code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def _magic_parser(stream, magic):
(in_doc, fields) = (0, None)
for line in stream:
line = line.strip()
if line.startswith(magic):
keys = line.split()
fields = OrderedDict(((k, []) for k in keys))
if (fields is not None):
in_doc += 1
if (in_doc == 1):
continue
if (not line):
break
tokens = list(map(float, line.split()[1:]))
assert (len(tokens) == len(keys))
for (l, v) in zip(fields.values(), tokens):
l.append(v)
if fields:
return OrderedDict([(k, np.array(v)) for (k, v) in fields.items()])
else:
return None
|
Parse the section with the SCF cycle
Returns:
dict where the key are the name of columns and
the values are list of numbers. Note if no section was found.
.. warning::
The parser is very fragile and should be replaced by YAML.
|
codesearchnet
|
def get_cell_shift(flow_model):
assert flow_model.lower() in FlowModelConst.d8_deltas
return FlowModelConst.d8_deltas.get(flow_model.lower())
|
Get flow direction induced cell shift dict.
Args:
flow_model: Currently, "TauDEM", "ArcGIS", and "Whitebox" are supported.
|
juraj-google-style
|
def plot_thermodynamic_properties(self, tmin, tmax, ntemp, ylim=None, **kwargs):
temperatures = np.linspace(tmin, tmax, ntemp)
mol = "" if self.structure else "-c"
fig = self._plot_thermo(self.dos.cv, temperatures, ylabel="Thermodynamic properties", ylim=ylim,
label=r"$C_v$ (J/K/mol{})".format(mol), **kwargs)
self._plot_thermo(self.dos.entropy, temperatures, ylim=ylim, ax=fig.axes[0],
label=r"$S$ (J/K/mol{})".format(mol), **kwargs)
self._plot_thermo(self.dos.internal_energy, temperatures, ylim=ylim, ax=fig.axes[0], factor=1e-3,
label=r"$\Delta E$ (kJ/K/mol{})".format(mol), **kwargs)
self._plot_thermo(self.dos.helmholtz_free_energy, temperatures, ylim=ylim, ax=fig.axes[0], factor=1e-3,
label=r"$\Delta F$ (kJ/K/mol{})".format(mol), **kwargs)
fig.axes[0].legend(loc="best")
return fig
|
Plots all the thermodynamic properties in a temperature range.
Args:
tmin: minimum temperature
tmax: maximum temperature
ntemp: number of steps
ylim: tuple specifying the y-axis limits.
kwargs: kwargs passed to the matplotlib function 'plot'.
Returns:
matplotlib figure
|
juraj-google-style
|
async def forget(request):
auth_policy = request.get(POLICY_KEY)
if (auth_policy is None):
raise RuntimeError('auth_middleware not installed')
return (await auth_policy.forget(request))
|
Called to forget the userid for a request
Args:
request: aiohttp Request object
Raises:
RuntimeError: Middleware is not installed
|
codesearchnet
|
def update(self, item):
if (item.matrix not in self.data):
self.data[item.matrix] = []
result = Select(self.data[item.matrix]).where((lambda entry: (entry.stage == item.stage))).build()
if (len(result) > 0):
stage = result[0]
stage.status = item.status
stage.add(item.timestamp, item.information)
else:
stage = CollectorStage(stage=item.stage, status=item.status)
stage.add(item.timestamp, item.information)
self.data[item.matrix].append(stage)
|
Add a collector item.
Args:
item (CollectorUpdate): event data like stage, timestampe and status.
|
codesearchnet
|
def parse_elements(elements):
if (not (len(elements) == 5)):
raise ValueError('Invalid WPL waypoint data')
latitude = parse_latitude(elements[0], elements[1])
longitude = parse_longitude(elements[2], elements[3])
name = elements[4]
return Waypoint(latitude, longitude, name)
|
Parse waypoint data elements.
Args:
elements (list): Data values for fix
Returns:
nmea.Waypoint: Object representing data
|
codesearchnet
|
def from_stat_file(cls, statfile, timestep=1, is_leap_year=False):
stat = STAT(statfile)
def check_missing(opt_data, data_name):
if opt_data == []:
raise ValueError('Stat file contains no optical data.')
for i, x in enumerate(opt_data):
if x is None:
raise ValueError(
'Missing optical depth data for {} at month {}'.format(
data_name, i)
)
check_missing(stat.monthly_tau_beam, 'monthly_tau_beam')
check_missing(stat.monthly_tau_diffuse, 'monthly_tau_diffuse')
return cls.from_ashrae_revised_clear_sky(stat.location, stat.monthly_tau_beam,
stat.monthly_tau_diffuse, timestep,
is_leap_year)
|
Create an ASHRAE Revised Clear Sky wea object from the monthly sky
optical depths in a .stat file.
Args:
statfile: Full path to the .stat file.
timestep: An optional integer to set the number of time steps per
hour. Default is 1 for one value per hour.
is_leap_year: A boolean to indicate if values are representing a leap year.
Default is False.
|
juraj-google-style
|
def update_mongo_compound_variants(self, bulk):
requests = []
for var_id in bulk:
var_obj = bulk[var_id]
if not var_obj.get('compounds'):
continue
operation = pymongo.UpdateOne(
{'_id': var_obj['_id']},
{
'$set': {
'compounds': var_obj['compounds']
}
})
requests.append(operation)
if not requests:
return
try:
self.variant_collection.bulk_write(requests, ordered=False)
except BulkWriteError as err:
LOG.warning("Updating compounds failed")
raise err
|
Update the compound information for a bulk of variants in the database
Args:
bulk(dict): {'_id': scout.models.Variant}
|
juraj-google-style
|
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
summed_grads_and_vars = []
for grad, var in grads_and_vars:
if grad is None:
summed_grads_and_vars.append((grad, var))
else:
with ops.colocate_with(grad):
summed_grads_and_vars.append((tpu_ops.cross_replica_sum(grad, self._group_assignment), var))
return self._opt.apply_gradients(summed_grads_and_vars, global_step, name)
|
Apply gradients to variables.
Calls tpu_ops.cross_replica_sum() to sum gradient contributions across
replicas, and then applies the real optimizer.
Args:
grads_and_vars: List of (gradient, variable) pairs as returned by
compute_gradients().
global_step: Optional Variable to increment by one after the
variables have been updated.
name: Optional name for the returned operation. Default to the
name passed to the Optimizer constructor.
Returns:
An `Operation` that applies the gradients. If `global_step` was not None,
that operation also increments `global_step`.
Raises:
ValueError: If the grads_and_vars is malformed.
|
github-repos
|
def ParseOptions(cls, options, output_module):
if not isinstance(output_module, mysql_4n6time.MySQL4n6TimeOutputModule):
raise errors.BadConfigObject(
'Output module is not an instance of MySQL4n6TimeOutputModule')
MySQL4n6TimeDatabaseArgumentsHelper.ParseOptions(options, output_module)
shared_4n6time_output.Shared4n6TimeOutputArgumentsHelper.ParseOptions(
options, output_module)
|
Parses and validates options.
Args:
options (argparse.Namespace): parser options.
output_module (OutputModule): output module to configure.
Raises:
BadConfigObject: when the output module object is of the wrong type.
|
juraj-google-style
|
def get_point(self, *position):
array = _ffi.new(self._arrayType, position)
if self._useOctaves:
return (self._noiseFunc(self._noise, array, self._octaves) + 1) * 0.5
return (self._noiseFunc(self._noise, array) + 1) * 0.5
|
Return the noise value of a specific position.
Example usage: value = noise.getPoint(x, y, z)
Args:
position (Tuple[float, ...]): The point to sample at.
Returns:
float: The noise value at position.
This will be a floating point in the 0.0-1.0 range.
|
juraj-google-style
|
def get_json_files(files, recursive=False):
json_files = []
if (not files):
return json_files
for fn in files:
if os.path.isdir(fn):
children = list_json_files(fn, recursive)
json_files.extend(children)
elif is_json(fn):
json_files.append(fn)
else:
continue
if (not json_files):
raise NoJSONFileFoundError('No JSON files found!')
return json_files
|
Return a list of files to validate from `files`. If a member of `files`
is a directory, its children with a ``.json`` extension will be added to
the return value.
Args:
files: A list of file paths and/or directory paths.
recursive: If ``true``, this will descend into any subdirectories
of input directories.
Returns:
A list of file paths to validate.
|
codesearchnet
|
def generate_brome_config():
config = {}
for key in iter(default_config):
for (inner_key, value) in iter(default_config[key].items()):
if (key not in config):
config[key] = {}
config[key][inner_key] = value['default']
return config
|
Generate a brome config with default value
Returns:
config (dict)
|
codesearchnet
|
def MultiDelete(self, urns, token=None):
urns = [rdfvalue.RDFURN(urn) for urn in urns]
if (token is None):
token = data_store.default_token
for urn in urns:
if (urn.Path() == '/'):
raise ValueError("Can't delete root URN. Please enter a valid URN")
deletion_pool = DeletionPool(token=token)
deletion_pool.MultiMarkForDeletion(urns)
marked_root_urns = deletion_pool.root_urns_for_deletion
marked_urns = deletion_pool.urns_for_deletion
logging.debug(u'Found %d objects to remove when removing %s', len(marked_urns), urns)
logging.debug(u'Removing %d root objects when removing %s: %s', len(marked_root_urns), urns, marked_root_urns)
pool = data_store.DB.GetMutationPool()
for root in marked_root_urns:
self._DeleteChildFromIndex(root, mutation_pool=pool)
for urn_to_delete in marked_urns:
try:
self.intermediate_cache.ExpireObject(urn_to_delete.Path())
except KeyError:
pass
pool.DeleteSubjects(marked_urns)
pool.Flush()
self.Flush()
logging.debug('Removed %d objects', len(marked_urns))
|
Drop all the information about given objects.
DANGEROUS! This recursively deletes all objects contained within the
specified URN.
Args:
urns: Urns of objects to remove.
token: The Security Token to use for opening this item.
Raises:
ValueError: If one of the urns is too short. This is a safety check to
ensure the root is not removed.
|
codesearchnet
|
def get_ax3d_fig_plt(ax=None, **kwargs):
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
if (ax is None):
fig = plt.figure(**kwargs)
ax = axes3d.Axes3D(fig)
else:
fig = plt.gcf()
return (ax, fig, plt)
|
Helper function used in plot functions supporting an optional Axes3D
argument. If ax is None, we build the `matplotlib` figure and create the
Axes3D else we return the current active figure.
Args:
kwargs: keyword arguments are passed to plt.figure if ax is not None.
Returns:
ax: :class:`Axes` object
figure: matplotlib figure
plt: matplotlib pyplot module.
|
codesearchnet
|
def AddContext(self, context_string, description=None):
if (context_string not in self.context):
if (context_string not in self.valid_contexts):
raise InvalidContextError(('Invalid context specified: %s' % context_string))
self.context.append(context_string)
self.context_descriptions[context_string] = description
self.FlushCache()
|
Adds a context string to the global configuration.
The context conveys information about the caller of the config system and
allows the configuration to have specialized results for different callers.
Note that the configuration file may specify conflicting options for
different contexts. In this case, later specified contexts (i.e. the later
AddContext() calls) will trump the earlier specified contexts. This allows
specialized contexts to be specified on the command line which override
normal operating options.
Args:
context_string: A string which describes the global program.
description: A description as to when this context applies.
Raises:
InvalidContextError: An undefined context was specified.
|
codesearchnet
|
def _build(self, one_hot_input_sequence):
input_shape = one_hot_input_sequence.get_shape()
batch_size = input_shape[1]
batch_embed_module = snt.BatchApply(self._embed_module)
input_sequence = batch_embed_module(one_hot_input_sequence)
input_sequence = tf.nn.relu(input_sequence)
initial_state = self._core.initial_state(batch_size)
if self._use_dynamic_rnn:
(output_sequence, final_state) = tf.nn.dynamic_rnn(cell=self._core, inputs=input_sequence, time_major=True, initial_state=initial_state)
else:
rnn_input_sequence = tf.unstack(input_sequence)
(output, final_state) = tf.contrib.rnn.static_rnn(cell=self._core, inputs=rnn_input_sequence, initial_state=initial_state)
output_sequence = tf.stack(output)
batch_output_module = snt.BatchApply(self._output_module)
output_sequence_logits = batch_output_module(output_sequence)
return (output_sequence_logits, final_state)
|
Builds the deep LSTM model sub-graph.
Args:
one_hot_input_sequence: A Tensor with the input sequence encoded as a
one-hot representation. Its dimensions should be `[truncation_length,
batch_size, output_size]`.
Returns:
Tuple of the Tensor of output logits for the batch, with dimensions
`[truncation_length, batch_size, output_size]`, and the
final state of the unrolled core,.
|
codesearchnet
|
def get_battery_info(self) -> dict:
(output, _) = self._execute('-s', self.device_sn, 'shell', 'dumpsys', 'battery')
battery_status = re.split('\n |: ', output[33:].strip())
return dict(zip(battery_status[::2], battery_status[1::2]))
|
Show device battery information.
Returns:
A dict. For example:
{'AC powered': 'false',
'Charge counter': '0',
'Max charging current': '0',
'Max charging voltage': '0',
'USB powered': 'false',
'Wireless powered': 'false',
'health': '2',
'level': '67',
'present': 'true',
'scale': '100',
'status': '3',
'technology': 'Li-poly',
'temperature': '310',
'voltage': '3965'}
|
codesearchnet
|
def dict_load(self, ns_dict):
for prefix, uri in ns_dict.items():
self.bind(prefix, uri, override=False, calc=False)
self.__make_dicts__
|
Reads a dictionary of namespaces and binds them to the manager
Args:
ns_dict: dictionary with the key as the prefix and the value
as the uri
|
juraj-google-style
|
def GetFormatterObject(cls, data_type):
data_type = data_type.lower()
if (data_type not in cls._formatter_objects):
formatter_object = None
if (data_type in cls._formatter_classes):
formatter_class = cls._formatter_classes[data_type]
formatter_object = formatter_class()
if (not formatter_object):
logger.warning('Using default formatter for data type: {0:s}'.format(data_type))
formatter_object = default.DefaultFormatter()
cls._formatter_objects[data_type] = formatter_object
return cls._formatter_objects[data_type]
|
Retrieves the formatter object for a specific data type.
Args:
data_type (str): data type.
Returns:
EventFormatter: corresponding formatter or the default formatter if
not available.
|
codesearchnet
|
def execute(self, inputs=None, output=None, load_targets=False):
if self == output:
if os.path.exists(self._dump_dirname):
shutil.rmtree(self._dump_dirname)
if os.path.exists(self._target_filename):
os.remove(self._target_filename)
os.makedirs(self._dump_dirname)
if inputs is None:
inputs = []
if not hasattr(self, 'result'):
if self in inputs or (load_targets and self.target):
logging.info('Loading\n%s' % util.indent(str(self)))
self.load()
else:
for i in self.inputs:
i.execute(inputs=inputs, output=output,
load_targets=load_targets)
args = merge_results(self.inputs)
logging.info('Running\n%s' % util.indent(str(self)))
self.result = self.run(*args.args, **args.kwargs)
if self == output:
logging.info('Dumping\n%s' % util.indent(str(self)))
self.dump()
util.touch(self._target_filename)
|
Run this step, recursively running or loading inputs.
Used in bin/run_step.py which is run by drake.
Args:
inputs: collection of steps that should be loaded
output: step that should be dumped after it is run
load_targets (boolean): load all steps which are targets.
This argument is not used by run_step.py because target
does not get serialized. But it can be useful for
running steps directly.
|
juraj-google-style
|
def resolve_import(self, item):
name = item.name
short_name = None
if item.is_from and not item.is_star:
if '.' in name.lstrip('.'):
rindex = name.rfind('.')
else:
rindex = name.rfind('.') + 1
short_name = name[:rindex]
if import_finder.is_builtin(name):
filename = name + '.so'
return Builtin(filename, name)
filename, level = convert_to_path(name)
if level:
filename = os.path.normpath(
os.path.join(self.current_directory, filename))
files = [(name, filename)]
if short_name:
short_filename = os.path.dirname(filename)
files.append((short_name, short_filename))
for module_name, path in files:
for fs in self.fs_path:
f = self._find_file(fs, path)
if not f or f == self.current_module.path:
continue
if item.is_relative():
package_name = self.current_module.package_name
if package_name is None:
raise ImportException(name)
module_name = get_absolute_name(package_name, module_name)
if isinstance(self.current_module, System):
return System(f, module_name)
return Local(f, module_name, fs)
if item.source:
prefix, ext = os.path.splitext(item.source)
mod_name = name
if short_name:
mod = prefix.replace(os.path.sep, '.')
mod = utils.strip_suffix(mod, '.__init__')
if not mod.endswith(name) and mod.endswith(short_name):
mod_name = short_name
if ext == '.pyc':
pyfile = prefix + '.py'
if os.path.exists(pyfile):
return System(pyfile, mod_name)
elif not ext:
pyfile = os.path.join(prefix, "__init__.py")
if os.path.exists(pyfile):
return System(pyfile, mod_name)
return System(item.source, mod_name)
raise ImportException(name)
|
Simulate how Python resolves imports.
Returns the filename of the source file Python would load
when processing a statement like 'import name' in the module
we're currently under.
Args:
item: An instance of ImportItem
Returns:
A filename
Raises:
ImportException: If the module doesn't exist.
|
juraj-google-style
|
def can_process_matrix(entry, matrix_tags):
if len(matrix_tags) == 0:
return True
count = 0
if 'tags' in entry:
for tag in matrix_tags:
if tag in entry['tags']:
count += 1
return count > 0
|
Check given matrix tags to be in the given list of matric tags.
Args:
entry (dict): matrix item (in yaml).
matrix_tags (list): represents --matrix-tags defined by user in command line.
Returns:
bool: True when matrix entry can be processed.
|
juraj-google-style
|
def load_scout(adapter, config, ped=None, update=False):
log.info('Check that the panels exists')
if (not check_panels(adapter, config.get('gene_panels', []), config.get('default_gene_panels'))):
raise ConfigError('Some panel(s) does not exist in the database')
case_obj = adapter.load_case(config, update=update)
return case_obj
|
Load a new case from a Scout config.
Args:
adapter(MongoAdapter)
config(dict): loading info
ped(Iterable(str)): Pedigree ingformation
update(bool): If existing case should be updated
|
codesearchnet
|
def trace_on(graph=True, profiler=False, profiler_outdir=None):
if ops.inside_function():
logging.warn('Cannot enable trace inside a tf.function.')
return
if not context.executing_eagerly():
logging.warn('Must enable trace in eager mode.')
return
global _current_trace_context
with _current_trace_context_lock:
if _current_trace_context:
logging.warn('Trace already enabled')
return
if graph and (not profiler):
context.context().enable_graph_collection()
if profiler:
if profiler_outdir is None:
logging.warn("No `profiler_outdir` passed to trace_on(). Profiler won't be enabled.")
else:
context.context().enable_run_metadata()
_profiler.start(profiler_outdir)
_current_trace_context = _TraceContext(graph=graph, profiler=profiler)
|
Starts a trace to record computation graphs and profiling information.
Must be invoked in eager mode.
When enabled, TensorFlow runtime will collect information that can later be
exported and consumed by TensorBoard. The trace is activated across the entire
TensorFlow runtime and affects all threads of execution.
To stop the trace and export the collected information, use
`tf.summary.trace_export`. To stop the trace without exporting, use
`tf.summary.trace_off`.
Args:
graph: If True, enables collection of executed graphs. It includes ones from
tf.function invocation and ones from the legacy graph mode. The default is
True.
profiler: If True, enables the advanced profiler. Enabling profiler
implicitly enables the graph collection. The profiler may incur a high
memory overhead. The default is False.
profiler_outdir: Output directory for profiler. It is required when profiler
is enabled when trace was started. Otherwise, it is ignored.
|
github-repos
|
def getOrderedLinks(self, session):
streamLinks = session.query(StreamLink).\
filter(StreamLink.channelInputFile == self).\
order_by(StreamLink.linkNumber).\
all()
return streamLinks
|
Retrieve the links in the order of the link number.
Args:
session (:mod:`sqlalchemy.orm.session.Session`): SQLAlchemy session object bound to PostGIS enabled database.
Returns:
list: A list of :class:`.StreamLink` objects.
|
juraj-google-style
|
def parsed_to_ast(parsed: Parsed, errors: Errors, component_type: str=''):
ast = {}
sorted_keys = sorted(parsed.keys())
for key in sorted_keys:
if (parsed[key]['type'] == 'Nested'):
nested_component_stack = ['subject', 'object']
if component_type:
component_stack = [component_type]
else:
component_stack = ['subject', 'object']
for key in sorted_keys:
if ((parsed[key]['type'] == 'Function') and (parsed[key]['function_level'] == 'top')):
ast[component_stack.pop(0)] = parsed_function_to_ast(parsed, key)
elif ((parsed[key]['type'] == 'Relation') and ('relation' not in ast)):
ast['relation'] = {'name': parsed[key]['name'], 'type': 'Relation', 'span': key}
elif (parsed[key]['type'] == 'Nested'):
ast['nested'] = {}
for nested_key in sorted_keys:
if (nested_key <= key):
continue
if ((parsed[nested_key]['type'] == 'Function') and (parsed[nested_key]['function_level'] == 'top')):
ast['nested'][nested_component_stack.pop(0)] = parsed_function_to_ast(parsed, nested_key)
elif ((parsed[nested_key]['type'] == 'Relation') and ('relation' not in ast['nested'])):
ast['nested']['relation'] = {'name': parsed[nested_key]['name'], 'type': 'Relation', 'span': parsed[nested_key]['span']}
return (ast, errors)
return (ast, errors)
|
Convert parsed data struct to AST dictionary
Args:
parsed:
errors:
component_type: Empty string or 'subject' or 'object' to indicate that we
are parsing the subject or object field input
|
codesearchnet
|
def _make_pred_succ_maps(self, node):
pred_map = {e[2]['wire']: e[0] for e in
self._multi_graph.in_edges(nbunch=node, data=True)}
succ_map = {e[2]['wire']: e[1] for e in
self._multi_graph.out_edges(nbunch=node, data=True)}
return pred_map, succ_map
|
Return predecessor and successor dictionaries.
Args:
node (DAGNode): reference to multi_graph node
Returns:
tuple(dict): tuple(predecessor_map, successor_map)
These map from wire (Register, int) to predecessor (successor)
nodes of n.
|
juraj-google-style
|
def find_elb_dns_zone_id(name='', env='dev', region='us-east-1'):
LOG.info('Find %s ELB DNS Zone ID in %s [%s].', name, env, region)
client = boto3.Session(profile_name=env).client('elb', region_name=region)
elbs = client.describe_load_balancers(LoadBalancerNames=[name])
return elbs['LoadBalancerDescriptions'][0]['CanonicalHostedZoneNameID']
|
Get an application's AWS elb dns zone id.
Args:
name (str): ELB name
env (str): Environment/account of ELB
region (str): AWS Region
Returns:
str: elb DNS zone ID
|
juraj-google-style
|
def browse_stations_categories(self):
response = self._call(mc_calls.BrowseStationCategories)
station_categories = response.body.get('root', {}).get('subcategories', [])
return station_categories
|
Get the categories from Browse Stations.
Returns:
list: Station categories that can contain subcategories.
|
codesearchnet
|
def get_install_value(self, value_name, wanted_type=None):
try:
item_value, item_type = self.__reg_query_value(self.__reg_uninstall_handle, value_name)
except pywintypes.error as exc:
if exc.winerror == winerror.ERROR_FILE_NOT_FOUND:
return None
raise
if wanted_type and item_type not in self.__reg_types[wanted_type]:
item_value = None
return item_value
|
For the uninstall section of the registry return the name value.
Args:
value_name (str): Registry value name.
wanted_type (str):
The type of value wanted if the type does not match
None is return. wanted_type support values are
``str`` ``int`` ``list`` ``bytes``.
Returns:
value: Value requested or None if not found.
|
juraj-google-style
|
def blocking_reader(reader, input, buffer_size=_DEFAULT_BUFFER_SIZE):
ion_event = None
while True:
read_event = (yield ion_event)
ion_event = reader.send(read_event)
while ((ion_event is not None) and ion_event.event_type.is_stream_signal):
data = input.read(buffer_size)
if (len(data) == 0):
if (ion_event.event_type is IonEventType.INCOMPLETE):
ion_event = reader.send(NEXT_EVENT)
continue
else:
(yield ION_STREAM_END_EVENT)
return
ion_event = reader.send(read_data_event(data))
|
Provides an implementation of using the reader co-routine with a file-like object.
Args:
reader(Coroutine): A reader co-routine.
input(BaseIO): The file-like object to read from.
buffer_size(Optional[int]): The optional buffer size to use.
|
codesearchnet
|
def iter_non_intersecting(self, iterable, key=None, descending=False):
return _ContainsVersionIterator(self, iterable, key, descending, mode=_ContainsVersionIterator.MODE_NON_INTERSECTING)
|
Like `iter_intersect_test`, but returns non-intersections only.
Returns:
An iterator that returns items from `iterable` that don't intersect.
|
codesearchnet
|
def download_uniprot_file(uniprot_id, filetype, outdir='', force_rerun=False):
my_file = '{}.{}'.format(uniprot_id, filetype)
url = 'http:
outfile = op.join(outdir, my_file)
if ssbio.utils.force_rerun(flag=force_rerun, outfile=outfile):
urlretrieve(url, outfile)
return outfile
|
Download a UniProt file for a UniProt ID/ACC
Args:
uniprot_id: Valid UniProt ID
filetype: txt, fasta, xml, rdf, or gff
outdir: Directory to download the file
Returns:
str: Absolute path to file
|
juraj-google-style
|
def _peek(self, size=-1):
with self._seek_lock:
seek = self._seek
with handle_os_exceptions():
return self._read_range(seek, seek + size)
|
Return bytes from the stream without advancing the position.
Args:
size (int): Number of bytes to read. -1 to read the full
stream.
Returns:
bytes: bytes read
|
juraj-google-style
|
def _ParseUpdateKeyValue(self, parser_mediator, registry_value, key_path):
if not registry_value.DataIsString():
parser_mediator.ProduceExtractionWarning(
'unsupported UpdateKey value data type: {0:s}'.format(
registry_value.data_type_string))
return
date_time_string = registry_value.GetDataAsObject()
if not date_time_string:
parser_mediator.ProduceExtractionWarning('missing UpdateKey value data')
return
re_match = self._UPDATE_DATE_TIME_RE.match(date_time_string)
if not re_match:
parser_mediator.ProduceExtractionWarning(
'unsupported UpdateKey value data: {0!s}'.format(date_time_string))
return
month, day_of_month, year, hours, minutes, seconds, part_of_day = (
re_match.groups())
try:
year = int(year, 10)
month = int(month, 10)
day_of_month = int(day_of_month, 10)
hours = int(hours, 10)
minutes = int(minutes, 10)
seconds = int(seconds, 10)
except (TypeError, ValueError):
parser_mediator.ProduceExtractionWarning(
'invalid UpdateKey date time value: {0!s}'.format(date_time_string))
return
if part_of_day == 'PM':
hours += 12
time_elements_tuple = (year, month, day_of_month, hours, minutes, seconds)
try:
date_time = dfdatetime_time_elements.TimeElements(
time_elements_tuple=time_elements_tuple)
date_time.is_local_time = True
except ValueError:
parser_mediator.ProduceExtractionWarning(
'invalid UpdateKey date time value: {0!s}'.format(
time_elements_tuple))
return
event_data = CCleanerUpdateEventData()
event_data.key_path = key_path
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_UPDATE,
time_zone=parser_mediator.timezone)
parser_mediator.ProduceEventWithEventData(event, event_data)
|
Parses the UpdateKey value.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
registry_value (dfwinreg.WinRegistryValue): Windows Registry value.
key_path (str): Windows Registry key path.
|
juraj-google-style
|
def gunzip_file(infile, outfile=None, outdir=None, delete_original=False, force_rerun_flag=False):
if not outfile:
outfile = infile.replace('.gz', '')
if not outdir:
outdir = ''
else:
outdir = op.dirname(infile)
outfile = op.join(outdir, op.basename(outfile))
if force_rerun(flag=force_rerun_flag, outfile=outfile):
gz = gzip.open(infile, "rb")
decoded = gz.read()
with open(outfile, "wb") as new_file:
new_file.write(decoded)
gz.close()
log.debug('{}: file unzipped'.format(outfile))
else:
log.debug('{}: file already unzipped'.format(outfile))
if delete_original:
os.remove(infile)
return outfile
|
Decompress a gzip file and optionally set output values.
Args:
infile: Path to .gz file
outfile: Name of output file
outdir: Path to output directory
delete_original: If original .gz file should be deleted
force_rerun_flag: If file should be decompressed if outfile already exists
Returns:
str: Path to decompressed file
|
juraj-google-style
|
def FileEntryExistsByPathSpec(self, path_spec):
fsapfs_file_entry = None
location = getattr(path_spec, 'location', None)
identifier = getattr(path_spec, 'identifier', None)
try:
if identifier is not None:
fsapfs_file_entry = self._fsapfs_volume.get_file_entry_by_identifier(
identifier)
elif location is not None:
fsapfs_file_entry = self._fsapfs_volume.get_file_entry_by_path(location)
except IOError as exception:
raise errors.BackEndError(exception)
return fsapfs_file_entry is not None
|
Determines if a file entry for a path specification exists.
Args:
path_spec (PathSpec): path specification.
Returns:
bool: True if the file entry exists.
Raises:
BackEndError: if the file entry cannot be opened.
|
juraj-google-style
|
def __init__(self, file_pattern, min_bundle_size, compression_type, strip_trailing_newlines, coder: coders.Coder, buffer_size=DEFAULT_READ_BUFFER_SIZE, validate=True, skip_header_lines=0, header_processor_fns=(None, None), delimiter=None, escapechar=None):
super().__init__(file_pattern, min_bundle_size, compression_type=compression_type, validate=validate)
self._strip_trailing_newlines = strip_trailing_newlines
self._compression_type = compression_type
self._coder = coder
self._buffer_size = buffer_size
if skip_header_lines < 0:
raise ValueError('Cannot skip negative number of header lines: %d' % skip_header_lines)
elif skip_header_lines > 10:
_LOGGER.warning('Skipping %d header lines. Skipping large number of header lines might significantly slow down processing.')
self._skip_header_lines = skip_header_lines
self._header_matcher, self._header_processor = header_processor_fns
if delimiter is not None:
if not isinstance(delimiter, bytes) or len(delimiter) == 0:
raise ValueError('Delimiter must be a non-empty bytes sequence.')
if self._is_self_overlapping(delimiter):
raise ValueError('Delimiter must not self-overlap.')
self._delimiter = delimiter
if escapechar is not None:
if not (isinstance(escapechar, bytes) and len(escapechar) == 1):
raise ValueError("escapechar must be bytes of size 1: '%s'" % escapechar)
self._escapechar = escapechar
|
Initialize a _TextSource
Args:
header_processor_fns (tuple): a tuple of a `header_matcher` function
and a `header_processor` function. The `header_matcher` should
return `True` for all lines at the start of the file that are part
of the file header and `False` otherwise. These header lines will
not be yielded when reading records and instead passed into
`header_processor` to be handled. If `skip_header_lines` and a
`header_matcher` are both provided, the value of `skip_header_lines`
lines will be skipped and the header will be processed from
there.
delimiter (bytes) Optional: delimiter to split records.
Must not self-overlap, because self-overlapping delimiters cause
ambiguous parsing.
escapechar (bytes) Optional: a single byte to escape the records
delimiter, can also escape itself.
Raises:
ValueError: if skip_lines is negative.
Please refer to documentation in class `ReadFromText` for the rest
of the arguments.
|
github-repos
|
def add_role(self, databaseName, roleName, collectionName=None):
role = {"databaseName" : databaseName,
"roleName" : roleName}
if collectionName:
role["collectionName"] = collectionName
if collectionName and roleName not in [RoleSpecs.read, RoleSpecs.readWrite]:
raise ErrRole("Permissions [%s] not available for a collection" % roleName)
elif not collectionName and roleName not in [RoleSpecs.read, RoleSpecs.readWrite, RoleSpecs.dbAdmin] and databaseName != "admin":
raise ErrRole("Permissions [%s] is only available for admin database" % roleName)
if role not in self.roles:
self.roles.append(role)
|
Add one role
Args:
databaseName (str): Database Name
roleName (RoleSpecs): role
Keyword Args:
collectionName (str): Collection
Raises:
ErrRole: role not compatible with the databaseName and/or collectionName
|
juraj-google-style
|
def dict_diff(d1: Dict[(Any, Any)], d2: Dict[(Any, Any)], deleted_value: Any=None) -> Dict[(Any, Any)]:
changes = {k: v for (k, v) in d2.items() if ((k not in d1) or (d2[k] != d1[k]))}
for k in d1.keys():
if (k not in d2):
changes[k] = deleted_value
return changes
|
Returns a representation of the changes that need to be made to ``d1`` to
create ``d2``.
Args:
d1: a dictionary
d2: another dictionary
deleted_value: value to use for deleted keys; see below
Returns:
dict: a dictionary of the format ``{k: v}`` where the ``k``/``v`` pairs
are key/value pairs that are absent from ``d1`` and present in ``d2``,
or present in both but with different values (in which case the ``d2``
value is shown). If a key ``k`` is present in ``d1`` but absent in
``d2``, the result dictionary has the entry ``{k: deleted_value}``.
|
codesearchnet
|
def get_splits(self, n_splits=1):
if (n_splits == 1):
stratify = (self.target if self._stratify else None)
return train_test_split(self.data, self.target, shuffle=self._shuffle, stratify=stratify)
else:
cv_class = (StratifiedKFold if self._stratify else KFold)
cv = cv_class(n_splits=n_splits, shuffle=self._shuffle)
splits = list()
for (train, test) in cv.split(self.data, self.target):
X_train = self._get_split(self.data, train)
y_train = self._get_split(self.target, train)
X_test = self._get_split(self.data, test)
y_test = self._get_split(self.target, test)
splits.append((X_train, X_test, y_train, y_test))
return splits
|
Return splits of this dataset ready for Cross Validation.
If n_splits is 1, a tuple containing the X for train and test
and the y for train and test is returned.
Otherwise, if n_splits is bigger than 1, a list of such tuples
is returned, one for each split.
Args:
n_splits (int): Number of times that the data needs to be splitted.
Returns:
tuple or list:
if n_splits is 1, a tuple containing the X for train and test
and the y for train and test is returned.
Otherwise, if n_splits is bigger than 1, a list of such tuples
is returned, one for each split.
|
codesearchnet
|
def delete(self, name, **kwargs):
self.gitlab.http_delete(self.path, query_data={'name': name}, **kwargs)
|
Delete a Label on the server.
Args:
name: The name of the label
**kwargs: Extra options to send to the server (e.g. sudo)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabDeleteError: If the server cannot perform the request
|
codesearchnet
|
def searchPageFor(doc, pno, text, hit_max=16, quads=False):
return doc[pno].searchFor(text, hit_max = hit_max, quads = quads)
|
Search for a string on a page.
Args:
pno: page number
text: string to be searched for
hit_max: maximum hits
quads: return quads instead of rectangles
Returns:
a list of rectangles or quads, each containing an occurrence.
|
juraj-google-style
|
def set_auth_traps_enabled(status=True):
vname = 'EnableAuthenticationTraps'
current_status = get_auth_traps_enabled()
if bool(status) == current_status:
_LOG.debug('%s already contains the provided value.', vname)
return True
vdata = int(status)
__utils__['reg.set_value'](_HKEY, _SNMP_KEY, vname, vdata, 'REG_DWORD')
new_status = get_auth_traps_enabled()
if status == new_status:
_LOG.debug('Setting %s configured successfully: %s', vname, vdata)
return True
_LOG.error('Unable to configure %s with value: %s', vname, vdata)
return False
|
Manage the sending of authentication traps.
Args:
status (bool): True to enable traps. False to disable.
Returns:
bool: True if successful, otherwise False
CLI Example:
.. code-block:: bash
salt '*' win_snmp.set_auth_traps_enabled status='True'
|
juraj-google-style
|
def update_candidate_strategy(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, num_matches: int):
if self.assistant_model.generation_config.num_assistant_tokens_schedule in {'heuristic', 'heuristic_transient'}:
if num_matches == len(scores[0]) - 1:
self.num_assistant_tokens += 2.0
else:
self.num_assistant_tokens = max(1.0, self.num_assistant_tokens - 1.0)
if is_sklearn_available() and self.assistant_model.generation_config.assistant_confidence_threshold and (type(self) is AssistedCandidateGenerator):
self.matches.extend([1] * num_matches)
if len(self.probs) > len(self.matches):
self.matches.append(0)
excess_length = len(self.probs) - len(self.matches)
if excess_length > 0:
del self.probs[-excess_length:]
if len(self.probs) > 5 and {0, 1}.issubset(self.matches):
fpr, tpr, thresholds = roc_curve(self.matches, self.probs)
fnr = 1 - tpr
costs = fpr + 3 * fnr
optimal_threshold_index = np.argmin(costs)
best_threshold = thresholds[optimal_threshold_index]
self.assistant_model.generation_config.assistant_confidence_threshold = best_threshold
|
Updates the candidate generation strategy based on the outcomes.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, candidate_length, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
beam search or log softmax for each vocabulary token when using beam search
num_matches (`int`):
The number of matches between the candidate sequences and the model predictions.
|
github-repos
|
def suggest(q='', results=15, buckets=None, limit=False, max_familiarity=None, min_familiarity=None, max_hotttnesss=None, min_hotttnesss=None):
buckets = (buckets or [])
kwargs = {}
kwargs['q'] = q
if (max_familiarity is not None):
kwargs['max_familiarity'] = max_familiarity
if (min_familiarity is not None):
kwargs['min_familiarity'] = min_familiarity
if (max_hotttnesss is not None):
kwargs['max_hotttnesss'] = max_hotttnesss
if (min_hotttnesss is not None):
kwargs['min_hotttnesss'] = min_hotttnesss
if results:
kwargs['results'] = results
if buckets:
kwargs['bucket'] = buckets
if limit:
kwargs['limit'] = 'true'
result = util.callm(('%s/%s' % ('artist', 'suggest')), kwargs)
return [Artist(**util.fix(a_dict)) for a_dict in result['response']['artists']]
|
Suggest artists based upon partial names.
Args:
Kwargs:
q (str): The text to suggest artists from
results (int): An integer number of results to return
buckets (list): A list of strings specifying which buckets to retrieve
limit (bool): A boolean indicating whether or not to limit the results to one of the id spaces specified in buckets
max_familiarity (float): A float specifying the max familiarity of artists to search for
min_familiarity (float): A float specifying the min familiarity of artists to search for
max_hotttnesss (float): A float specifying the max hotttnesss of artists to search for
min_hotttnesss (float): A float specifying the max hotttnesss of artists to search for
Returns:
A list of Artist objects
Example:
>>> results = artist.suggest(text='rad')
>>> results
>>>
|
codesearchnet
|
def param_shapes(cls, sample_shape, name='DistributionParamShapes'):
with ops.name_scope(name, values=[sample_shape]):
return cls._param_shapes(sample_shape)
|
Shapes of parameters given the desired shape of a call to `sample()`.
This is a class method that describes what key/value arguments are required
to instantiate the given `Distribution` so that a particular shape is
returned for that instance's call to `sample()`.
Subclasses should override class method `_param_shapes`.
Args:
sample_shape: `Tensor` or python list/tuple. Desired shape of a call to
`sample()`.
name: name to prepend ops with.
Returns:
`dict` of parameter name to `Tensor` shapes.
|
github-repos
|
def accepts(self, tp, converter):
tp = ParameterizedProperty._validate_type_param(tp)
self.alternatives.append((tp, converter))
return self
|
Declare that other types may be converted to this property type.
Args:
tp (Property) :
A type that may be converted automatically to this property
type.
converter (callable) :
A function accepting ``value`` to perform conversion of the
value to this property type.
Returns:
self
|
codesearchnet
|
def add_team_member(self, account_id=None, email_address=None):
return self._add_remove_team_member(self.TEAM_ADD_MEMBER_URL, email_address, account_id)
|
Add or invite a user to your Team
Args:
account_id (str): The id of the account of the user to invite to your team.
email_address (str): The email address of the account to invite to your team. The account id prevails if both account_id and email_address are provided.
Returns:
A Team object
|
juraj-google-style
|
def set(self, section, option, value=None):
try:
section = self.__getitem__(section)
except KeyError:
raise NoSectionError(section) from None
option = self.optionxform(option)
if option in section:
section[option].value = value
else:
section[option] = value
return self
|
Set an option.
Args:
section (str): section name
option (str): option name
value (str): value, default None
|
juraj-google-style
|
def diffs_prof(step):
diff, rad = diff_prof(step)
return _scale_prof(step, diff, rad), rad
|
Scaled diffusion.
This computation takes sphericity into account if necessary.
Args:
step (:class:`~stagpy.stagyydata._Step`): a step of a StagyyData
instance.
Returns:
tuple of :class:`numpy.array`: the diffusion and the radial position
at which it is evaluated.
|
juraj-google-style
|
def from_dict(cls, copula_dict):
instance = cls(copula_dict['copula_type'])
instance.theta = copula_dict['theta']
instance.tau = copula_dict['tau']
return instance
|
Create a new instance from the given parameters.
Args:
copula_dict: `dict` with the parameters to replicate the copula.
Like the output of `Bivariate.to_dict`
Returns:
Bivariate: Instance of the copula defined on the parameters.
|
codesearchnet
|
def buckets_list(self, projection='noAcl', max_results=0, page_token=None, project_id=None):
if max_results == 0:
max_results = Api._MAX_RESULTS
args = {'project': project_id if project_id else self._project_id, 'maxResults': max_results}
if projection is not None:
args['projection'] = projection
if page_token is not None:
args['pageToken'] = page_token
url = Api._ENDPOINT + (Api._BUCKET_PATH % '')
return google.datalab.utils.Http.request(url, args=args, credentials=self._credentials)
|
Issues a request to retrieve the list of buckets.
Args:
projection: the projection of the bucket information to retrieve.
max_results: an optional maximum number of objects to retrieve.
page_token: an optional token to continue the retrieval.
project_id: the project whose buckets should be listed.
Returns:
A parsed list of bucket information dictionaries.
Raises:
Exception if there is an error performing the operation.
|
juraj-google-style
|
def _get_encoded_length(audio_length, kernel_sizes=None, strides=None, dilations=None, use_causal_conv=None):
cur_length = audio_length
if kernel_sizes is None or strides is None or dilations is None or (use_causal_conv is None):
return cur_length
for kernel_size, stride, dilation in zip(kernel_sizes, strides, dilations):
effective_kernel_size = (kernel_size - 1) * dilation + 1
padding_total = kernel_size - stride
padding_right = padding_total
padding_left = padding_total - padding_right
n_frames = (cur_length - effective_kernel_size + padding_total) / stride + 1
n_frames = math.ceil(n_frames) - 1
ideal_length = n_frames * stride + kernel_size - padding_total
extra_padding = ideal_length - cur_length
if use_causal_conv:
padding_left = padding_total
padding_right = extra_padding
else:
padding_left = padding_left
padding_right = padding_right + extra_padding
cur_length = cur_length + padding_left + padding_right
cur_length = (cur_length - dilation * (kernel_size - 1) - 1)
return cur_length
|
Compute the length of the encoded audio sequence.
Args:
audio_length (int): The length of the audio sequence.
kernel_sizes (List[int]): The kernel sizes for the convolutional layers.
strides (List[int]): The strides for the convolutional layers.
use_causal_conv (bool): Whether to use causal convolutions.
|
github-repos
|
def _set_xla_sharding(self, xla_sharding):
if self._variable_read and (not context.executing_eagerly()):
logging.warning("This variable (%s) has already been read (ie. a ReadVariableOp has already been generated) and a new XlaShardingOp using this sharding will not be created unless it is read again. If that's not possible, please set the XLA sharding before reading the variable.", self.name)
self._xla_sharding = xla_sharding
|
Annotates this `ResourceVariable` with `xla_sharding`.
`xla_sharding` will be used to create an `XlaShardingOp` whenever a
`ReadVariableOp` is created.
Args:
xla_sharding: The xla.OpSharding proto to annotate this ResourceVariable
with.
|
github-repos
|
def reload_data(self):
db.session.rollback()
self.__data = {}
try:
for ns in db.ConfigNamespace.all():
self.__data[ns.namespace_prefix] = {x.key: x.value for x in ns.config_items}
except SQLAlchemyError as ex:
if (str(ex).find('1146') != (- 1)):
pass
|
Reloads the configuration from the database
Returns:
`None`
|
codesearchnet
|
def validate(self, size):
msg = 'scale and array size must match, but were scale: {self.scale.n_bands}, array size: {size}'
if (size != len(self.scale)):
raise ValueError(msg.format(**locals()))
|
Ensure that the size of the dimension matches the number of bands in the
scale
Raises:
ValueError: when the dimension size and number of bands don't match
|
codesearchnet
|
def _ip_unnumbered_type(self, **kwargs):
method_name = ('interface_%s_ip_ip_config_unnumbered_ip_donor_interface_type' % kwargs['int_type'])
ip_unnumbered_type = getattr(self._interface, method_name)
config = ip_unnumbered_type(**kwargs)
if kwargs['delete']:
tag = 'ip-donor-interface-type'
config.find(('.
return config
|
Return the `ip unnumbered` donor type XML.
You should not use this method.
You probably want `Interface.ip_unnumbered`.
Args:
int_type (str): Type of interface. (gigabitethernet,
tengigabitethernet etc).
delete (bool): Remove the configuration if ``True``.
ip_donor_interface_type (str): The donor interface type (loopback)
Returns:
XML to be passed to the switch.
Raises:
None
|
codesearchnet
|
def _GetKeys(self, data, keys, depth=1):
keys = set(keys)
match = {}
if (depth == 1):
for key in keys:
match[key] = data[key]
else:
for (_, parsed_key, parsed_value) in self._RecurseKey(data, depth=depth):
if (parsed_key in keys):
match[parsed_key] = parsed_value
if (set(match.keys()) == keys):
return match
return match
|
Helper function to return keys nested in a bencode dict.
By default this function will return the values for the named keys requested
by a plugin in match{}. The default setting is to look a single layer down
from the root (same as the check for plugin applicability). This level is
suitable for most cases.
For cases where there is variability in the name at the first level
(e.g. it is the MAC addresses of a device, or a UUID) it is possible to
override the depth limit and use _GetKeys to fetch from a deeper level.
Args:
data (dict[str, object]): bencode data values.
keys (list[str]): keys that should be returned.
depth (int): how many levels deep to check for a match.
Returns:
dict[str, object]: a dictionary with just the keys requested.
|
codesearchnet
|
def wait_for_prompt(self, timeout_s=None):
with self._cond:
if self._prompt:
if (timeout_s is None):
self._cond.wait(((3600 * 24) * 365))
else:
self._cond.wait(timeout_s)
if (self._response is None):
raise PromptUnansweredError
return self._response
|
Wait for the user to respond to the current prompt.
Args:
timeout_s: Seconds to wait before raising a PromptUnansweredError.
Returns:
A string response, or the empty string if text_input was False.
Raises:
PromptUnansweredError: Timed out waiting for the user to respond.
|
codesearchnet
|
def cho_solve(L, b):
from scipy.linalg import cho_solve as sp_cho_solve
L = asarray(L, float)
b = asarray(b, float)
if (L.size == 0):
if (b.size != 0):
raise ValueError('Dimension mismatch between L and b.')
return empty(b.shape)
return sp_cho_solve((L, True), b, check_finite=False)
|
r"""Solve for Cholesky decomposition.
Solve the linear equations :math:`\mathrm A \mathbf x = \mathbf b`,
given the Cholesky factorization of :math:`\mathrm A`.
Args:
L (array_like): Lower triangular matrix.
b (array_like): Right-hand side.
Returns:
:class:`numpy.ndarray`: The solution to the system
:math:`\mathrm A \mathbf x = \mathbf b`.
See Also
--------
numpy.linalg.cholesky : Cholesky decomposition.
scipy.linalg.cho_solve : Solve linear equations given Cholesky
factorization.
|
codesearchnet
|
def create_exponential(num_finite_buckets, growth_factor, scale):
if num_finite_buckets <= 0:
raise ValueError(_BAD_NUM_FINITE_BUCKETS)
if growth_factor <= 1.0:
raise ValueError(_BAD_FLOAT_ARG % (u'growth factor', 1.0))
if scale <= 0.0:
raise ValueError(_BAD_FLOAT_ARG % (u'scale', 0.0))
return sc_messages.Distribution(
bucketCounts=[0] * (num_finite_buckets + 2),
exponentialBuckets=sc_messages.ExponentialBuckets(
numFiniteBuckets=num_finite_buckets,
growthFactor=growth_factor,
scale=scale))
|
Creates a new instance of distribution with exponential buckets
Args:
num_finite_buckets (int): initializes number of finite buckets
growth_factor (float): initializes the growth factor
scale (float): initializes the scale
Return:
:class:`endpoints_management.gen.servicecontrol_v1_messages.Distribution`
Raises:
ValueError: if the args are invalid for creating an instance
|
juraj-google-style
|
def read_value(self):
with ops.name_scope('Read'):
value = self._read_variable_op()
return array_ops.identity(value)
|
Constructs an op which reads the value of this variable.
Should be used when there are multiple reads, or when it is desirable to
read the value only after some condition is true.
Returns:
The value of the variable.
|
github-repos
|
def parse_indices(indices_string):
indices_string = re.sub('\\s+', '', indices_string)
if indices_string.startswith('[') and indices_string.endswith(']'):
indices_string = indices_string[1:-1]
return [int(element) for element in indices_string.split(',')]
|
Parse a string representing indices.
For example, if the input is "[1, 2, 3]", the return value will be a list of
indices: [1, 2, 3]
Args:
indices_string: (str) a string representing indices. Can optionally be
surrounded by a pair of brackets.
Returns:
(list of int): Parsed indices.
|
github-repos
|
def experiment_pb(hparam_infos, metric_infos, user='', description='', time_created_secs=None):
if (time_created_secs is None):
time_created_secs = time.time()
experiment = api_pb2.Experiment(description=description, user=user, time_created_secs=time_created_secs, hparam_infos=hparam_infos, metric_infos=metric_infos)
return _summary(metadata.EXPERIMENT_TAG, plugin_data_pb2.HParamsPluginData(experiment=experiment))
|
Creates a summary that defines a hyperparameter-tuning experiment.
Args:
hparam_infos: Array of api_pb2.HParamInfo messages. Describes the
hyperparameters used in the experiment.
metric_infos: Array of api_pb2.MetricInfo messages. Describes the metrics
used in the experiment. See the documentation at the top of this file
for how to populate this.
user: String. An id for the user running the experiment
description: String. A description for the experiment. May contain markdown.
time_created_secs: float. The time the experiment is created in seconds
since the UNIX epoch. If None uses the current time.
Returns:
A summary protobuffer containing the experiment definition.
|
codesearchnet
|
def _FormatServiceText(self, service):
string_segments = [
service.name,
'\tImage Path = {0:s}'.format(service.image_path),
'\tService Type = {0:s}'.format(service.HumanReadableType()),
'\tStart Type = {0:s}'.format(service.HumanReadableStartType()),
'\tService Dll = {0:s}'.format(service.service_dll),
'\tObject Name = {0:s}'.format(service.object_name),
'\tSources:']
for source in service.sources:
string_segments.append('\t\t{0:s}:{1:s}'.format(source[0], source[1]))
return '\n'.join(string_segments)
|
Produces a human readable multi-line string representing the service.
Args:
service (WindowsService): service to format.
Returns:
str: human readable representation of a Windows Service.
|
juraj-google-style
|
class DPTNeck(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
if config.backbone_config is not None and config.backbone_config.model_type in ['swinv2']:
self.reassemble_stage = None
else:
self.reassemble_stage = DPTReassembleStage(config)
self.convs = nn.ModuleList()
for channel in config.neck_hidden_sizes:
self.convs.append(nn.Conv2d(channel, config.fusion_hidden_size, kernel_size=3, padding=1, bias=False))
self.fusion_stage = DPTFeatureFusionStage(config)
def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]:
if not isinstance(hidden_states, (tuple, list)):
raise TypeError('hidden_states should be a tuple or list of tensors')
if len(hidden_states) != len(self.config.neck_hidden_sizes):
raise ValueError('The number of hidden states should be equal to the number of neck hidden sizes.')
if self.reassemble_stage is not None:
hidden_states = self.reassemble_stage(hidden_states, patch_height, patch_width)
features = [self.convs[i](feature) for i, feature in enumerate(hidden_states)]
output = self.fusion_stage(features)
return output
|
DPTNeck. A neck is a module that is normally used between the backbone and the head. It takes a list of tensors as
input and produces another list of tensors as output. For DPT, it includes 2 stages:
* DPTReassembleStage
* DPTFeatureFusionStage.
Args:
config (dict): config dict.
|
github-repos
|
def reverse_fstring(pattern: str, string: str) -> dict[str, str] | None:
pattern = _pattern_cache(pattern)
if (m := pattern.fullmatch(string)):
return m.groupdict()
else:
return None
|
Reverse f-string.
Example:
```python
epy.reverse_fstring(
'/home/{user}/projects/{project}',
'/home/conchylicultor/projects/menhir'
) == {
'user': 'conchylicultor',
'project': 'menhir',
}
```
Args:
pattern: The f-string pattern (can only contained named group)
string: The string to search
Returns:
The extracted info
|
github-repos
|
def minimal_selector(self, complete_selector):
if (complete_selector not in self._selector_map):
raise KeyError("No value with selector '{}'.".format(complete_selector))
selector_components = complete_selector.split('.')
node = self._selector_tree
start = None
for (i, component) in enumerate(reversed(selector_components)):
if (len(node) == 1):
if (start is None):
start = (- i)
else:
start = None
node = node[component]
if (len(node) > 1):
return complete_selector
return '.'.join(selector_components[start:])
|
Returns the minimal selector that uniquely matches `complete_selector`.
Args:
complete_selector: A complete selector stored in the map.
Returns:
A partial selector that unambiguously matches `complete_selector`.
Raises:
KeyError: If `complete_selector` is not in the map.
|
codesearchnet
|
def _subtoken_ids_to_tokens(self, subtokens):
concatenated = ''.join([self._subtoken_id_to_subtoken_string(s) for s in subtokens])
split = concatenated.split('_')
ret = []
for t in split:
if t:
unescaped = _unescape_token((t + '_'))
if unescaped:
ret.append(unescaped)
return ret
|
Converts a list of subtoken ids to a list of tokens.
Args:
subtokens: a list of integers in the range [0, vocab_size)
Returns:
a list of strings.
|
codesearchnet
|
def exists(self, file_path, check_link=False):
if check_link and self.islink(file_path):
return True
file_path = make_string_path(file_path)
if file_path is None:
raise TypeError
if not file_path:
return False
if file_path == self.dev_null.name:
return not self.is_windows_fs
try:
if self.is_filepath_ending_with_separator(file_path):
return False
file_path = self.resolve_path(file_path)
except (IOError, OSError):
return False
if file_path == self.root.name:
return True
path_components = self._path_components(file_path)
current_dir = self.root
for component in path_components:
current_dir = self._directory_content(current_dir, component)[1]
if not current_dir:
return False
return True
|
Return true if a path points to an existing file system object.
Args:
file_path: The path to examine.
Returns:
(bool) True if the corresponding object exists.
Raises:
TypeError: if file_path is None.
|
juraj-google-style
|
def parse_config(data: dict) -> dict:
return {'email': data.get('email'), 'family': data['family_id'], 'samples': [{'id': sample_id, 'type': analysis_type} for (sample_id, analysis_type) in data['analysis_type'].items()], 'config_path': data['config_file_analysis'], 'is_dryrun': (True if ('dry_run_all' in data) else False), 'log_path': data['log_file'], 'out_dir': data['outdata_dir'], 'priority': data['slurm_quality_of_service'], 'sampleinfo_path': data['sample_info_file']}
|
Parse MIP config file.
Args:
data (dict): raw YAML input from MIP analysis config file
Returns:
dict: parsed data
|
codesearchnet
|
def initialize_variables(sess, saver, logdir, checkpoint=None, resume=None):
sess.run(tf.group(tf.local_variables_initializer(), tf.global_variables_initializer()))
if (resume and (not (logdir or checkpoint))):
raise ValueError('Need to specify logdir to resume a checkpoint.')
if logdir:
state = tf.train.get_checkpoint_state(logdir)
if checkpoint:
checkpoint = os.path.join(logdir, checkpoint)
if ((not checkpoint) and state and state.model_checkpoint_path):
checkpoint = state.model_checkpoint_path
if (checkpoint and (resume is False)):
message = 'Found unexpected checkpoint when starting a new run.'
raise RuntimeError(message)
if checkpoint:
saver.restore(sess, checkpoint)
|
Initialize or restore variables from a checkpoint if available.
Args:
sess: Session to initialize variables in.
saver: Saver to restore variables.
logdir: Directory to search for checkpoints.
checkpoint: Specify what checkpoint name to use; defaults to most recent.
resume: Whether to expect recovering a checkpoint or starting a new run.
Raises:
ValueError: If resume expected but no log directory specified.
RuntimeError: If no resume expected but a checkpoint was found.
|
codesearchnet
|
def id_by_index(index, resources):
if ((index < 0) or (index >= len(resources))):
return ''
try:
return resources[index].header_signature
except AttributeError:
return resources[index].address
|
Helper method to fetch the id or address of a resource by its index
Args:
resources (list of objects): The resources to be paginated
index (integer): The index of the target resource
Returns:
str: The address or header_signature of the resource,
returns an empty string if not found
|
codesearchnet
|
def AddBatchJob(client):
batch_job_service = client.GetService('BatchJobService', version='v201809')
batch_job_operations = [{'operand': {}, 'operator': 'ADD'}]
return batch_job_service.mutate(batch_job_operations)['value'][0]
|
Add a new BatchJob to upload operations to.
Args:
client: an instantiated AdWordsClient used to retrieve the BatchJob.
Returns:
The new BatchJob created by the request.
|
codesearchnet
|
def create(self, key, value):
data = None
if key is not None:
key = key.strip()
self.tcex.log.debug(u'create variable {}'.format(key))
parsed_key = self.parse_variable(key.strip())
variable_type = parsed_key['type']
if variable_type in self.read_data_types:
data = self.create_data_types[variable_type](key, value)
else:
data = self.create_raw(key, value)
return data
|
Create method of CRUD operation for working with KeyValue DB.
This method will automatically determine the variable type and
call the appropriate method to write the data. If a non standard
type is provided the data will be written as RAW data.
Args:
key (string): The variable to write to the DB.
value (any): The data to write to the DB.
Returns:
(string): Result string of DB write.
|
juraj-google-style
|
def get_info(self, userSpecifier, **kwargs):
request = Request('GET', '/v3/users/{userSpecifier}')
request.set_path_param('userSpecifier', userSpecifier)
response = self.ctx.request(request)
if (response.content_type is None):
return response
if (not response.content_type.startswith('application/json')):
return response
jbody = json.loads(response.raw_body)
parsed_body = {}
if (str(response.status) == '200'):
if (jbody.get('userInfo') is not None):
parsed_body['userInfo'] = self.ctx.user.UserInfo.from_dict(jbody['userInfo'], self.ctx)
elif (str(response.status) == '401'):
if (jbody.get('errorCode') is not None):
parsed_body['errorCode'] = jbody.get('errorCode')
if (jbody.get('errorMessage') is not None):
parsed_body['errorMessage'] = jbody.get('errorMessage')
elif (str(response.status) == '403'):
if (jbody.get('errorCode') is not None):
parsed_body['errorCode'] = jbody.get('errorCode')
if (jbody.get('errorMessage') is not None):
parsed_body['errorMessage'] = jbody.get('errorMessage')
elif (str(response.status) == '405'):
if (jbody.get('errorCode') is not None):
parsed_body['errorCode'] = jbody.get('errorCode')
if (jbody.get('errorMessage') is not None):
parsed_body['errorMessage'] = jbody.get('errorMessage')
else:
parsed_body = jbody
response.body = parsed_body
return response
|
Fetch the user information for the specified user. This endpoint is
intended to be used by the user themself to obtain their own
information.
Args:
userSpecifier:
The User Specifier
Returns:
v20.response.Response containing the results from submitting the
request
|
codesearchnet
|
def get_repo_url(pypirc, repository):
pypirc = os.path.abspath(os.path.expanduser(pypirc))
pypi_config = base.PyPIConfig(pypirc)
repo_config = pypi_config.get_repo_config(repository)
if repo_config:
return repo_config.get_clean_url()
else:
return base.RepositoryURL(repository)
|
Fetch the RepositoryURL for a given repository, reading info from pypirc.
Will try to find the repository in the .pypirc, including username/password.
Args:
pypirc (str): path to the .pypirc config file
repository (str): URL or alias for the repository
Returns:
base.RepositoryURL for the repository
|
codesearchnet
|
def tf_step(self, x, iteration, conjugate, residual, squared_residual):
x, next_iteration, conjugate, residual, squared_residual = super(ConjugateGradient, self).tf_step(
x, iteration, conjugate, residual, squared_residual
)
A_conjugate = self.fn_x(conjugate)
if self.damping > 0.0:
A_conjugate = [A_conj + self.damping * conj for A_conj, conj in zip(A_conjugate, conjugate)]
conjugate_A_conjugate = tf.add_n(
inputs=[tf.reduce_sum(input_tensor=(conj * A_conj)) for conj, A_conj in zip(conjugate, A_conjugate)]
)
alpha = squared_residual / tf.maximum(x=conjugate_A_conjugate, y=util.epsilon)
next_x = [t + alpha * conj for t, conj in zip(x, conjugate)]
next_residual = [res - alpha * A_conj for res, A_conj in zip(residual, A_conjugate)]
next_squared_residual = tf.add_n(inputs=[tf.reduce_sum(input_tensor=(res * res)) for res in next_residual])
beta = next_squared_residual / tf.maximum(x=squared_residual, y=util.epsilon)
next_conjugate = [res + beta * conj for res, conj in zip(next_residual, conjugate)]
return next_x, next_iteration, next_conjugate, next_residual, next_squared_residual
|
Iteration loop body of the conjugate gradient algorithm.
Args:
x: Current solution estimate $x_t$.
iteration: Current iteration counter $t$.
conjugate: Current conjugate $c_t$.
residual: Current residual $r_t$.
squared_residual: Current squared residual $r_t^2$.
Returns:
Updated arguments for next iteration.
|
juraj-google-style
|
def Cancel(self, request, global_params=None):
config = self.GetMethodConfig('Cancel')
return self._RunMethod(config, request, global_params=global_params)
|
Cancels a build in progress.
Args:
request: (CancelBuildRequest) input message
global_params: (StandardQueryParameters, default: None) global arguments
Returns:
(Build) The response message.
|
github-repos
|
def get_weights(self):
return backend.batch_get_value(self.weights)
|
Returns the current value of the weights of the optimizer.
Returns:
A list of numpy arrays.
|
github-repos
|
def full_game_name(short_name):
camel_game_name = misc_utils.snakecase_to_camelcase(short_name)
full_name = camel_game_name + ATARI_GAME_MODE
return full_name
|
CamelCase game name with mode suffix.
Args:
short_name: snake_case name without mode e.g "crazy_climber"
Returns:
full game name e.g. "CrazyClimberNoFrameskip-v4"
|
juraj-google-style
|
def import_aliases(alias_source):
alias_table = get_alias_table()
if is_url(alias_source):
alias_source = retrieve_file_from_url(alias_source)
alias_table.read(alias_source)
os.remove(alias_source)
else:
alias_table.read(alias_source)
_commit_change(alias_table)
|
Import aliases from a file or an URL.
Args:
alias_source: The source of the alias. It can be a filepath or an URL.
|
juraj-google-style
|
def parse_structure(self, store_in_memory=False):
if (not self.structure_file):
log.error('{}: no structure file, unable to parse'.format(self.id))
return None
else:
structure = StructureIO(self.structure_path, self.file_type)
structure_chains = [x.id for x in structure.first_model.child_list]
self.add_chain_ids(structure_chains)
self.get_structure_seqs(structure.first_model)
if (not self.mapped_chains):
self.add_mapped_chain_ids(structure_chains)
if store_in_memory:
self.parsed = True
self.structure = structure
return structure
|
Read the 3D coordinates of a structure file and return it as a Biopython Structure object.
Also create ChainProp objects in the chains attribute for each chain in the first model.
Args:
store_in_memory (bool): If the Biopython Structure object should be stored in the attribute ``structure``.
Returns:
Structure: Biopython Structure object
|
codesearchnet
|
def backend_monitor(backend):
if not isinstance(backend, IBMQBackend):
raise QiskitError('Input variable is not of type IBMQBackend.')
config = backend.configuration().to_dict()
status = backend.status().to_dict()
config_dict = {**status, **config}
if not config['simulator']:
props = backend.properties().to_dict()
print(backend.name())
print('='*len(backend.name()))
print('Configuration')
print('-'*13)
offset = ' '
upper_list = ['n_qubits', 'operational',
'status_msg', 'pending_jobs',
'basis_gates', 'local', 'simulator']
lower_list = list(set(config_dict.keys()).difference(upper_list))
lower_list.remove('gates')
for item in upper_list+lower_list:
print(offset+item+':', config_dict[item])
if config['simulator']:
return
print()
qubit_header = 'Qubits [Name / Freq / T1 / T2 / U1 err / U2 err / U3 err / Readout err]'
print(qubit_header)
print('-'*len(qubit_header))
sep = ' / '
for qub in range(len(props['qubits'])):
name = 'Q%s' % qub
qubit_data = props['qubits'][qub]
gate_data = props['gates'][3*qub:3*qub+3]
t1_info = qubit_data[0]
t2_info = qubit_data[1]
freq_info = qubit_data[2]
readout_info = qubit_data[3]
freq = str(round(freq_info['value'], 5))+' '+freq_info['unit']
T1 = str(round(t1_info['value'],
5))+' ' + t1_info['unit']
T2 = str(round(t2_info['value'],
5))+' ' + t2_info['unit']
U1 = str(round(gate_data[0]['parameters'][0]['value'], 5))
U2 = str(round(gate_data[1]['parameters'][0]['value'], 5))
U3 = str(round(gate_data[2]['parameters'][0]['value'], 5))
readout_error = str(round(readout_info['value'], 5))
qstr = sep.join([name, freq, T1, T2, U1, U2, U3, readout_error])
print(offset+qstr)
print()
multi_qubit_gates = props['gates'][3*config['n_qubits']:]
multi_header = 'Multi-Qubit Gates [Name / Type / Gate Error]'
print(multi_header)
print('-'*len(multi_header))
for gate in multi_qubit_gates:
name = gate['name']
ttype = gate['gate']
error = str(round(gate['parameters'][0]['value'], 5))
mstr = sep.join([name, ttype, error])
print(offset+mstr)
|
Monitor a single IBMQ backend.
Args:
backend (IBMQBackend): Backend to monitor.
Raises:
QiskitError: Input is not a IBMQ backend.
|
juraj-google-style
|
def has_open_file(self, file_object):
return (file_object in [wrappers[0].get_object()
for wrappers in self.open_files if wrappers])
|
Return True if the given file object is in the list of open files.
Args:
file_object: The FakeFile object to be checked.
Returns:
`True` if the file is open.
|
juraj-google-style
|
def recipe_dcm_to_sheets(config, auth_read, account, report_id, report_name, sheet, tab):
dcm(config, {'auth': auth_read, 'report': {'account': account, 'report_id': report_id, 'name': report_name}, 'out': {'sheets': {'sheet': sheet, 'tab': tab, 'range': 'A1'}}})
|
Move existing CM report into a Sheet tab.
Args:
auth_read (authentication) - Credentials used for reading data.
account (integer) - NA
report_id (integer) - NA
report_name (string) - NA
sheet (string) - NA
tab (string) - NA
|
github-repos
|
def extract(self, extractor: Extractor, extractable: Extractable = None, tokenizer: Tokenizer = None,
joiner: str = " ", **options) -> List[Extraction]:
if not extractable:
extractable = self
if not tokenizer:
tokenizer = self.etk.default_tokenizer
extracted_results = list()
if extractor.input_type == InputType.TOKENS:
if self.etk.error_policy == ErrorPolicy.PROCESS:
if isinstance(extractable.value, list):
self.etk.log(
"Extractor needs tokens, tokenizer needs string to tokenize, got list, converting to string",
"warning", self.doc_id, self.url)
warnings.warn(
"Extractor needs tokens, tokenizer needs string to tokenize, got list, converting to string")
elif isinstance(extractable.value, dict):
self.etk.log(
"Extractor needs tokens, tokenizer needs string to tokenize, got dict, converting to string",
"warning", self.doc_id, self.url)
warnings.warn(
"Extractor needs tokens, tokenizer needs string to tokenize, got dict, converting to string")
tokens = extractable.get_tokens(tokenizer)
if tokens:
extracted_results = extractor.extract(tokens, **options)
else:
raise ExtractorValueError(
"Extractor needs string, tokenizer needs string to tokenize, got " + str(type(extractable.value)))
elif extractor.input_type == InputType.TEXT:
if self.etk.error_policy == ErrorPolicy.PROCESS:
if isinstance(extractable.value, list):
self.etk.log("Extractor needs string, got extractable value as list, converting to string",
"warning", self.doc_id, self.url)
warnings.warn("Extractor needs string, got extractable value as list, converting to string")
elif isinstance(extractable.value, dict):
self.etk.log("Extractor needs string, got extractable value as dict, converting to string",
"warning", self.doc_id, self.url)
warnings.warn("Extractor needs string, got extractable value as dict, converting to string")
text = extractable.get_string(joiner)
if text:
extracted_results = extractor.extract(text, **options)
else:
pass
elif extractor.input_type == InputType.OBJECT:
extracted_results = extractor.extract(extractable.value, **options)
elif extractor.input_type == InputType.HTML:
if bool(BeautifulSoup(extractable.value, "html.parser").find()):
extracted_results = extractor.extract(extractable.value, **options)
else:
pass
try:
jsonPath = extractable.full_path
except AttributeError:
jsonPath = None
for e in extracted_results:
e.prov_id = self.provenance_id_index
extraction_provenance_record: ExtractionProvenanceRecord = ExtractionProvenanceRecord(
e.prov_id, jsonPath, e.provenance["extractor_name"],
e.provenance["start_char"], e.provenance["end_char"], e.provenance["confidence"], self,
extractable.prov_id)
self._provenances[e.prov_id] = extraction_provenance_record
self.provenance_id_index_incrementer()
self.create_provenance(extraction_provenance_record)
return extracted_results
|
Invoke the extractor on the given extractable, accumulating all the extractions in a list.
Args:
extractor (Extractor):
extractable (extractable):
tokenizer: user can pass custom tokenizer if extractor wants token
joiner: user can pass joiner if extractor wants text
options: user can pass arguments as a dict to the extract() function of different extractors
Returns: List of Extraction, containing all the extractions.
|
juraj-google-style
|
def get_snippet(self, snippet_key = None):
uri = '/'.join([
self.api_uri,
self.snippets_suffix
])
if snippet_key:
uri = '/'.join([
uri,
snippet_key
])
code, data = self._req('get', uri)
return code, data
|
Get all/one specific snippet by its key
Args:
key snippet key (default: None i.e. ALL)
return (status code, snippet dict or list thereof)
|
juraj-google-style
|
def setContext(self, context_str):
if (len(self.m_context) == 0) and (len(context_str) >= 7):
if context_str[0:7] != "request":
ekm_log("Context: " + context_str)
self.m_context = context_str
|
Set context string for serial command. Private setter.
Args:
context_str (str): Command specific string.
|
juraj-google-style
|
def _SetupValuesForDevice(self, tensor_in_sizes, filter_in_sizes, dilations, strides, padding, data_format, dtype, use_gpu):
x1 = self._CreateNumpyTensor(tensor_in_sizes)
x2 = self._CreateNumpyTensor(filter_in_sizes)
with test_util.device(use_gpu):
t1 = constant_op.constant(x1, shape=tensor_in_sizes, dtype=dtype)
t2 = constant_op.constant(x2, shape=filter_in_sizes, dtype=dtype)
strides = [1] + strides + [1]
dilations = [1] + dilations + [1]
if isinstance(padding, (list, tuple)):
padding = [(0, 0)] + padding + [(0, 0)]
if data_format == 'NCHW':
t1 = test_util.NHWCToNCHW(t1)
strides = test_util.NHWCToNCHW(strides)
dilations = test_util.NHWCToNCHW(dilations)
if isinstance(padding, (list, tuple)):
padding = test_util.NHWCToNCHW(padding)
conv = nn_ops.conv2d(t1, t2, dilations=dilations, strides=strides, padding=padding, data_format=data_format)
self.assertEqual(conv.dtype, dtype)
if data_format == 'NCHW':
conv = test_util.NCHWToNHWC(conv)
return conv
|
Verifies the output values of the convolution function.
Args:
tensor_in_sizes: Input tensor dimensions in [batch, input_rows,
input_cols, input_depth].
filter_in_sizes: Filter tensor dimensions in [kernel_rows, kernel_cols,
input_depth, output_depth].
dilations: Dilated rate: [col_dilation, row_dilation]
strides: Stride: [col_stride, row_stride]
padding: Padding type.
data_format: Format of the data tensors.
dtype: Data type for inputs and outputs.
use_gpu: True if the operations should be run on GPU
Returns:
Symbolic tensor value that can be used to execute the computation
|
github-repos
|
def _ParseCredentialOptions(self, options):
credentials = getattr(options, 'credentials', [])
if (not isinstance(credentials, list)):
raise errors.BadConfigOption('Unsupported credentials value.')
for credential_string in credentials:
(credential_type, _, credential_data) = credential_string.partition(':')
if ((not credential_type) or (not credential_data)):
raise errors.BadConfigOption('Badly formatted credential: {0:s}.'.format(credential_string))
if (credential_type not in self._SUPPORTED_CREDENTIAL_TYPES):
raise errors.BadConfigOption('Unsupported credential type for: {0:s}.'.format(credential_string))
if (credential_type in self._BINARY_DATA_CREDENTIAL_TYPES):
try:
credential_data = credential_data.decode('hex')
except TypeError:
raise errors.BadConfigOption('Unsupported credential data for: {0:s}.'.format(credential_string))
self._credentials.append((credential_type, credential_data))
|
Parses the credential options.
Args:
options (argparse.Namespace): command line arguments.
Raises:
BadConfigOption: if the options are invalid.
|
codesearchnet
|
def filter_iqr(array, lower, upper):
(upper, lower) = iqr(array, upper, lower)
new = list(array)
for x in new[:]:
if ((x < lower) or (x > upper)):
new.remove(x)
return new
|
Return elements which falls within specified interquartile range.
Arguments:
array (list): Sequence of numbers.
lower (float): Lower bound for IQR, in range 0 <= lower <= 1.
upper (float): Upper bound for IQR, in range 0 <= upper <= 1.
Returns:
list: Copy of original list, with elements outside of IQR
removed.
|
codesearchnet
|
def has_progress(self, previous_perf: 'NexmarkPerf') -> bool:
if self.runtime_sec != previous_perf.runtime_sec or self.event_count != previous_perf.event_count or self.result_count != previous_perf.result_count:
return True
return False
|
Args:
previous_perf: a NexmarkPerf object to be compared to self
Returns:
True if there are observed pipeline activity between self and other
NexmarkPerf values
|
github-repos
|
def _generate_date_with_wildcard_query(self, date_value):
if date_value.endswith(ast.GenericValue.WILDCARD_TOKEN):
try:
date_value = _truncate_wildcard_from_date(date_value)
except ValueError:
return {}
return self._generate_range_queries(self.KEYWORD_TO_ES_FIELDNAME['date'], {ES_RANGE_EQ_OPERATOR: date_value})
else:
return {}
|
Helper for generating a date keyword query containing a wildcard.
Returns:
(dict): The date query containing the wildcard or an empty dict in case the date value is malformed.
The policy followed here is quite conservative on what it accepts as valid input. Look into
:meth:`inspire_query_parser.utils.visitor_utils._truncate_wildcard_from_date` for more information.
|
codesearchnet
|
def get_cpu_props(cls, family, arch='x86'):
cpus = cls.get_cpus_by_arch(arch)
try:
return cpus.xpath('model[@name="{0}"]'.format(family))[0]
except IndexError:
raise LagoException('No such CPU family: {0}'.format(family))
|
Get CPU info XML
Args:
family(str): CPU family
arch(str): CPU arch
Returns:
lxml.etree.Element: CPU xml
Raises:
:exc:`~LagoException`: If no such CPU family exists
|
codesearchnet
|
def by_issn(issn):
old_url = aleph.ALEPH_URL
aleph.ALEPH_URL = NTK_ALEPH_URL
records = aleph.getISSNsXML(issn, base="STK02")
aleph.ALEPH_URL = old_url
for record in records:
marc = MARCXMLRecord(record)
additional_info = {
"222": marc.get("222", None),
"PER": marc.get("PER", None),
"776": marc.get("776", None),
"008": marc.get("008", None),
"alt_end_date": ""
}
additional_info = {
key: val
for key, val in additional_info.iteritems()
if val
}
alt_end_date = None
alt_creation_date = None
if additional_info["008"]:
alt_creation_date = additional_info["008"][7:11]
alt_end_date = additional_info["008"][11:15]
if alt_end_date in ["9999", "****"]:
alt_creation_date += "-"
alt_end_date = None
additional_info["alt_end_date"] = alt_end_date
author = Author.parse_author(marc)
model = Model(
url=_first_or_none(
marc.get("856u")
),
conspect=_first_or_none(
marc.get("072a")
),
annotation_tags=_first_or_none(
marc.get("520a")
),
periodicity=_first_or_none(
marc.get("310a")
),
title_tags=_first_or_none(
marc.get("222a")
),
subtitle_tags=_first_or_none(
marc.get("245b")
),
place_tags=remove_hairs(
_first_or_none(marc.get("260a")) or ""
),
author_tags=author._asdict() if author else None,
publisher_tags=remove_hairs(
(
_first_or_none(marc.get("260b")) or
_first_or_none(marc.get("264b")) or
"",
),
", "
),
creation_dates=_first_or_none(
marc.get("260c", [alt_creation_date])
),
lang_tags=_first_or_none(
marc.get("040b")
),
keyword_tags=marc.get("650a07"),
source_info=_first_or_none(
marc.get("500a")
),
original_xml=record,
additional_info=additional_info,
)
yield _add_source(model)
|
Query aleph for records with given `issn`. The lookup is directed to the
NTK's Aleph.
Args:
issn (str): ISSN of the periodical.
Returns:
obj: :class:`Model` instances for each record.
|
juraj-google-style
|
def parse_args(argv=None):
parent_parser = get_parent_parser()
desc = "Data Version Control"
parser = DvcParser(
prog="dvc",
description=desc,
parents=[parent_parser],
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument(
"-V",
"--version",
action=VersionAction,
nargs=0,
help="Show program's version.",
)
subparsers = parser.add_subparsers(
title="Available Commands",
metavar="COMMAND",
dest="cmd",
help="Use dvc COMMAND --help for command-specific help.",
)
fix_subparsers(subparsers)
for cmd in COMMANDS:
cmd.add_parser(subparsers, parent_parser)
args = parser.parse_args(argv)
return args
|
Parses CLI arguments.
Args:
argv: optional list of arguments to parse. sys.argv is used by default.
Raises:
dvc.exceptions.DvcParserError: raised for argument parsing errors.
|
juraj-google-style
|
def create(self, name):
return Bucket(name, context=self._context).create(self._project_id)
|
Creates a new bucket.
Args:
name: a unique name for the new bucket.
Returns:
The newly created bucket.
Raises:
Exception if there was an error creating the bucket.
|
juraj-google-style
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.