerySchema(value) if created: self._WriteJSONValue(output_tracker.gzip_filehandle, value) else: self._WriteJSONValue( output_tracker.gzip_filehandle, value, delimiter="\n") for output_tracker in itervalues(self.temp_output_trackers): output_tracker.gzip_filehandle.flush()
Write newline separated JSON dicts for each value. We write each dict separately so we don't have to hold all of the output streams in memory. We open and close the JSON array manually with []. Args: state: rdf_protodict.AttributedDict with the plugin's state. values: RDF values to export.
juraj-google-style
def add_rel(self, source_id, target_id, rel): self.neo_db.add_rel(source_id, target_id, rel)
Add a relationship: source, target must already exist (see add_node) 'rel' is the name of the relationship 'contains' or whatever. Args: source_id: the unique node_id of the source target_id: the unique node_id of the target rel: name of the relationship Returns: Nothing
juraj-google-style
def convert_to_scl(spec, scl_options): scl_options['skip_functions'] = scl_options['skip_functions'].split(',') scl_options['meta_spec'] = None convertor = SclConvertor(options=scl_options) return str(convertor.convert(spec))
Convert spec into SCL-style spec file using `spec2scl`. Args: spec: (str) a spec file scl_options: (dict) SCL options provided Returns: A converted spec file
codesearchnet
def signed_to_twos_comp(val: int, n_bits: int) -> int: assert ((n_bits % 8) == 0), 'Must specify a whole number of bytes' n_bytes = (n_bits b = val.to_bytes(n_bytes, byteorder=sys.byteorder, signed=True) return int.from_bytes(b, byteorder=sys.byteorder, signed=False)
Convert a signed integer to its "two's complement" representation. Args: val: signed integer n_bits: number of bits (which must reflect a whole number of bytes) Returns: unsigned integer: two's complement version
codesearchnet
def _validate_alias_file_path(alias_file_path): if not os.path.exists(alias_file_path): raise CLIError(ALIAS_FILE_NOT_FOUND_ERROR) if os.path.isdir(alias_file_path): raise CLIError(ALIAS_FILE_DIR_ERROR.format(alias_file_path))
Make sure the alias file path is neither non-existant nor a directory Args: The alias file path to import aliases from.
juraj-google-style
def _InitializeURL(self, upload_url, current_content_length): if (current_content_length != 0): return upload_url headers = {'Content-Type': 'application/xml', 'Content-Length': 0, 'x-goog-resumable': 'start'} req = urllib2.Request(upload_url, data={}, headers=headers) resp = self._url_opener.open(req) return resp.headers['location']
Ensures that the URL used to upload operations is properly initialized. Args: upload_url: a string url. current_content_length: an integer identifying the current content length of data uploaded to the Batch Job. Returns: An initialized string URL, or the provided string URL if the URL has already been initialized.
codesearchnet
def add_dataset(self, task_name, dataset=None, *, aliases=None): self._datasets.append(dataset if dataset is not None else TaskData()) last_index = len(self._datasets) - 1 self._aliases[task_name] = last_index if aliases is not None: for alias in aliases: self._aliases[alias] = last_index if len(self._datasets) == 1: self._default_index = 0
Add a new dataset to the MultiTaskData. Args: task_name (str): The name of the task from which the dataset was received. dataset (TaskData): The dataset that should be added. aliases (list): A list of aliases that should be registered with the dataset.
juraj-google-style
def restore_component(self, component_name, save_path): component = self.get_component(component_name=component_name) self._validate_savable(component=component, component_name=component_name) component.restore(sess=self.session, save_path=save_path)
Restores a component's parameters from a save location. Args: component_name: The component to restore. save_path: The save location.
codesearchnet
def from_string(cls, s): log.debug("Parsing email from string") message = email.message_from_string(s) return cls(message)
Init a new object from a string. Args: s (string): raw email Returns: Instance of MailParser
juraj-google-style
def _copy_assets(src_path: str, dst_path: str) -> None: for assets_dir_name in [_ASSETS_DIR, _ASSETS_EXTRA_DIR]: src_assets_path = file_io.join(src_path, assets_dir_name) if not file_io.file_exists_v2(src_assets_path): continue dst_assets_path = file_io.join(dst_path, assets_dir_name) file_io.create_dir_v2(dst_assets_path) for curr_dir, _, files in file_io.walk_v2(src_assets_path): for asset_file_name in files: src_asset_file = file_io.join(curr_dir, asset_file_name) curr_dst_dir = curr_dir.replace(src_assets_path, dst_assets_path) dst_asset_file = file_io.join(curr_dst_dir, asset_file_name) file_io.copy_v2(src_asset_file, dst_asset_file) logging.info('Copied asset file: %s -> %s', src_asset_file, dst_asset_file)
Copies the assets directory of the saved model. Clones the contents of the assets/ directory from the source saved model directory to the destination saved model directory. Nothing will be copied if there are no assets directory in the source directory. Args: src_path: Source saved model directory. dst_path: Destination saved model directory. This directory must exist.
github-repos
def _LinearMapByteStream( self, byte_stream, byte_offset=0, context=None, **unused_kwargs): members_data_size = self._data_type_definition.GetByteSize() self._CheckByteStreamSize(byte_stream, byte_offset, members_data_size) try: struct_tuple = self._operation.ReadFrom(byte_stream[byte_offset:]) struct_values = [] for attribute_index, value in enumerate(struct_tuple): data_type_map = self._data_type_maps[attribute_index] member_definition = self._data_type_definition.members[attribute_index] value = data_type_map.MapValue(value) supported_values = getattr(member_definition, 'values', None) if supported_values and value not in supported_values: raise errors.MappingError( 'Value: {0!s} not in supported values: {1:s}'.format( value, ', '.join([ '{0!s}'.format(value) for value in supported_values]))) struct_values.append(value) mapped_value = self._structure_values_class(*struct_values) except Exception as exception: error_string = ( 'Unable to read: {0:s} from byte stream at offset: {1:d} ' 'with error: {2!s}').format( self._data_type_definition.name, byte_offset, exception) raise errors.MappingError(error_string) if context: context.byte_size = members_data_size return mapped_value
Maps a data type sequence on a byte stream. Args: byte_stream (bytes): byte stream. byte_offset (Optional[int]): offset into the byte stream where to start. context (Optional[DataTypeMapContext]): data type map context. Returns: object: mapped value. Raises: MappingError: if the data type definition cannot be mapped on the byte stream.
juraj-google-style
def plot_histogram(self, freq=None, figsize=(15, 5), title=None, bins=20, **kwargs): if (title is None): title = self._get_default_plot_title(self.name, freq, 'Return Histogram') ser = self._get_series(freq).to_returns().dropna() plt.figure(figsize=figsize) ax = ser.hist(bins=bins, figsize=figsize, normed=True, **kwargs) ax.set_title(title) plt.axvline(0, linewidth=4) return ser.plot(kind='kde')
Plots a histogram of returns given a return frequency. Args: * freq (str): Data frequency used for display purposes. This will dictate the type of returns (daily returns, monthly, ...) Refer to pandas docs for valid period strings. * figsize ((x,y)): figure size * title (str): Title if default not appropriate * bins (int): number of bins for the histogram * kwargs: passed to pandas' hist method
codesearchnet
def _remove_jmp_to_get_anext_and_merge(blocks: list[Block], processed_blocks: set[Block]) -> list[Block]: op_to_block = {} merge_list = [] for block_idx, block in enumerate(blocks): for code in block.code: op_to_block[code] = block_idx for block_idx, block in enumerate(blocks): for code in block.code: if code.end_async_for_target: merge_list.append((block_idx, op_to_block[code.end_async_for_target])) map_target = {} for block_idx, block_idx_to_merge in merge_list: jump_back_op = blocks[block_idx].code.pop() blocks[block_idx].code.extend(blocks[block_idx_to_merge].code) map_target[jump_back_op] = blocks[block_idx_to_merge].code[0] if block_idx_to_merge < len(blocks) - 1: blocks[block_idx].connect_outgoing(blocks[block_idx_to_merge + 1]) processed_blocks.add(blocks[block_idx]) to_delete = sorted({to_idx for _, to_idx in merge_list}, reverse=True) for block_idx in to_delete: del blocks[block_idx] for block in blocks: replace_op = map_target.get(block.code[-1].target, None) if replace_op: block.code[-1].target = replace_op return blocks
Remove JUMP_BACKWARD instructions to GET_ANEXT instructions. And also merge the block that contains the END_ASYNC_FOR which is part of the same loop of the GET_ANEXT and JUMP_BACKWARD construct, to the JUMP_BACKWARD instruction. This is to ignore the JUMP_BACKWARD because in pytype's eyes it's useless (as it'll jump back to block that it already executed), and also this is the way to make pytype run the code of END_ASYNC_FOR and whatever comes afterwards. Args: blocks: A list of Block instances. Returns: A list of Block instances after the removal and merge.
github-repos
def HumanReadableType(self): if isinstance(self.service_type, py2to3.STRING_TYPES): return self.service_type return human_readable_service_enums.SERVICE_ENUMS['Type'].get(self.service_type, '{0:d}'.format(self.service_type))
Return a human readable string describing the type value. Returns: str: human readable description of the type value.
codesearchnet
def __contains__(self, item): if item not in self._contains_cache: self._contains_cache[item] = self._contains(item) return self._contains_cache[item]
Get result of _contains, cache it and return it. Args: item (Package/Module): a package or module. Returns: bool: True if self contains item, False otherwise.
juraj-google-style
def build_attachment(self, text, target, attachment, thread): attachment = {'as_user': True, 'text': text, 'channel': target, 'attachments': [{'fallback': text, 'image_url': attachment}]} if thread: attachment['thread_ts'] = thread return attachment
Builds a slack attachment. Args: message (Legobot.Message): message w/ metadata to send. Returns: attachment (dict): attachment data.
codesearchnet
def AddContract(self, contract): if not contract.PublicKeyHash.ToBytes() in self._keys.keys(): raise Exception('Invalid operation - public key mismatch') self._contracts[contract.ScriptHash.ToBytes()] = contract if contract.ScriptHash in self._watch_only: self._watch_only.remove(contract.ScriptHash)
Add a contract to the wallet. Args: contract (Contract): a contract of type neo.SmartContract.Contract. Raises: Exception: Invalid operation - public key mismatch.
juraj-google-style
def download_artifacts_from_gcs(bucket_name, prefix, local_path): client = Client() bucket = client.get_bucket(bucket_name) blobs = [blob.name for blob in bucket.list_blobs(prefix=prefix)] _ = transfer_manager.download_many_to_path(bucket, blobs, destination_directory=local_path)
Downloads artifacts from GCS to the local file system. Args: bucket_name: The name of the GCS bucket to download from. prefix: Prefix of GCS objects to download. local_path: The local path to download the folder to.
github-repos
class Flatten(PTransform): def __init__(self, **kwargs): super().__init__() self.pipeline = kwargs.pop('pipeline', None) if kwargs: raise ValueError('Unexpected keyword arguments: %s' % list(kwargs)) def _extract_input_pvalues(self, pvalueish): try: pvalueish = tuple(pvalueish) except TypeError: raise ValueError('Input to Flatten must be an iterable. Got a value of type %s instead.' % type(pvalueish)) return (pvalueish, pvalueish) def expand(self, pcolls): windowing = self.get_windowing(pcolls) for pcoll in pcolls: self._check_pcollection(pcoll) if pcoll.windowing != windowing: _LOGGER.warning('All input pcollections must have the same window. Windowing for flatten set to %s, windowing of pcoll %s set to %s', windowing, pcoll, pcoll.windowing) is_bounded = all((pcoll.is_bounded for pcoll in pcolls)) return pvalue.PCollection(self.pipeline, is_bounded=is_bounded) def infer_output_type(self, input_type): return input_type def to_runner_api_parameter(self, context): return (common_urns.primitives.FLATTEN.urn, None) @staticmethod def from_runner_api_parameter(unused_ptransform, unused_parameter, unused_context): return Flatten()
Merges several PCollections into a single PCollection. Copies all elements in 0 or more PCollections into a single output PCollection. If there are no input PCollections, the resulting PCollection will be empty (but see also kwargs below). Args: **kwargs: Accepts a single named argument "pipeline", which specifies the pipeline that "owns" this PTransform. Ordinarily Flatten can obtain this information from one of the input PCollections, but if there are none (or if there's a chance there may be none), this argument is the only way to provide pipeline information and should be considered mandatory.
github-repos
def from_file(cls, vert, frag, **kwargs): vert_program = open(vert).read() frag_program = open(frag).read() return cls(vert=vert_program, frag=frag_program, **kwargs)
Reads the shader programs, given the vert and frag filenames Arguments: - vert (str): The filename of the vertex shader program (ex: 'vertshader.vert') - frag (str): The filename of the fragment shader program (ex: 'fragshader.frag') Returns: - shader (Shader): The Shader using these files.
codesearchnet
def export_warnings(self, export_file): warn_filepath = op.dirname(export_file) warn_filename = op.splitext(op.basename(export_file))[0] self._add_entry(templates.EXPORT_WARNINGS .format(warnings_export_path=warn_filepath, warnings_export_file=warn_filename))
Append an export warnings entry to the journal. This instructs Revit to export warnings from the opened model. Currently Revit will stop journal execution if the model does not have any warnings and the export warnings UI button is disabled. Args: export_file (str): full path of the ouput html file
juraj-google-style
def InventoryReceived(self, inventory): if (inventory.Hash.ToBytes() in self._MissedBlocks): self._MissedBlocks.remove(inventory.Hash.ToBytes()) if (inventory is MinerTransaction): return False if (type(inventory) is Block): if (BC.Default() is None): return False if BC.Default().ContainsBlock(inventory.Index): return False if (not BC.Default().AddBlock(inventory)): return False elif (not inventory.Verify(self.MemPool.values())): return False
Process a received inventory. Args: inventory (neo.Network.Inventory): expect a Block type. Returns: bool: True if processed and verified. False otherwise.
codesearchnet
def clean(deltox=False): basedir = dirname(__file__) print(cyan('delete temp files and dirs for packaging')) local(flo( 'rm -rf ' '{basedir}/.eggs/ ' '{basedir}/utlz.egg-info/ ' '{basedir}/dist ' '{basedir}/README ' '{basedir}/build/ ' )) print(cyan('\ndelete temp files and dirs for editing')) local(flo( 'rm -rf ' '{basedir}/.cache ' '{basedir}/.ropeproject ' )) print(cyan('\ndelete bytecode compiled versions of the python src')) local(flo('find {basedir}/utlz {basedir}/tests ') + '\( -name \*pyc -o -name \*.pyo -o -name __pycache__ ' '-o -name \*.so -o -name \*.o -o -name \*.c \) ' '-prune ' '-exec rm -rf {} +') if deltox: print(cyan('\ndelete tox virual environments')) local(flo('cd {basedir} && rm -rf .tox/'))
Delete temporary files not under version control. Args: deltox: If True, delete virtual environments used by tox
juraj-google-style
def transform(self, col): out = pd.DataFrame(index=col.index) out[self.col_name] = col.apply(self.get_val, axis=1) if self.subtype == 'int': out[self.col_name] = out[self.col_name].astype(int) return out
Prepare the transformer to convert data and return the processed table. Args: col(pandas.DataFrame): Data to transform. Returns: pandas.DataFrame
juraj-google-style
def serialize(loss): return serialization_lib.serialize_keras_object(loss)
Serializes loss function or `Loss` instance. Args: loss: A Keras `Loss` instance or a loss function. Returns: Loss configuration dictionary.
github-repos
def _send_unary_request(self, request): if request.ack_ids: self._client.acknowledge(subscription=self._subscription, ack_ids=list(request.ack_ids)) if request.modify_deadline_ack_ids: deadline_to_ack_ids = collections.defaultdict(list) for (n, ack_id) in enumerate(request.modify_deadline_ack_ids): deadline = request.modify_deadline_seconds[n] deadline_to_ack_ids[deadline].append(ack_id) for (deadline, ack_ids) in six.iteritems(deadline_to_ack_ids): self._client.modify_ack_deadline(subscription=self._subscription, ack_ids=ack_ids, ack_deadline_seconds=deadline) _LOGGER.debug('Sent request(s) over unary RPC.')
Send a request using a separate unary request instead of over the stream. Args: request (types.StreamingPullRequest): The stream request to be mapped into unary requests.
codesearchnet
def isplaybook(obj): return isinstance(obj, Iterable) and (not isinstance(obj, string_types) and not isinstance(obj, Mapping))
Inspects the object and returns if it is a playbook Args: obj (object): The object to be inspected by this function Returns: boolean: True if the object is a list and False if it is not
juraj-google-style
def _GenerateAssertion(self): now = int(time.time()) payload = {'aud': RpcHelper.TOKEN_ENDPOINT, 'scope': 'https: return crypt.make_signed_jwt(crypt.Signer.from_string(self.service_account_key), payload)
Generates the signed assertion that will be used in the request. Returns: string, signed Json Web Token (JWT) assertion.
codesearchnet
def transition_complete(self, pipeline_key): def txn(): pipeline_record = db.get(pipeline_key) if (pipeline_record is None): logging.warning('Tried to mark pipeline ID "%s" as complete but it does not exist.', pipeline_key.name()) raise db.Rollback() if (pipeline_record.status not in (_PipelineRecord.WAITING, _PipelineRecord.RUN)): logging.warning('Tried to mark pipeline ID "%s" as complete, found bad state: %s', pipeline_key.name(), pipeline_record.status) raise db.Rollback() pipeline_record.status = _PipelineRecord.DONE pipeline_record.finalized_time = self._gettime() pipeline_record.put() db.run_in_transaction(txn)
Marks the given pipeline as complete. Does nothing if the pipeline is no longer in a state that can be completed. Args: pipeline_key: db.Key of the _PipelineRecord that has completed.
codesearchnet
def from_image(cls, filename, start, stop, legend, source='Image', col_offset=0.1, row_offset=2, tolerance=0): rgb = utils.loglike_from_image(filename, col_offset) loglike = np.array([utils.rgb_to_hex(t) for t in rgb]) (tops, hexes) = utils.tops_from_loglike(loglike, offset=row_offset) nonconsecutive = np.append(np.diff(tops), 2) tops = tops[(nonconsecutive > 1)] hexes = hexes[(nonconsecutive > 1)] hexes_reduced = list(set(hexes)) components = [legend.get_component(h, tolerance=tolerance) for h in hexes_reduced] values = [hexes_reduced.index(i) for i in hexes] basis = np.linspace(start, stop, loglike.size) list_of_Intervals = cls.__intervals_from_tops(tops, values, basis, components) return cls(list_of_Intervals, source='Image')
Read an image and generate Striplog. Args: filename (str): An image file, preferably high-res PNG. start (float or int): The depth at the top of the image. stop (float or int): The depth at the bottom of the image. legend (Legend): A legend to look up the components in. source (str): A source for the data. Default: 'Image'. col_offset (Number): The proportion of the way across the image from which to extract the pixel column. Default: 0.1 (ie 10%). row_offset (int): The number of pixels to skip at the top of each change in colour. Default: 2. tolerance (float): The Euclidean distance between hex colours, which has a maximum (black to white) of 441.67 in base 10. Default: 0. Returns: Striplog: The ``striplog`` object.
codesearchnet
def file(self, path): with open(path, 'r') as f: self.body(str(f.read()))
Reads the body to match from a disk file. Arguments: path (str): relative or absolute path to file to read from. Returns: self: current Mock instance.
juraj-google-style
def get_random_value(length=10, character_sets=[string.ascii_uppercase, string.ascii_lowercase]): return "".join(random.choice("".join(character_sets)) for i in range(length))
Get a random string with the given length. Args: length (int): The length of the string to return. character_sets list(str): The caracter sets to use. Returns: str: The random string.
juraj-google-style
def update_environmental_configuration(self, configuration, timeout=(- 1)): uri = '{}/environmentalConfiguration'.format(self.data['uri']) return self._helper.do_put(uri, configuration, timeout, None)
Sets the calibrated max power of an unmanaged or unsupported enclosure. Args: configuration: Configuration timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation in OneView; it just stops waiting for its completion. Returns: Settings that describe the environmental configuration.
codesearchnet
def update_video_image(edx_video_id, course_id, image_data, file_name): try: course_video = CourseVideo.objects.select_related('video').get(course_id=course_id, video__edx_video_id=edx_video_id) except ObjectDoesNotExist: error_message = u'VAL: CourseVideo not found for edx_video_id: {0} and course_id: {1}'.format(edx_video_id, course_id) raise ValVideoNotFoundError(error_message) (video_image, _) = VideoImage.create_or_update(course_video, file_name, image_data) return video_image.image_url()
Update video image for an existing video. NOTE: If `image_data` is None then `file_name` value will be used as it is, otherwise a new file name is constructed based on uuid and extension from `file_name` value. `image_data` will be None in case of course re-run and export. Arguments: image_data (InMemoryUploadedFile): Image data to be saved for a course video. Returns: course video image url Raises: Raises ValVideoNotFoundError if the CourseVideo cannot be retrieved.
codesearchnet
def from_params(cls, params): key_fn = (lambda x: id(x[1].owner)) streams = [] for (_, group) in groupby(sorted(params.items(), key=key_fn), key_fn): group = list(group) inst = [p.owner for (_, p) in group][0] if (not isinstance(inst, param.Parameterized)): continue names = [p.name for (_, p) in group] rename = {p.name: n for (n, p) in group} streams.append(cls(inst, names, rename=rename)) return streams
Returns Params streams given a dictionary of parameters Args: params (dict): Dictionary of parameters Returns: List of Params streams
codesearchnet
def predict(self, a, b): a = np.array(a).reshape((-1, 1)) b = np.array(b).reshape((-1, 1)) return sp.kendalltau(a, b)[0]
Compute the test statistic Args: a (array-like): Variable 1 b (array-like): Variable 2 Returns: float: test statistic
juraj-google-style
def GetCloudPath(self, resource_id, cache, database): cloud_path = cache.GetResults('cloud_path') if not cloud_path: results = database.Query(self.CLOUD_PATH_CACHE_QUERY) cache.CacheQueryResults( results, 'cloud_path', 'resource_id', ('filename', 'parent')) cloud_path = cache.GetResults('cloud_path') if resource_id == 'folder:root': return '/' paths = [] parent_path, parent_id = cloud_path.get(resource_id, ['', '']) while parent_path: if parent_path == 'folder:root': break paths.append(parent_path) parent_path, parent_id = cloud_path.get(parent_id, ['', '']) if not paths: return '/' paths.reverse() return '/{0:s}/'.format('/'.join(paths))
Return cloud path given a resource id. Args: resource_id (str): resource identifier for the file. cache (SQLiteCache): cache. database (SQLiteDatabase): database. Returns: str: full path to the resource value.
juraj-google-style
def __init__(self, final_ops, final_ops_feed_dict=None): self._final_ops = final_ops self._final_ops_feed_dict = final_ops_feed_dict self._final_ops_values = None
Initializes `FinalOpHook` with ops to run at the end of the session. Args: final_ops: A single `Tensor`, a list of `Tensors` or a dictionary of names to `Tensors`. final_ops_feed_dict: A feed dictionary to use when running `final_ops_dict`.
github-repos
def diff(self, a_ref, target=None, b_ref=None): result = {} diff_dct = self.scm.get_diff_trees(a_ref, b_ref=b_ref) result[DIFF_A_REF] = diff_dct[DIFF_A_REF] result[DIFF_B_REF] = diff_dct[DIFF_B_REF] if diff_dct[DIFF_EQUAL]: result[DIFF_EQUAL] = True return result result[DIFF_LIST] = [] diff_outs = _get_diff_outs(self, diff_dct) if target is None: result[DIFF_LIST] = [ _diff_royal(self, path, diff_outs[path]) for path in diff_outs ] elif target in diff_outs: result[DIFF_LIST] = [_diff_royal(self, target, diff_outs[target])] else: msg = "Have not found file/directory '{}' in the commits" raise FileNotInCommitError(msg.format(target)) return result
Gerenates diff message string output Args: target(str) - file/directory to check diff of a_ref(str) - first tag (optional) b_ref(str) - second git tag Returns: string: string of output message with diff info
juraj-google-style
def cast_to_type(obj, out_type): in_type = type(obj) if (out_type is in_type): return obj else: return out_type(obj)
Cast obj to out_type if it's not out_type already. If the obj happens to be out_type already, it just returns obj as is. Args: obj: input object out_type: type. Returns: obj cast to out_type. Usual python conversion / casting rules apply.
codesearchnet
def NewOutputModule(cls, name, output_mediator): output_class = cls.GetOutputClass(name) return output_class(output_mediator)
Creates a new output module object for the specified output format. Args: name (str): name of the output module. output_mediator (OutputMediator): output mediator. Returns: OutputModule: output module. Raises: KeyError: if there is no output class found with the supplied name. ValueError: if name is not a string.
codesearchnet
def is60(msg): if allzeros(msg): return False d = hex2bin(data(msg)) if wrongstatus(d, 1, 2, 12): return False if wrongstatus(d, 13, 14, 23): return False if wrongstatus(d, 24, 25, 34): return False if wrongstatus(d, 35, 36, 45): return False if wrongstatus(d, 46, 47, 56): return False ias = ias60(msg) if ((ias is not None) and (ias > 500)): return False mach = mach60(msg) if ((mach is not None) and (mach > 1)): return False vr_baro = vr60baro(msg) if ((vr_baro is not None) and (abs(vr_baro) > 6000)): return False vr_ins = vr60ins(msg) if ((vr_ins is not None) and (abs(vr_ins) > 6000)): return False return True
Check if a message is likely to be BDS code 6,0 Args: msg (String): 28 bytes hexadecimal message string Returns: bool: True or False
codesearchnet
def register_write(self, reg_index, value): res = self._dll.JLINKARM_WriteReg(reg_index, value) if res != 0: raise errors.JLinkException('Error writing to register %d' % reg_index) return value
Writes into an ARM register. Note: The data is not immediately written, but is cached before being transferred to the CPU on CPU start. Args: self (JLink): the ``JLink`` instance reg_index (int): the ARM register to write to value (int): the value to write to the register Returns: The value written to the ARM register. Raises: JLinkException: on write error.
juraj-google-style
def plot_legend(ax, no_legend=True, legend_arg=None): legend_arg = dict_if_none(legend_arg) if not no_legend: ax.legend(**legend_arg)
Function that defines the legend options of a matplotlib plot. Args: ax: matplotlib axes no_legend (bool): Defines the presence of a legend in the figure legend_arg (dict): Addition arguments for matplotlib.legend() call
juraj-google-style
def spawn_agent(self, agent_definition, location): self._should_write_to_command_buffer = True self._add_agents(agent_definition) command_to_send = SpawnAgentCommand(location, agent_definition.name, agent_definition.type) self._commands.add_command(command_to_send)
Queues a spawn agent command. It will be applied when `tick` or `step` is called next. The agent won't be able to be used until the next frame. Args: agent_definition (:obj:`AgentDefinition`): The definition of the agent to spawn. location (np.ndarray or list): The position to spawn the agent in the world, in XYZ coordinates (in meters).
juraj-google-style
def run_inference(self, batch: Sequence[tf.Tensor], model: tf.Module, inference_args: Optional[dict[str, Any]]=None) -> Iterable[PredictionResult]: inference_args = {} if not inference_args else inference_args return self._inference_fn(model, batch, inference_args, self._model_uri)
Runs inferences on a batch of tf.Tensor and returns an Iterable of Tensor Predictions. This method stacks the list of Tensors in a vectorized format to optimize the inference call. Args: batch: A sequence of Tensors. These Tensors should be batchable, as this method will call `tf.stack()` and pass in batched Tensors with dimensions (batch_size, n_features, etc.) into the model's predict() function. model: A Tensorflow model. inference_args: Non-batchable arguments required as inputs to the model's forward() function. Unlike Tensors in `batch`, these parameters will not be dynamically batched Returns: An Iterable of type PredictionResult.
github-repos
def translate_to_histogram(self, histogram): first_bucket_offset = 0 last_bucket_offset = 0 for index in range(0, self.MAX_BUCKET_SIZE): if self.buckets[index] != 0: first_bucket_offset = index break for index in range(self.MAX_BUCKET_SIZE - 1, -1, -1): if self.buckets[index] != 0: last_bucket_offset = index break histogram.firstBucketOffset = first_bucket_offset histogram.bucketCounts = self.buckets[first_bucket_offset:last_bucket_offset + 1]
Translate buckets into Histogram. Args: histogram: apache_beam.runners.dataflow.internal.clents.dataflow.Histogram Ideally, only call this function when reporting counter to dataflow service.
github-repos
def forward(self, hidden_states: torch.Tensor, pos_emb: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, output_attentions: Optional[torch.Tensor]=False): if self.macaron_style: residual = hidden_states if self.normalize_before: hidden_states = self.ff_macaron_layer_norm(hidden_states) hidden_states = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(hidden_states)) if not self.normalize_before: hidden_states = self.ff_macaron_layer_norm(hidden_states) residual = hidden_states if self.normalize_before: hidden_states = self.self_attn_layer_norm(hidden_states) attention_output, attention_scores = self.self_attn(hidden_states, attention_mask=attention_mask, pos_emb=pos_emb, output_attentions=output_attentions) if self.concat_after: x_concat = torch.cat((hidden_states, attention_output), dim=-1) hidden_states = self.concat_linear(x_concat) hidden_states = residual + hidden_states else: hidden_states = self.dropout(attention_output) hidden_states = residual + hidden_states if not self.normalize_before: hidden_states = self.self_attn_layer_norm(hidden_states) if self.use_cnn_module: residual = hidden_states if self.normalize_before: hidden_states = self.conv_layer_norm(hidden_states) hidden_states = self.conv_module(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = residual + hidden_states if not self.normalize_before: hidden_states = self.conv_layer_norm(hidden_states) residual = hidden_states if self.normalize_before: hidden_states = self.ff_layer_norm(hidden_states) hidden_states = self.feed_forward(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = residual + self.ff_scale * hidden_states if not self.normalize_before: hidden_states = self.ff_layer_norm(hidden_states) if self.conv_module is not None: hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attention_scores,) return outputs
Compute encoded features. Args: hidden_states (`torch.Tensor` of shape `(batch, time, size)`): Input tensor. pos_emb (`torch.Tensor` of shape `(1, time, size)`): Positional embeddings tensor. attention_mask (`torch.Tensor` of shape `(batch, time)`): Attention mask tensor for the input. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. Returns: `torch.Tensor`: Output tensor of shape `(batch, time, size)`.
github-repos
def cancel(self, accountID, orderSpecifier, **kwargs): request = Request('PUT', '/v3/accounts/{accountID}/orders/{orderSpecifier}/cancel') request.set_path_param('accountID', accountID) request.set_path_param('orderSpecifier', orderSpecifier) response = self.ctx.request(request) if (response.content_type is None): return response if (not response.content_type.startswith('application/json')): return response jbody = json.loads(response.raw_body) parsed_body = {} if (str(response.status) == '200'): if (jbody.get('orderCancelTransaction') is not None): parsed_body['orderCancelTransaction'] = self.ctx.transaction.OrderCancelTransaction.from_dict(jbody['orderCancelTransaction'], self.ctx) if (jbody.get('relatedTransactionIDs') is not None): parsed_body['relatedTransactionIDs'] = jbody.get('relatedTransactionIDs') if (jbody.get('lastTransactionID') is not None): parsed_body['lastTransactionID'] = jbody.get('lastTransactionID') elif (str(response.status) == '401'): if (jbody.get('errorCode') is not None): parsed_body['errorCode'] = jbody.get('errorCode') if (jbody.get('errorMessage') is not None): parsed_body['errorMessage'] = jbody.get('errorMessage') elif (str(response.status) == '404'): if (jbody.get('orderCancelRejectTransaction') is not None): parsed_body['orderCancelRejectTransaction'] = self.ctx.transaction.OrderCancelRejectTransaction.from_dict(jbody['orderCancelRejectTransaction'], self.ctx) if (jbody.get('relatedTransactionIDs') is not None): parsed_body['relatedTransactionIDs'] = jbody.get('relatedTransactionIDs') if (jbody.get('lastTransactionID') is not None): parsed_body['lastTransactionID'] = jbody.get('lastTransactionID') if (jbody.get('errorCode') is not None): parsed_body['errorCode'] = jbody.get('errorCode') if (jbody.get('errorMessage') is not None): parsed_body['errorMessage'] = jbody.get('errorMessage') elif (str(response.status) == '405'): if (jbody.get('errorCode') is not None): parsed_body['errorCode'] = jbody.get('errorCode') if (jbody.get('errorMessage') is not None): parsed_body['errorMessage'] = jbody.get('errorMessage') else: parsed_body = jbody response.body = parsed_body return response
Cancel a pending Order in an Account Args: accountID: Account Identifier orderSpecifier: The Order Specifier Returns: v20.response.Response containing the results from submitting the request
codesearchnet
def CopyToPath(self): number_of_path_segments = len(self._path_segments) if (number_of_path_segments == 0): return None strings = [self._path_segments[0]] number_of_path_segments -= 1 for path_segment in self._path_segments[1:]: if (path_segment.endswith('\\') and (number_of_path_segments > 1)): path_segment = path_segment[:(- 1)] if ((path_segment.startswith('<') and path_segment.endswith('>')) or (len(strings) == 1)): strings.append(' {0:s}'.format(path_segment)) elif path_segment.startswith('\\'): strings.append('{0:s}'.format(path_segment)) else: strings.append('\\{0:s}'.format(path_segment)) number_of_path_segments -= 1 return ''.join(strings)
Copies the shell items to a path. Returns: str: converted shell item list path or None.
codesearchnet