code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def _fiss_agent_header(headers=None):
_set_session()
fiss_headers = {"User-Agent" : FISS_USER_AGENT}
if headers is not None:
fiss_headers.update(headers)
return fiss_headers
|
Return request headers for fiss.
Inserts FISS as the User-Agent.
Initializes __SESSION if it hasn't been set.
Args:
headers (dict): Include additional headers as key-value pairs
|
juraj-google-style
|
def __init__(self, temperatures, materials):
self._table = Table(
column_keys=temperatures,
rows_mapping=materials
)
|
Create a material stress table.
Args:
temperatures: A sequence of temperatures.
materials: A mapping of material names to sequences of stress values
which correspond to the temperatures.
|
juraj-google-style
|
def _build_statistics(self, input_batch, use_batch_stats, stat_dtype):
if (self.MOVING_MEAN not in self._initializers):
self._initializers[self.MOVING_MEAN] = create_mean_initializer()
self._moving_mean = tf.get_variable('moving_mean', dtype=stat_dtype, shape=(self._num_channels,), collections=[tf.GraphKeys.MOVING_AVERAGE_VARIABLES, tf.GraphKeys.GLOBAL_VARIABLES], initializer=self._initializers[self.MOVING_MEAN], trainable=False)
if (self.MOVING_VARIANCE not in self._initializers):
self._initializers[self.MOVING_VARIANCE] = create_variance_initializer()
self._moving_variance = tf.get_variable('moving_variance', dtype=stat_dtype, shape=(self._num_channels,), collections=[tf.GraphKeys.MOVING_AVERAGE_VARIABLES, tf.GraphKeys.GLOBAL_VARIABLES], initializer=self._initializers[self.MOVING_VARIANCE], trainable=False)
def build_batch_stats():
'Builds the batch statistics calculation ops.'
(mean, variance) = tf.nn.moments(input_batch, self._axis, keep_dims=True, name='normalize_moments')
return (mean, variance)
def build_moving_stats():
'Retrieves the moving statistics.'
input_dtype = input_batch.dtype.base_dtype
if (stat_dtype == input_dtype):
return (tf.identity(self._moving_mean), tf.identity(self._moving_variance))
else:
return (tf.cast(self._moving_mean, input_dtype), tf.cast(self._moving_variance, input_dtype))
(mean, variance) = utils.smart_cond(use_batch_stats, build_batch_stats, build_moving_stats)
return (mean, variance)
|
Builds the statistics part of the graph when using moving variance.
Args:
input_batch: Input batch Tensor.
use_batch_stats: Boolean to indicate if batch statistics should be
calculated, otherwise moving averages are returned.
stat_dtype: TensorFlow datatype to use for the moving mean and variance.
Returns:
Tuple of (mean, variance), each of the same datatype as `input_batch`.
|
codesearchnet
|
def get_ip_address(domain):
if (':
domain = ('http:
hostname = urlparse(domain).netloc
if (not hostname):
raise ValueError("Can't parse hostname!")
return socket.gethostbyname(hostname)
|
Get IP address for given `domain`. Try to do smart parsing.
Args:
domain (str): Domain or URL.
Returns:
str: IP address.
Raises:
ValueError: If can't parse the domain.
|
codesearchnet
|
def _find_children_hints_in_while_loop(function_def, nodes_mapping):
new_nodes = []
for node in function_def.node_def:
for i, _ in enumerate(node.input):
if node.input[i] in nodes_mapping:
node.input[i] = nodes_mapping[node.input[i]]
new_nodes.append(_copy.deepcopy(node))
name_to_seq_num = _extract_topology_sequence_mapping(function_def.node_def)
children_hints = _find_all_hints_in_nodes(new_nodes)
children_hints_q = []
for hint in children_hints.values():
_, output_names = hint.flattened_inputs_and_outputs()
seq = name_to_seq_num[output_names[0]]
for output_name in output_names:
seq = min(seq, name_to_seq_num[output_name])
children_hints_q.append((seq, hint))
children_hints_q.sort(key=lambda tup: tup[0])
ordered_children_hints = [x[1] for x in children_hints_q]
return (ordered_children_hints, new_nodes)
|
Find children hints and all nodes inside the while loop.
Args:
function_def: Function def of the while loop.
nodes_mapping: While loop input_arg : real node name.
Returns:
Ordered children hints and all re-mapped nodes inside the while loop.
|
github-repos
|
def deal_with_changeset_stack_policy(self, fqn, stack_policy):
if stack_policy:
kwargs = generate_stack_policy_args(stack_policy)
kwargs['StackName'] = fqn
logger.debug('Setting stack policy on %s.', fqn)
self.cloudformation.set_stack_policy(**kwargs)
|
Set a stack policy when using changesets.
ChangeSets don't allow you to set stack policies in the same call to
update them. This sets it before executing the changeset if the
stack policy is passed in.
Args:
stack_policy (:class:`stacker.providers.base.Template`): A template
object representing a stack policy.
|
codesearchnet
|
def vmstat(stat):
out = subprocess.check_output(['vmstat', '-s'])
stat = stat.encode('ascii')
for line in out.split(b'\n'):
line = line.strip()
if (stat in line):
return int(line.split(b' ')[0])
raise ValueError("Can't find {} in 'vmstat' output.".format(stat))
|
Run vmstat and get a particular statistic.
Args:
stat: The statistic that we are interested in retrieving.
Returns:
The parsed output.
|
codesearchnet
|
def mimic_adam_with_adafactor(hparams):
assert ('adam' in hparams.optimizer)
hparams.optimizer = 'adafactor'
hparams.optimizer_adafactor_beta1 = hparams.optimizer_adam_beta1
hparams.optimizer_adafactor_beta2 = hparams.optimizer_adam_beta2
hparams.optimizer_adafactor_multiply_by_parameter_scale = False
hparams.optimizer_adafactor_factored = False
hparams.optimizer_adafactor_clipping_threshold = None
hparams.optimizer_adafactor_decay_type = 'adam'
|
Switch from Adam to Adafactor, approximating the behavior of Adam.
Some minor things may be different, like epsilon and beta1 correction.
Args:
hparams: model hyperparameters where "adam" in hparams.optimizer
|
codesearchnet
|
def parse_pv(header):
order_fit = parse_order_fit(header)
def parse_with_base(i):
key_base = ('PV%d_' % i)
pvi_x = [header[(key_base + '0')]]
def parse_range(lower, upper):
for j in range(lower, (upper + 1)):
pvi_x.append(header[(key_base + str(j))])
if (order_fit >= 1):
parse_range(1, 3)
if (order_fit >= 2):
parse_range(4, 6)
if (order_fit >= 3):
parse_range(7, 10)
return pvi_x
return [parse_with_base(1), parse_with_base(2)]
|
Parses the PV array from an astropy FITS header.
Args:
header: astropy.io.fits.header.Header
The header containing the PV values.
Returns:
cd: 2d array (list(list(float))
[[PV1_0, PV1_1, ... PV1_N], [PV2_0, PV2_1, ... PV2_N]]
Note that N depends on the order of the fit. For example, an
order 3 fit goes up to PV?_10.
|
codesearchnet
|
def compact_interval_string(value_list):
if not value_list:
return ''
value_list.sort()
interval_list = []
curr = []
for val in value_list:
if curr and (val > curr[-1] + 1):
interval_list.append((curr[0], curr[-1]))
curr = [val]
else:
curr.append(val)
if curr:
interval_list.append((curr[0], curr[-1]))
return ','.join([
'{}-{}'.format(pair[0], pair[1]) if pair[0] != pair[1] else str(pair[0])
for pair in interval_list
])
|
Compact a list of integers into a comma-separated string of intervals.
Args:
value_list: A list of sortable integers such as a list of numbers
Returns:
A compact string representation, such as "1-5,8,12-15"
|
juraj-google-style
|
def execute(self, sensor_graph, scope_stack):
streamer = DataStreamer(self.selector, self.dest, self.report_format, self.auto, report_type=self.report_type, with_other=self.with_other)
sensor_graph.add_streamer(streamer)
|
Execute this statement on the sensor_graph given the current scope tree.
This adds a single DataStreamer to the current sensor graph
Args:
sensor_graph (SensorGraph): The sensor graph that we are building or
modifying
scope_stack (list(Scope)): A stack of nested scopes that may influence
how this statement allocates clocks or other stream resources.
|
juraj-google-style
|
def copy_buffer(self, dst, src, size=(- 1), *, read_offset=0, write_offset=0) -> None:
self.mglo.copy_buffer(dst.mglo, src.mglo, size, read_offset, write_offset)
|
Copy buffer content.
Args:
dst (Buffer): The destination buffer.
src (Buffer): The source buffer.
size (int): The number of bytes to copy.
Keyword Args:
read_offset (int): The read offset.
write_offset (int): The write offset.
|
codesearchnet
|
def convert_nested_time_distributed(weights):
return preprocess_weights_for_loading(layer.layer, weights, original_keras_version, original_backend)
|
Converts layers nested in `TimeDistributed` wrapper.
This function uses `preprocess_weights_for_loading()` for converting nested
layers.
Args:
weights: List of weights values (Numpy arrays).
Returns:
A list of weights values (Numpy arrays).
|
github-repos
|
def create_training_target(self, target, run_eagerly=False):
if self.has_training_target():
raise ValueError('The training_target field for the _TrainingEndpoint instance has already been populated')
if run_eagerly:
self.training_target = _TrainingTarget(None, feedable=True, skip_target_weights=False)
return
if self.should_skip_target():
self.training_target = _TrainingTarget(None)
else:
if target is not None and (not backend.is_placeholder(target)):
feedable = False
skip_target_weights = True
else:
feedable = True
skip_target_weights = False
if target is None:
target_dtype = losses.LABEL_DTYPES_FOR_LOSSES.get(self.loss_fn, backend.dtype(self.output))
target = backend.placeholder(ndim=len(self.shape), name=self.output_name + '_target', sparse=backend.is_sparse(self.output), dtype=target_dtype)
self.training_target = _TrainingTarget(target, feedable=feedable, skip_target_weights=skip_target_weights)
|
Create training_target instance and update the self.training_target.
Note that the input target should just be a tensor or None, and
corresponding training target will be created based on the output and
loss_fn.
Args:
target: the target tensor for the current output. Could be None.
run_eagerly: boolean, whether the model is in run_eagerly mode.
Raises:
ValueError if the training_target field for the current instance has
already been populated.
|
github-repos
|
def reaction_signature(eq, direction=False, stoichiometry=False):
def compounds_sig(compounds):
if stoichiometry:
return tuple(sorted(compounds))
else:
return tuple(sorted(compound for compound, _ in compounds))
left = compounds_sig(eq.left)
right = compounds_sig(eq.right)
if left < right:
reaction_sig = left, right
direction_sig = eq.direction
else:
reaction_sig = right, left
direction_sig = eq.direction.flipped()
if direction:
return reaction_sig, direction_sig
return reaction_sig
|
Return unique signature object for :class:`Reaction`.
Signature objects are hashable, and compare equal only if the reactions
are considered the same according to the specified rules.
Args:
direction: Include reaction directionality when considering equality.
stoichiometry: Include stoichiometry when considering equality.
|
juraj-google-style
|
def copy_to(self, container: Container, fn_host: str, fn_container: str) -> None:
logger.debug('Copying file to container, %s: %s -> %s', container.uid, fn_host, fn_container)
if (not os.path.exists(fn_host)):
logger.error('Failed to copy file [%s] to [%s] in container [%s]: not found.', fn_host, fn_container, container.uid)
raise FileNotFound(fn_host)
cmd = "docker cp '{}' '{}:{}'".format(fn_host, container.id, fn_container)
try:
subprocess.check_output(cmd, shell=True)
logger.debug('Copied file to container, %s: %s -> %s', container.uid, fn_host, fn_container)
r = self.command(container, "sudo chown $(whoami) '{}'".format(fn_container))
if (r.code != 0):
m = 'failed to update permissions for container file [{}] (exit code: {}): {}'
m = m.format(fn_container, r.code, r.output)
raise BugZooException(m)
except subprocess.CalledProcessError:
logger.exception('Failed to copy file to container, %s: %s -> %s', container.uid, fn_host, fn_container)
raise
|
Copies a file from the host machine to a specified location inside a
container.
Raises:
FileNotFound: if the host file wasn't found.
subprocess.CalledProcessError: if the file could not be copied to
the container.
|
codesearchnet
|
def move(self, delta):
pos = self.pos
self.pos = (pos[0]+delta[0], pos[1]+delta[1], pos[2]+delta[0], pos[3]+delta[1])
for age in self.nodes:
for node in age:
node.move(delta)
|
Move the tree.
Args:
delta (tupel): The adjustment of the position.
|
juraj-google-style
|
def excluded_from_module_rename(module, import_rename_spec):
for excluded_prefix in import_rename_spec.excluded_prefixes:
if module.startswith(excluded_prefix):
return True
return False
|
Check if this module import should not be renamed.
Args:
module: (string) module name.
import_rename_spec: ImportRename instance.
Returns:
True if this import should not be renamed according to the
import_rename_spec.
|
github-repos
|
def __init__(self, founded_command='_silence_', score=0.0, is_new_command=False):
self._founded_command = founded_command
self._score = score
self._is_new_command = is_new_command
|
Construct a recognition result.
Args:
founded_command: A string indicating the word just founded.
score: A float representing the confidence of founded word.
is_new_command: A boolean indicating if the founded command is a new one
against the last one.
|
github-repos
|
def parse_services(config, services):
enabled = 0
for service in services:
check_disabled = config.getboolean(service, 'check_disabled')
if (not check_disabled):
enabled += 1
return enabled
|
Parse configuration to return number of enabled service checks.
Arguments:
config (obj): A configparser object with the configuration of
anycast-healthchecker.
services (list): A list of section names which holds configuration
for each service check
Returns:
A number (int) of enabled service checks.
|
codesearchnet
|
def get_updated(node):
if isinstance(node, gast.Assign):
return set.union(*(_get_target(target) for target in node.targets))
elif isinstance(node, (gast.For, gast.AugAssign)):
return _get_target(node.target)
elif isinstance(node, gast.arguments):
targets = set((arg.id for arg in (node.args + node.kwonlyargs)))
if node.vararg:
targets.add(node.vararg.id)
if node.kwarg:
targets.add(node.kwarg.id)
return targets
else:
return set()
|
Return the variable names created or mutated by this statement.
This function considers assign statements, augmented assign statements, and
the targets of for loops, as well as function arguments.
For example, `x[0] = 2` will return `x`, `x, y = 3, 4` will return `x` and
`y`, `for i in range(x)` will return `i`, etc.
Args:
node: An AST node
Returns:
A set of variable names (strings) of all the variables created or mutated.
|
codesearchnet
|
def __set_data__(self, prop, data):
if self.data_attr:
setattr(prop, self.data_attr, data)
else:
rm_idxs = []
for i, val in enumerate(prop):
if val not in data:
rm_idxs.append(i)
for idx in sorted(rm_idxs, reverse=True):
prop.pop(idx)
for val in data:
if val not in prop:
prop.append(val)
|
sets the processed data to the appropriated property attribute
Args:
-----
prop: the property being manipulated
data: the list of processed data
|
juraj-google-style
|
def delete(filething):
t = OggVorbis(filething)
filething.fileobj.seek(0)
t.delete(filething)
|
delete(filething)
Arguments:
filething (filething)
Raises:
mutagen.MutagenError
Remove tags from a file.
|
juraj-google-style
|
def run(self):
target = getattr(self, '_Thread__target', getattr(self, '_target', None))
args = getattr(self, '_Thread__args', getattr(self, '_args', None))
kwargs = getattr(self, '_Thread__kwargs', getattr(self, '_kwargs', None))
if target is not None:
self._return = target(*args, **kwargs)
return None
|
Runs the thread.
Args:
self (ThreadReturn): the ``ThreadReturn`` instance
Returns:
``None``
|
juraj-google-style
|
def shutdown(self, ssc=None, grace_secs=0, timeout=259200):
logging.info('Stopping TensorFlow nodes')
(ps_list, worker_list, eval_list) = ([], [], [])
for node in self.cluster_info:
(ps_list if (node['job_name'] == 'ps') else (eval_list if (node['job_name'] == 'evaluator') else worker_list)).append(node)
if (timeout > 0):
def timeout_handler(signum, frame):
logging.error('TensorFlow execution timed out, exiting Spark application with error status')
self.sc.cancelAllJobs()
self.sc.stop()
sys.exit(1)
signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(timeout)
if (ssc is not None):
while (not ssc.awaitTerminationOrTimeout(1)):
if self.server.done:
logging.info('Server done, stopping StreamingContext')
ssc.stop(stopSparkContext=False, stopGraceFully=True)
break
elif (self.input_mode == InputMode.TENSORFLOW):
count = 0
while (count < 3):
st = self.sc.statusTracker()
jobs = st.getActiveJobsIds()
if (len(jobs) == 0):
break
stages = st.getActiveStageIds()
for i in stages:
si = st.getStageInfo(i)
if (si.numActiveTasks == (len(ps_list) + len(eval_list))):
count += 1
time.sleep(5)
workers = len(worker_list)
workerRDD = self.sc.parallelize(range(workers), workers)
workerRDD.foreachPartition(TFSparkNode.shutdown(self.cluster_info, self.queues))
time.sleep(grace_secs)
if ('error' in tf_status):
logging.error('Exiting Spark application with error status.')
self.sc.cancelAllJobs()
self.sc.stop()
sys.exit(1)
logging.info('Shutting down cluster')
for node in (ps_list + eval_list):
addr = node['addr']
authkey = node['authkey']
m = TFManager.connect(addr, authkey)
q = m.get_queue('control')
q.put(None)
q.join()
while True:
time.sleep(5)
st = self.sc.statusTracker()
jobs = st.getActiveJobsIds()
if (len(jobs) == 0):
break
|
Stops the distributed TensorFlow cluster.
For InputMode.SPARK, this will be executed AFTER the `TFCluster.train()` or `TFCluster.inference()` method completes.
For InputMode.TENSORFLOW, this will be executed IMMEDIATELY after `TFCluster.run()` and will wait until the TF worker nodes complete.
Args:
:ssc: *For Streaming applications only*. Spark StreamingContext
:grace_secs: Grace period to wait after all executors have completed their tasks before terminating the Spark application, e.g. to allow the chief worker to perform any final/cleanup duties like exporting or evaluating the model. Default is 0.
:timeout: Time in seconds to wait for TF cluster to complete before terminating the Spark application. This can be useful if the TF code hangs for any reason. Default is 3 days. Use -1 to disable timeout.
|
codesearchnet
|
def to_tensor_shape(spec):
if spec.ndim is None and spec.shape is None:
return tensor_shape.TensorShape(None)
elif spec.shape is not None:
return tensor_shape.TensorShape(spec.shape)
else:
shape = [None] * spec.ndim
for a in spec.axes:
shape[a] = spec.axes[a]
return tensor_shape.TensorShape(shape)
|
Returns a tf.TensorShape object that matches the shape specifications.
If the InputSpec's shape or ndim is defined, this method will return a fully
or partially-known shape. Otherwise, the returned TensorShape is None.
Args:
spec: an InputSpec object.
Returns:
a tf.TensorShape object
|
github-repos
|
def verify_account(self, email_address):
request = self._get_request()
resp = request.post(self.ACCOUNT_VERIFY_URL, {'email_address': email_address})
return ('account' in resp)
|
Verify whether a HelloSign Account exists
Args:
email_address (str): Email address for the account to verify
Returns:
True or False
|
codesearchnet
|
def getValue(self, unit=None):
if (unit or self.unit):
r = (float((self.value * UnitToValue(self.unit))) / UnitToValue(unit))
return (int(round(r)) if isinstance(self.value, int) else r)
return self.value
|
Return the value of the feature.
If the unit is specified and the feature has a unit, the value is converted
Args:
- unit(str,optional): A unit to convert the current feature value ('B','K','M','G')
|
codesearchnet
|
def update_z(self, z, indices=None):
z = _make_np_bool(z)
if indices is None:
if len(self._z) != len(z):
raise QiskitError("During updating whole z, you can not "
"change the number of qubits.")
self._z = z
else:
if not isinstance(indices, list) and not isinstance(indices, np.ndarray):
indices = [indices]
for p, idx in enumerate(indices):
self._z[idx] = z[p]
return self
|
Update partial or entire z.
Args:
z (numpy.ndarray or list): to-be-updated z
indices (numpy.ndarray or list or optional): to-be-updated qubit indices
Returns:
Pauli: self
Raises:
QiskitError: when updating whole z, the number of qubits must be the same.
|
juraj-google-style
|
def ResultCollectionForFID(cls, flow_id):
if not isinstance(flow_id, rdfvalue.RDFURN):
flow_id = rdfvalue.RDFURN(flow_id)
return sequential_collection.GeneralIndexedCollection(
flow_id.Add(RESULTS_SUFFIX))
|
Returns the ResultCollection for the flow with a given flow_id.
Args:
flow_id: The id of the flow, a RDFURN of the form aff4:/flows/F:123456.
Returns:
The collection containing the results for the flow identified by the id.
|
juraj-google-style
|
def __call__(self, shape, dtype=None):
dtype = standardize_dtype(dtype)
return ops.ones(shape, dtype=dtype)
|
Returns a tensor object initialized as specified by the initializer.
Args:
shape: Shape of the tensor.
dtype: Optional dtype of the tensor. Only numeric or boolean dtypes
are supported. If not specified, `keras.backend.floatx()`
is used, which default to `float32` unless you configured it
otherwise (via `keras.backend.set_floatx(float_dtype)`).
|
github-repos
|
def __init__(self, selector, comparison=None, argument=None):
super(Constraint, self).__init__()
self.selector = selector
if comparison and COMPARISON_COMP.match(comparison) is None:
raise FiqlObjectException(
"'%s' is not a valid FIQL comparison" % comparison)
self.comparison = comparison
self.argument = argument
|
Initialize instance of ``Constraint``.
Args:
selector (string): URL decoded constraint ``selector``.
comparison (string, optional): Parsed/mapped ``comparison``
operator. Defaults to ``None``.
argument (string, optional): URL decoded constraint ``argument``.
Defaults to ``None``.
Raises:
FiqlObjectException: Not a valid FIQL comparison.
|
juraj-google-style
|
def write_transform_artifacts(self, transform_fn, location):
return transform_fn | 'Write Transform Artifacts' >> transform_fn_io.WriteTransformFn(location)
|
Write transform artifacts to the given location.
Args:
transform_fn: A transform_fn object.
location: A location to write the artifacts.
Returns:
A PCollection of WriteTransformFn writing a TF transform graph.
|
github-repos
|
def get_config(self, name, default=_MISSING):
value = self._adapter.get_config(name, default)
if value is _MISSING:
raise ArgumentError("Config value did not exist", name=name)
return value
|
Get a config value from this adapter by name
Args:
name (string): The name of the config variable
default (object): The default value to return if config is not found
Returns:
object: the value associated with the name
Raises:
ArgumentError: if the name is not found and no default is supplied
|
juraj-google-style
|
def _attempt_slice_retry(self, shard_state, tstate):
if (shard_state.slice_retries + 1 <
parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS):
logging.warning(
"Slice %s %s failed for the %s of up to %s attempts "
"(%s of %s taskqueue execution attempts). "
"Will retry now.",
tstate.shard_id,
tstate.slice_id,
shard_state.slice_retries + 1,
parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS,
self.task_retry_count() + 1,
parameters.config.TASK_MAX_ATTEMPTS)
sys.exc_clear()
self._try_free_lease(shard_state, slice_retry=True)
return self._TASK_DIRECTIVE.RETRY_SLICE
if parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS > 0:
logging.warning("Slice attempt %s exceeded %s max attempts.",
self.task_retry_count() + 1,
parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS)
return self._TASK_DIRECTIVE.RETRY_SHARD
|
Attempt to retry this slice.
This method may modify shard_state and tstate to prepare for retry or fail.
Args:
shard_state: model.ShardState for current shard.
tstate: model.TransientShardState for current shard.
Returns:
A _TASK_DIRECTIVE enum. RETRY_SLICE if slice should be retried.
RETRY_SHARD if shard retry should be attempted.
|
juraj-google-style
|
def _to_proto_sparse_tensor(sparse_tensor, nested_proto,
process_leafs, already_processed):
already_processed.add(id(sparse_tensor))
nested_proto.named_tuple.name = _SPARSE_TENSOR_NAME
for str_key in _SPARSE_TENSOR_FIELD:
tensor = getattr(sparse_tensor, str_key)
nested_proto.named_tuple.map[str_key].value = process_leafs(tensor)
|
Serializes a `tf.SparseTensor` into `nested_proto`.
Args:
sparse_tensor: An instance of `tf.SparseTensor`.
nested_proto: A `module_pb2.NestedData` instance to be filled from
`sparse_tensor`.
process_leafs: A function to be applied to the leaf valued of the nested
structure.
already_processed: Set of already processed objects (used to avoid
infinite recursion).
|
juraj-google-style
|
def _html_checker(job_var, interval, status, header,
_interval_set=False):
job_status = job_var.status()
job_status_name = job_status.name
job_status_msg = job_status.value
status.value = header % (job_status_msg)
while job_status_name not in ['DONE', 'CANCELLED']:
time.sleep(interval)
job_status = job_var.status()
job_status_name = job_status.name
job_status_msg = job_status.value
if job_status_name == 'ERROR':
break
else:
if job_status_name == 'QUEUED':
job_status_msg += ' (%s)' % job_var.queue_position()
if not _interval_set:
interval = max(job_var.queue_position(), 2)
else:
if not _interval_set:
interval = 2
status.value = header % (job_status_msg)
status.value = header % (job_status_msg)
|
Internal function that updates the status
of a HTML job monitor.
Args:
job_var (BaseJob): The job to keep track of.
interval (int): The status check interval
status (widget): HTML ipywidget for output ot screen
header (str): String representing HTML code for status.
_interval_set (bool): Was interval set by user?
|
juraj-google-style
|
def _ParseVValueString(self, parser_mediator, data, user_information_descriptor):
data_start_offset = (user_information_descriptor.offset + self._V_VALUE_STRINGS_OFFSET)
data_end_offset = (data_start_offset + user_information_descriptor.size)
descriptor_data = data[data_start_offset:data_end_offset]
try:
username = descriptor_data.decode('utf-16-le')
except (UnicodeDecodeError, UnicodeEncodeError) as exception:
username = descriptor_data.decode('utf-16-le', errors='replace')
parser_mediator.ProduceExtractionWarning('unable to decode V value string with error: {0!s}. Characters that cannot be decoded will be replaced with "?" or "\\ufffd".'.format(exception))
return username
|
Parses a V value string.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
data (bytes): Windows Registry V value data.
user_information_descriptor (user_information_descriptor): V value
user information descriptor.
Returns:
str: string value stored in the Windows Registry V value data.
|
codesearchnet
|
def parse_GDS_columns(lines, subsets):
data = []
index = []
for line in lines:
line = line.rstrip()
if line.startswith("
tmp = __parse_entry(line)
data.append(tmp[1])
index.append(tmp[0])
df = DataFrame(data, index=index, columns=['description'])
subset_ids = defaultdict(dict)
for subsetname, subset in iteritems(subsets):
for expid in subset.metadata["sample_id"][0].split(","):
try:
subset_type = subset.get_type()
subset_ids[subset_type][expid] = \
subset.metadata['description'][0]
except Exception as err:
logger.error("Error processing subsets: %s for subset %s" % (
subset.get_type(), subsetname))
return df.join(DataFrame(subset_ids))
|
Parse list of line with columns description from SOFT file of GDS.
Args:
lines (:obj:`Iterable`): Iterator over the lines.
subsets (:obj:`dict` of :obj:`GEOparse.GDSSubset`): Subsets to use.
Returns:
:obj:`pandas.DataFrame`: Columns description.
|
juraj-google-style
|
def send(self):
xml_request = self.get_xml_request()
if (self.connection._debug == 1):
print(xml_request)
Debug.warn(('-' * 25))
Debug.warn(self._command)
Debug.dump('doc: \n', self._documents)
Debug.dump('cont: \n', self._content)
Debug.dump('nest cont \n', self._nested_content)
Debug.dump('Request: \n', xml_request)
response = _handle_response(self.connection._send_request(xml_request), self._command, self.connection.document_id_xpath)
return response
|
Send an XML string version of content through the connection.
Returns:
Response object.
|
codesearchnet
|
def __init__(self, jss):
self.jss = jss
self.url = "%s/casper.jxml" % self.jss.base_url
self.auth = urllib.urlencode({"username": self.jss.user,
"password": self.jss.password})
super(Casper, self).__init__(tag="Casper")
self.update()
|
Initialize a Casper object.
Args:
jss: A JSS object to request the casper page from.
|
juraj-google-style
|
def prepare_capstone(syntax=AsmSyntax.att, target=None):
if (not HAVE_CAPSTONE):
raise NotImplementedError('pwnypack requires capstone to disassemble to AT&T and Intel syntax')
if (target is None):
target = pwnypack.target.target
if (target.arch == pwnypack.target.Target.Arch.x86):
if (target.bits is pwnypack.target.Target.Bits.bits_32):
md = capstone.Cs(capstone.CS_ARCH_X86, capstone.CS_MODE_32)
else:
md = capstone.Cs(capstone.CS_ARCH_X86, capstone.CS_MODE_64)
elif (target.arch == pwnypack.target.Target.Arch.arm):
mode = 0
if (target.bits is pwnypack.target.Target.Bits.bits_32):
arch = capstone.CS_ARCH_ARM
if (target.mode and pwnypack.target.Target.Mode.arm_thumb):
mode = capstone.CS_MODE_THUMB
else:
mode = capstone.CS_MODE_ARM
if (target.mode and pwnypack.target.Target.Mode.arm_m_class):
mode |= capstone.CS_MODE_MCLASS
if (target.mode and pwnypack.target.Target.Mode.arm_v8):
mode |= capstone.CS_MODE_V8
else:
arch = capstone.CS_ARCH_ARM64
if (target.endian is pwnypack.target.Target.Endian.little):
mode |= capstone.CS_MODE_LITTLE_ENDIAN
else:
mode |= capstone.CS_MODE_BIG_ENDIAN
md = capstone.Cs(arch, mode)
else:
raise NotImplementedError('Only x86 is currently supported.')
md.skipdata = True
if (syntax is AsmSyntax.att):
md.syntax = capstone.CS_OPT_SYNTAX_ATT
elif (syntax is AsmSyntax.intel):
md.skipdata_setup(('db', None, None))
else:
raise NotImplementedError('capstone engine only implements AT&T and Intel syntax.')
return md
|
Prepare a capstone disassembler instance for a given target and syntax.
Args:
syntax(AsmSyntax): The assembler syntax (Intel or AT&T).
target(~pwnypack.target.Target): The target to create a disassembler
instance for. The global target is used if this argument is
``None``.
Returns:
An instance of the capstone disassembler.
Raises:
NotImplementedError: If the specified target isn't supported.
|
codesearchnet
|
def initialize(self, request, response):
super(TaskQueueHandler, self).initialize(request, response)
if "X-AppEngine-QueueName" not in self.request.headers:
logging.error(self.request.headers)
logging.error("Task queue handler received non-task queue request")
self.response.set_status(
403, message="Task queue handler received non-task queue request")
return
if self.task_retry_count() + 1 > parameters.config.TASK_MAX_ATTEMPTS:
logging.error(
"Task %s has been attempted %s times. Dropping it permanently.",
self.request.headers["X-AppEngine-TaskName"],
self.task_retry_count() + 1)
self._drop_gracefully()
return
try:
self._preprocess()
self._preprocess_success = True
except:
self._preprocess_success = False
logging.error(
"Preprocess task %s failed. Dropping it permanently.",
self.request.headers["X-AppEngine-TaskName"])
self._drop_gracefully()
|
Initialize.
1. call webapp init.
2. check request is indeed from taskqueue.
3. check the task has not been retried too many times.
4. run handler specific processing logic.
5. run error handling logic if precessing failed.
Args:
request: a webapp.Request instance.
response: a webapp.Response instance.
|
juraj-google-style
|
def _run_function_for_calibration_eager_mode(func: wrap_function.WrappedFunction, representative_dataset: rd.RepresentativeDataset) -> None:
_, keyword_args = func.structured_input_signature
sample_validator = _create_sample_validator(expected_input_keys=keyword_args.keys())
for sample in map(sample_validator, _log_sample_num_for_calibration(representative_dataset)):
func_kwargs = _convert_values_to_tf_tensors(sample)
func(**func_kwargs)
|
Runs the representative dataset through a function for calibration.
NOTE: This is intended to be run in eager mode (TF2).
Args:
func: The function to run the representative samples through.
representative_dataset: Representative dataset used for calibration. The
input keys and input values of the representative samples should match the
keyword arguments of `func`.
|
github-repos
|
def register(self, method_name: str, func: Union[def_function.Function, tf_function.ConcreteFunction]):
raise NotImplementedError('Please use create_server method to create aconcrete subclass of Server.')
|
Method for registering tf.function on server.
Registered methods can be invoked remotely from clients.
Args:
method_name: Name of the tf.function. Clients use this method_name to make
RPCs.
func: A `tf.function` or ConcreteFunction to register.
|
github-repos
|
def __deepcopy__(self, memo):
self._copy_counter += 1
new_dag = Dag('{}:{}'.format(self._name, self._copy_counter),
autostart=self._autostart, queue=self._queue)
new_dag._schema = deepcopy(self._schema, memo)
return new_dag
|
Create a copy of the dag object.
This method keeps track of the number of copies that have been made. The number is
appended to the name of the copy.
Args:
memo (dict): a dictionary that keeps track of the objects that
have already been copied.
Returns:
Dag: a copy of the dag object
|
juraj-google-style
|
def get_index_mapping(index):
mappings_dir = get_setting('mappings_dir')
filename = ('%s.json' % index)
path = os.path.join(mappings_dir, filename)
with open(path, 'r') as f:
return json.load(f)
|
Return the JSON mapping file for an index.
Mappings are stored as JSON files in the mappings subdirectory of this
app. They must be saved as {{index}}.json.
Args:
index: string, the name of the index to look for.
|
codesearchnet
|
def FindCheckMacro(line):
for macro in _CHECK_MACROS:
i = line.find(macro)
if i >= 0:
matched = Match(r'^(.*\b' + macro + r'\s*)\(', line)
if not matched:
continue
return (macro, len(matched.group(1)))
return (None, -1)
|
Find a replaceable CHECK-like macro.
Args:
line: line to search on.
Returns:
(macro name, start position), or (None, -1) if no replaceable
macro is found.
|
juraj-google-style
|
def _Open(self, path_spec=None, mode='rb'):
if not path_spec:
raise ValueError('Missing path specification.')
file_system = resolver.Resolver.OpenFileSystem(
path_spec, resolver_context=self._resolver_context)
file_entry = file_system.GetFileEntryByPathSpec(path_spec)
if not file_entry:
file_system.Close()
raise IOError('Unable to retrieve file entry.')
self._file_system = file_system
self._cpio_archive_file = self._file_system.GetCPIOArchiveFile()
self._cpio_archive_file_entry = file_entry.GetCPIOArchiveFileEntry()
self._current_offset = 0
|
Opens the file-like object defined by path specification.
Args:
path_spec (Optional[PathSpec]): path specification.
mode (Optional[str]): file access mode.
Raises:
AccessError: if the access to open the file was denied.
IOError: if the file-like object could not be opened.
OSError: if the file-like object could not be opened.
PathSpecError: if the path specification is incorrect.
ValueError: if the path specification is invalid.
|
juraj-google-style
|
def GetTableView(cls, format_type, column_names=None, title=None):
view_class = cls._TABLE_VIEW_FORMAT_CLASSES.get(format_type, None)
if not view_class:
raise ValueError('Unsupported format type: {0:s}'.format(format_type))
return view_class(column_names=column_names, title=title)
|
Retrieves a table view.
Args:
format_type (str): table view format type.
column_names (Optional[list[str]]): column names.
title (Optional[str]): title.
Returns:
BaseTableView: table view.
Raises:
ValueError: if the format type is not supported.
|
juraj-google-style
|
def _ExtractResponseSummaryFields(document):
headers = document.childAtPath('Envelope/Header/ResponseHeader')
body = document.childAtPath('Envelope/Body')
summary_fields = {}
if (headers is not None):
summary_fields['requestId'] = headers.getChild('requestId').text
summary_fields['responseTime'] = headers.getChild('responseTime').text
service_name = headers.getChild('serviceName')
if (service_name is not None):
summary_fields['serviceName'] = service_name.text
method_name = headers.getChild('methodName')
if (method_name is not None):
summary_fields['methodName'] = method_name.text
operations = headers.getChild('operations')
if (operations is not None):
summary_fields['operations'] = operations.text
if (body is not None):
fault = body.getChild('Fault')
if (fault is not None):
summary_fields['isFault'] = True
summary_fields['faultMessage'] = fault.getChild('faultstring').text[:16000]
else:
summary_fields['isFault'] = False
return summary_fields
|
Extract logging fields from the response's suds.sax.document.Document.
Args:
document: A suds.sax.document.Document instance containing the parsed
API response for a given API request.
Returns:
A dict mapping logging field names to their corresponding value.
|
codesearchnet
|
def __call__(self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]]=None, xpaths: Optional[Union[List[List[int]], List[List[List[int]]]]]=None, node_labels: Optional[Union[List[int], List[List[int]]]]=None, add_special_tokens: bool=True, padding: Union[bool, str, PaddingStrategy]=False, truncation: Union[bool, str, TruncationStrategy]=None, max_length: Optional[int]=None, stride: int=0, pad_to_multiple_of: Optional[int]=None, padding_side: Optional[str]=None, return_tensors: Optional[Union[str, TensorType]]=None, return_token_type_ids: Optional[bool]=None, return_attention_mask: Optional[bool]=None, return_overflowing_tokens: bool=False, return_special_tokens_mask: bool=False, return_offsets_mapping: bool=False, return_length: bool=False, verbose: bool=True, **kwargs) -> BatchEncoding:
def _is_valid_text_input(t):
if isinstance(t, str):
return True
elif isinstance(t, (list, tuple)):
if len(t) == 0:
return True
elif isinstance(t[0], str):
return True
elif isinstance(t[0], (list, tuple)):
return len(t[0]) == 0 or isinstance(t[0][0], str)
else:
return False
else:
return False
if text_pair is not None:
if not _is_valid_text_input(text):
raise ValueError('text input must of type `str` (single example) or `List[str]` (batch of examples). ')
if not isinstance(text_pair, (list, tuple)):
raise ValueError('Nodes must be of type `List[str]` (single pretokenized example), or `List[List[str]]` (batch of pretokenized examples).')
elif not isinstance(text, (list, tuple)):
raise ValueError('Nodes must be of type `List[str]` (single pretokenized example), or `List[List[str]]` (batch of pretokenized examples).')
if text_pair is not None:
is_batched = isinstance(text, (list, tuple))
else:
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
nodes = text if text_pair is None else text_pair
assert xpaths is not None, 'You must provide corresponding xpaths'
if is_batched:
assert len(nodes) == len(xpaths), 'You must provide nodes and xpaths for an equal amount of examples'
for nodes_example, xpaths_example in zip(nodes, xpaths):
assert len(nodes_example) == len(xpaths_example), 'You must provide as many nodes as there are xpaths'
else:
assert len(nodes) == len(xpaths), 'You must provide as many nodes as there are xpaths'
if is_batched:
if text_pair is not None and len(text) != len(text_pair):
raise ValueError(f'batch length of `text`: {len(text)} does not match batch length of `text_pair`: {len(text_pair)}.')
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
is_pair = bool(text_pair is not None)
return self.batch_encode_plus(batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs)
else:
return self.encode_plus(text=text, text_pair=text_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs)
|
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
sequences with nodes, xpaths and optional labels.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of
words).
text_pair (`List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
(pretokenized string).
xpaths (`List[List[int]]`, `List[List[List[int]]]`):
Node-level xpaths. Each bounding box should be normalized to be on a 0-1000 scale.
node_labels (`List[int]`, `List[List[int]]`, *optional*):
Node-level integer labels (for token classification tasks).
|
github-repos
|
def load_csv(path):
with open(path) as f:
line = f.readline().strip()
X = np.loadtxt(path, delimiter=',',
skiprows=0 if is_number(line.split(',')[0]) else 1)
y = np.array(X[:, 0]).flatten()
X = X[:, 1:]
return X, y
|
Load data from a CSV file.
Args:
path (str): A path to the CSV format file containing data.
dense (boolean): An optional variable indicating if the return matrix
should be dense. By default, it is false.
Returns:
Data matrix X and target vector y
|
juraj-google-style
|
def _loadCSVDataFrame(self):
if (self._filename and os.path.exists(self._filename)):
encoding = (self._encodingKey or 'UTF_8')
try:
dataFrame = superReadFile(self._filename, sep=self._delimiter, first_codec=encoding, header=self._header)
dataFrame = dataFrame.apply(fillNoneValues)
dataFrame = dataFrame.apply(convertTimestamps)
except Exception as err:
self.updateStatusBar(str(err))
print(err)
return pandas.DataFrame()
self.updateStatusBar('Preview generated.')
return dataFrame
self.updateStatusBar('File could not be read.')
return pandas.DataFrame()
|
Loads the given csv file with pandas and generate a new dataframe.
The file will be loaded with the configured encoding, delimiter
and header.git
If any execptions will occur, an empty Dataframe is generated
and a message will appear in the status bar.
Returns:
pandas.DataFrame: A dataframe containing all the available
information of the csv file.
|
codesearchnet
|
def default_sequence_length(self) -> int:
return OnnxConfig.default_fixed_sequence
|
The default sequence length to use if no other indication
Returns:
Integer > 0
|
github-repos
|
def create_zeros_slot(primary, name, dtype=None, colocate_with_primary=True, *, copy_xla_sharding=False):
if dtype is None:
dtype = primary.dtype
slot_shape = primary.get_shape()
if slot_shape.is_fully_defined():
initializer = init_ops.zeros_initializer()
return create_slot_with_initializer(primary, initializer, slot_shape, dtype, name, colocate_with_primary=colocate_with_primary, copy_xla_sharding=copy_xla_sharding)
else:
if isinstance(primary, variables.Variable):
slot_shape = array_ops.shape(cond.cond(variable_v1.is_variable_initialized(primary), primary.read_value, lambda: primary.initial_value))
else:
slot_shape = array_ops.shape(primary)
val = array_ops.zeros(slot_shape, dtype=dtype)
return create_slot(primary, val, name, colocate_with_primary=colocate_with_primary, copy_xla_sharding=copy_xla_sharding)
|
Create a slot initialized to 0 with same shape as the primary object.
Args:
primary: The primary `Variable` or `Tensor`.
name: Name to use for the slot variable.
dtype: Type of the slot variable. Defaults to the type of `primary`.
colocate_with_primary: Boolean. If True the slot is located
on the same device as `primary`.
copy_xla_sharding: Boolean. If True also copies XLA sharding
from primary.
Returns:
A `Variable` object.
|
github-repos
|
def _update_object(object_key: str, event: Event):
events_list_key = _keys.events_list(object_key)
events_data_key = _keys.events_data(object_key)
event_dict = deepcopy(event.config)
event_dict.pop('id')
DB.append_to_list(events_list_key, event.id, pipeline=True)
DB.set_hash_value(events_data_key, event.id, json.dumps(event_dict), pipeline=True)
|
Update the events list and events data for the object.
- Adds the event Id to the list of events for the object.
- Adds the event data to the hash of object event data keyed by event
id.
Args:
object_key (str): Key of the object being updated.
event (Event): Event object
|
codesearchnet
|
def get_coordination_numbers(d):
structure = Structure.from_dict(d["output"]["crystal"])
f = VoronoiNN()
cn = []
for i, s in enumerate(structure.sites):
try:
n = f.get_cn(structure, i)
number = int(round(n))
cn.append({"site": s.as_dict(), "coordination": number})
except Exception:
logger.error("Unable to parse coordination errors")
return cn
|
Helper method to get the coordination number of all sites in the final
structure from a run.
Args:
d:
Run dict generated by VaspToDbTaskDrone.
Returns:
Coordination numbers as a list of dict of [{"site": site_dict,
"coordination": number}, ...].
|
juraj-google-style
|
def _static_value_provider_of(value_type):
def _f(value):
_f.__name__ = value_type.__name__
return StaticValueProvider(value_type, value)
return _f
|
Helper function to plug a ValueProvider into argparse.
Args:
value_type: the type of the value. Since the type param of argparse's
add_argument will always be ValueProvider, we need to
preserve the type of the actual value.
Returns:
A partially constructed StaticValueProvider in the form of a function.
|
github-repos
|
def get_foreign_id(self, idspace='musicbrainz', cache=True):
if not (cache and ('foreign_ids' in self.cache) and filter(lambda d: d.get('catalog') == idspace, self.cache['foreign_ids'])):
response = self.get_attribute('profile', bucket=['id:'+idspace])
foreign_ids = response['artist'].get("foreign_ids", [])
self.cache['foreign_ids'] = self.cache.get('foreign_ids', []) + foreign_ids
cval = filter(lambda d: d.get('catalog') == util.map_idspace(idspace),
self.cache.get('foreign_ids'))
return cval[0].get('foreign_id') if cval else None
|
Get the foreign id for this artist for a specific id space
Args:
Kwargs:
idspace (str): A string indicating the idspace to fetch a foreign id for.
Returns:
A foreign ID string
Example:
>>> a = artist.Artist('fabulous')
>>> a.get_foreign_id('7digital')
u'7digital:artist:186042'
>>>
|
juraj-google-style
|
def list_files(base_path, ext=None):
if not os.path.isdir(base_path):
raise ValueError("Path does not exist: %s" % base_path)
files = []
for entry in os.listdir(base_path):
if os.path.isfile(os.path.join(base_path, entry)):
_, entry_ext = os.path.splitext(entry)
entry_ext = entry_ext.lstrip('.')
if (ext is None) or \
(isinstance(ext, str) and entry_ext == ext) or \
(isinstance(ext, list) and entry_ext in ext):
files.append(entry)
return files
|
Lists all of the files in the given base directory, optionally only
including whose extension(s) match the ext string/list of strings.
This is non-recursive.
Args:
base_path: The directory in which to search.
ext: The extension(s) to match in the given directory. If None, this
matches all file extensions.
Returns:
A list of filenames relative to the given base path.
|
juraj-google-style
|
def _save_model_and_copy_assets(exported_model: exported_model_pb2.ExportedModel, src_saved_model_path: str, dst_saved_model_path: str, signature_def_map: Mapping[str, meta_graph_pb2.SignatureDef], tags: Collection[str]) -> bool:
save_model.save_model_v1(exported_model.graph_def, dst_saved_model_path, signature_def_map, tags, init_op_name=exported_model.init_node_name, saver_def=_get_saver_def_or_none(exported_model), checkpoint_dir=exported_model.checkpoint_dir, function_aliases=exported_model.function_aliases, asset_file_defs=exported_model.asset_file_defs)
_copy_assets(src_saved_model_path, dst_saved_model_path)
return True
|
Saves the model and copies the assets from the source model.
Args:
exported_model: ExportedModel to save.
src_saved_model_path: Path to the source SavedModel. This will be used to
copy the asset files to `dst_saved_model_path`.
dst_saved_model_path: Destination path to save the exported model.
signature_def_map: Signature key -> SignatureDef mapping.
tags: Tags to attach to the saved MetaGraphDef.
Returns:
`True` upon successfully saving the model.
|
github-repos
|
def __init__(self, checkpoint_dir: Text, save_secs: Optional[int]=None, save_steps: Optional[int]=None, saver: Optional[saver_lib.Saver]=None, checkpoint_basename: Text='model.ckpt', scaffold: Optional[monitored_session.Scaffold]=None, listeners: Optional[List[basic_session_run_hooks.CheckpointSaverListener]]=None):
save_path = os.path.join(checkpoint_dir, checkpoint_basename)
logging.info('Create AsyncCheckpointSaverHook saving to path\n%s', save_path)
if listeners:
logging.info(' with %d listener(s).', len(listeners))
if saver is not None and scaffold is not None:
raise ValueError('You cannot provide both saver and scaffold.')
self._saver = saver
self._save_thread = None
self._write_graph_thread = None
self._checkpoint_dir = checkpoint_dir
self._save_path = save_path
self._scaffold = scaffold
self._timer = basic_session_run_hooks.SecondOrStepTimer(every_secs=save_secs, every_steps=save_steps)
self._listeners = listeners or []
self._steps_per_run = 1
self._summary_writer = None
self._global_step_tensor = None
self._last_checkpoint_step = None
global _END_TIME_OF_LAST_WRITE
with _END_TIME_OF_LAST_WRITE_LOCK:
if _END_TIME_OF_LAST_WRITE is None:
_END_TIME_OF_LAST_WRITE = time.time()
|
Initializes a `CheckpointSaverHook`.
Args:
checkpoint_dir: `str`, base directory for the checkpoint files.
save_secs: `int`, save every N secs.
save_steps: `int`, save every N steps.
saver: `Saver` object, used for saving.
checkpoint_basename: `str`, base name for the checkpoint files.
scaffold: `Scaffold`, use to get saver object.
listeners: List of `CheckpointSaverListener` subclass instances. Used for
callbacks that run immediately before or after this hook saves the
checkpoint.
Raises:
ValueError: One of `save_steps` or `save_secs` should be set.
ValueError: At most one of `saver` or `scaffold` should be set.
|
github-repos
|
def helper_delete(access_token, oid, path):
full_path = ''.join([path, "('", oid, "')"])
full_path_encoded = urllib.parse.quote(full_path, safe='')
endpoint = ''.join([ams_rest_endpoint, full_path_encoded])
return do_ams_delete(endpoint, full_path_encoded, access_token)
|
Helper Function to delete a Object at a URL path.
Args:
access_token (str): A valid Azure authentication token.
oid (str): An OID.
path (str): A URL Path.
Returns:
HTTP response. JSON body.
|
codesearchnet
|
def to(self, device: Union[str, 'torch.device'], *, non_blocking: bool=False) -> 'BatchEncoding':
requires_backends(self, ['torch'])
import torch
if isinstance(device, str) or is_torch_device(device) or isinstance(device, int):
self.data = {k: v.to(device=device, non_blocking=non_blocking) if isinstance(v, torch.Tensor) else v for k, v in self.data.items()}
else:
logger.warning(f'Attempting to cast a BatchEncoding to type {str(device)}. This is not supported.')
return self
|
Send all values to device by calling `v.to(device, non_blocking=non_blocking)` (PyTorch only).
Args:
device (`str` or `torch.device`): The device to put the tensors on.
non_blocking (`bool`): Whether to perform the copy asynchronously.
Returns:
[`BatchEncoding`]: The same instance after modification.
|
github-repos
|
def format(self, template='{basename}{range}{padding}{extension}'):
inverted = ((self.invertedFrameRange() or '') if ('{inverted}' in template) else '')
return template.format(basename=self.basename(), extension=self.extension(), start=self.start(), end=self.end(), length=len(self), padding=self.padding(), range=(self.frameRange() or ''), inverted=inverted, dirname=self.dirname())
|
Return the file sequence as a formatted string according to
the given template.
Utilizes the python string format syntax. Available keys include:
* basename - the basename of the sequence.
* extension - the file extension of the sequence.
* start - the start frame.
* end - the end frame.
* length - the length of the frame range.
* padding - the detecting amount of padding.
* inverted - the inverted frame range. (returns "" if none)
* dirname - the directory name.
If asking for the inverted range value, and the new inverted range
exceeded :const:`fileseq.constants.MAX_FRAME_SIZE`, a ``MaxSizeException``
will be raised.
Args:
template (str):
Returns:
str:
Raises:
:class:`fileseq.exceptions.MaxSizeException`: If frame size exceeds
:const:`fileseq.constants.MAX_FRAME_SIZE`
|
codesearchnet
|
def chart_type(self, value):
if value not in self._allowed_charts:
raise ValueError("Not a valid chart type")
self.options["chart_type"] = value
|
Set the MetricsGraphics chart type.
Allowed charts are: line, histogram, point, and bar
Args:
value (str): chart type.
Raises:
ValueError: Not a valid chart type.
|
juraj-google-style
|
def _init_sampler(tc, init, num):
def func():
with tc.test_session():
return init([num]).eval()
return func
|
Returns a func to generate a random tensor of shape [num].
Args:
tc: An instance of TensorFlowTestCase.
init: An Initializer that generates a tensor of a given shape
num: Size of 1D tensor to create.
Returns:
Function to generate a random tensor.
|
github-repos
|
def dice_loss(inputs, targets, num_boxes):
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
numerator = 2 * (inputs * targets).sum(1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_boxes
|
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs (0 for the negative class and 1 for the positive
class).
|
github-repos
|
def build(cls, **kwargs):
return cls.add(cls.new(**kwargs), commit=False)
|
Similar to create. But the transaction is not committed
Args:
**kwargs : The keyword arguments for the constructor
Returns:
A model instance which has been added to db session. But session
transaction has not been committed yet.
|
juraj-google-style
|
def Delete(self, queue, tasks, mutation_pool=None):
if queue is None:
return
if mutation_pool is None:
raise ValueError("Mutation pool can't be none.")
mutation_pool.QueueDeleteTasks(queue, tasks)
|
Removes the tasks from the queue.
Note that tasks can already have been removed. It is not an error
to re-delete an already deleted task.
Args:
queue: A queue to clear.
tasks: A list of tasks to remove. Tasks may be Task() instances or integers
representing the task_id.
mutation_pool: A MutationPool object to schedule deletions on.
Raises:
ValueError: Mutation pool was not passed in.
|
juraj-google-style
|
def __init__(self, key_dtype, value_dtype):
self._key_dtype = dtypes.as_dtype(key_dtype)
self._value_dtype = dtypes.as_dtype(value_dtype)
|
Construct a table initializer object.
Args:
key_dtype: Type of the table keys.
value_dtype: Type of the table values.
|
github-repos
|
def WriteBlobsWithUnknownHashes(
self, blobs_data):
blobs_ids = [rdf_objects.BlobID.FromBlobData(d) for d in blobs_data]
self.WriteBlobs(dict(zip(blobs_ids, blobs_data)))
return blobs_ids
|
Calculates hash ids and writes contents of given data blobs.
Args:
blobs_data: An iterable of bytes.
Returns:
A list of rdf_objects.BlobID objects with each blob id corresponding
to an element in the original blobs_data argument.
|
juraj-google-style
|
def MergeAllSummaries(period=0, run_alone=False, key=None):
if (key is None):
key = tf.GraphKeys.SUMMARIES
period = int(period)
if run_alone:
return MergeAllSummaries_RunAlone(period, key)
else:
return MergeAllSummaries_RunWithOp(period, key)
|
This callback is enabled by default.
Evaluate all summaries by ``tf.summary.merge_all``, and write them to logs.
Args:
period (int): by default the callback summarizes once every epoch.
This option (if not set to 0) makes it additionally summarize every ``period`` steps.
run_alone (bool): whether to evaluate the summaries alone.
If True, summaries will be evaluated after each epoch alone.
If False, summaries will be evaluated together with the
`sess.run` calls, in the last step of each epoch.
For :class:`SimpleTrainer`, it needs to be False because summary may
depend on inputs.
key (str): the collection of summary tensors. Same as in ``tf.summary.merge_all``.
Default is ``tf.GraphKeys.SUMMARIES``.
|
codesearchnet
|
def _CheckFileEntryType(self, file_entry):
if not self._file_entry_types:
return None
return (
self._CheckIsDevice(file_entry) or self._CheckIsDirectory(file_entry) or
self._CheckIsFile(file_entry) or self._CheckIsLink(file_entry) or
self._CheckIsPipe(file_entry) or self._CheckIsSocket(file_entry))
|
Checks the file entry type find specifications.
Args:
file_entry (FileEntry): file entry.
Returns:
bool: True if the file entry matches the find specification, False if
not or None if no file entry type specification is defined.
|
juraj-google-style
|
def __init__(self, cell_ctor, *args, **kwargs):
super(RNNCellWrapper, self).__init__(
name=kwargs.get("name"),
custom_getter=kwargs.pop("custom_getter", None))
with self._enter_variable_scope():
self._cell = cell_ctor(*args, **kwargs)
|
Constructs the cell, within this module's variable scope.
Args:
cell_ctor: Callable that instantiates a `tf.contrib.rnn.RNNCell`.
*args: Arguments to pass to `cell_ctor`.
**kwargs: Keyword arguments to pass to `cell_ctor`.
If `name` is provided, it is passed to `RNNCore.__init__` as well.
If `custom_getter` is provided, it is passed to `RNNCore.__init__`
but not to `cell_ctor`.
|
juraj-google-style
|
def _GetTimestamps(self, olecf_item):
if (not olecf_item):
return (None, None)
try:
creation_time = olecf_item.get_creation_time_as_integer()
except OverflowError as exception:
logger.warning('Unable to read the creation time with error: {0!s}'.format(exception))
creation_time = 0
try:
modification_time = olecf_item.get_modification_time_as_integer()
except OverflowError as exception:
logger.warning('Unable to read the modification time with error: {0!s}'.format(exception))
modification_time = 0
if ((not creation_time) and (not modification_time)):
return (None, None)
if (creation_time == 18446744073709551615):
creation_time = 0
return (creation_time, modification_time)
|
Retrieves the timestamps from an OLECF item.
Args:
olecf_item (pyolecf.item): OLECF item.
Returns:
tuple[int, int]: creation and modification FILETIME timestamp.
|
codesearchnet
|
def design_stat_heating(self, value="Heating"):
if value is not None:
try:
value = str(value)
except ValueError:
raise ValueError(
'value {} need to be of type str '
'for field `design_stat_heating`'.format(value))
if ',' in value:
raise ValueError('value should not contain a comma '
'for field `design_stat_heating`')
vals = set()
vals.add("Heating")
if value not in vals:
raise ValueError('value {} is not an accepted value for '
'field `design_stat_heating`'.format(value))
self._design_stat_heating = value
|
Corresponds to IDD Field `design_stat_heating`
Args:
value (str): value for IDD Field `design_stat_heating`
Accepted values are:
- Heating
Default value: Heating
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value
|
juraj-google-style
|
def unpack(self, buff=None, offset=0):
length = UBInt16()
length.unpack(buff, offset)
super().unpack(buff[:offset+length.value], offset)
|
Unpack *buff* into this object.
This method will convert a binary data into a readable value according
to the attribute format.
Args:
buff (bytes): Binary buffer.
offset (int): Where to begin unpacking.
Raises:
:exc:`~.exceptions.UnpackException`: If unpack fails.
|
juraj-google-style
|
def _generate_comparator(cls, field_names):
field_names = list(field_names)
reverses = ([1] * len(field_names))
for (i, field_name) in enumerate(field_names):
if (field_name[0] == '-'):
reverses[i] = (- 1)
field_names[i] = field_name[1:]
field_names = [f.replace(LOOKUP_SEP, '.') for f in field_names]
def comparator(i1, i2):
v1 = attrgetter(*field_names)(i1)
v2 = attrgetter(*field_names)(i2)
if (len(field_names) == 1):
return (cls._cmp(v1, v2) * reverses[0])
order = multiply_iterables(list(map(cls._cmp, v1, v2)), reverses)
try:
return next(dropwhile(__not__, order))
except StopIteration:
return 0
return comparator
|
Construct a comparator function based on the field names. The comparator
returns the first non-zero comparison value.
Inputs:
field_names (iterable of strings): The field names to sort on.
Returns:
A comparator function.
|
codesearchnet
|
def get_nmr_prize_pool(self, round_num=0, tournament=1):
tournaments = self.get_competitions(tournament)
tournaments.sort(key=(lambda t: t['number']))
if (round_num == 0):
t = tournaments[(- 1)]
else:
tournaments = [t for t in tournaments if (t['number'] == round_num)]
if (len(tournaments) == 0):
raise ValueError('invalid round number')
t = tournaments[0]
return t['prizePoolNmr']
|
Get NMR prize pool for the given round and tournament.
Args:
round_num (int, optional): The round you are interested in,
defaults to current round.
tournament (int, optional): ID of the tournament, defaults to 1
Returns:
decimal.Decimal: prize pool in NMR
Raises:
Value Error: in case of invalid round number
|
codesearchnet
|
def pinch(self, direction='in', percent=0.6, duration=2.0, dead_zone=0.1):
if (direction not in ('in', 'out')):
raise ValueError('Argument `direction` should be one of "in" or "out". Got {}'.format(repr(direction)))
if (dead_zone >= percent):
raise ValueError('Argument `dead_zone` should not be greater than `percent`. dead_zoon={}, percent={}'.format(repr(dead_zone), repr(percent)))
(w, h) = self.get_size()
(x, y) = self.get_position()
tracks = make_pinching(direction, [x, y], [w, h], percent, dead_zone, duration)
speed = (((math.sqrt((w * h)) * (percent - dead_zone)) / 2) / duration)
ret = self.poco.apply_motion_tracks(tracks, accuracy=(speed * 0.03))
return ret
|
Squeezing or expanding 2 fingers on this UI with given motion range and duration.
Args:
direction (:py:obj:`str`): pinching direction, only "in" or "out". "in" for squeezing, "out" for expanding
percent (:py:obj:`float`): squeezing range from or expanding range to of the bounds of the UI
duration (:py:obj:`float`): time interval in which the action is performed
dead_zone (:py:obj:`float`): pinching inner circle radius. should not be greater than ``percent``
Raises:
PocoNoSuchNodeException: raised when the UI element does not exist
|
codesearchnet
|
def delete_nsg_rule(access_token, subscription_id, resource_group, nsg_name, nsg_rule_name):
endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/resourceGroups/', resource_group, '/providers/Microsoft.Network/networkSecurityGroups/', nsg_name, '/securityRules/', nsg_rule_name, '?api-version=', NETWORK_API])
return do_delete(endpoint, access_token)
|
Delete network security group rule.
Args:
access_token (str): A valid Azure authentication token.
subscription_id (str): Azure subscription id.
resource_group (str): Azure resource group name.
nsg_name (str): Name of the Network Security Group.
nsg_rule_name (str): Name of the NSG rule.
Returns:
HTTP response.
|
codesearchnet
|
def __init__(self, runner_capabilities: FrozenSet[str], process_bundle_descriptor: beam_fn_api_pb2.ProcessBundleDescriptor, state_handler: sdk_worker.CachingStateHandler, data_channel_factory: data_plane.DataChannelFactory, data_sampler: Optional[data_sampler.DataSampler]=None) -> None:
self.runner_capabilities = runner_capabilities
self.process_bundle_descriptor = process_bundle_descriptor
self.state_handler = state_handler
self.data_channel_factory = data_channel_factory
self.data_sampler = data_sampler
self.current_instruction_id: Optional[str] = None
self.consuming_received_data = False
_verify_descriptor_created_in_a_compatible_env(process_bundle_descriptor)
if self.process_bundle_descriptor.timer_api_service_descriptor.url:
self.timer_data_channel = data_channel_factory.create_data_channel_from_url(self.process_bundle_descriptor.timer_api_service_descriptor.url)
else:
self.timer_data_channel = None
self.timers_info: Dict[Tuple[str, str], TimerInfo] = {}
self.counter_factory = counters.CounterFactory()
self.state_sampler = statesampler.StateSampler('fnapi-step-%s' % self.process_bundle_descriptor.id, self.counter_factory)
self.ops = self.create_execution_tree(self.process_bundle_descriptor)
for op in reversed(self.ops.values()):
op.setup(self.data_sampler)
self.splitting_lock = threading.Lock()
|
Initialize a bundle processor.
Args:
runner_capabilities (``FrozenSet[str]``): The set of capabilities of the
runner with which we will be interacting
process_bundle_descriptor (``beam_fn_api_pb2.ProcessBundleDescriptor``):
a description of the stage that this ``BundleProcessor``is to execute.
state_handler (CachingStateHandler).
data_channel_factory (``data_plane.DataChannelFactory``).
|
github-repos
|
def search(self, patterns, start=30, limit=1000, include_category=False):
api_name = 'opendns-patterns'
fmt_url_path = u'search/{0}'
start = '-{0}days'.format(start)
include_category = str(include_category).lower()
query_params = {
'start': start,
'limit': limit,
'includecategory': include_category,
}
return self._multi_get(api_name, fmt_url_path, patterns, query_params)
|
Performs pattern searches against the Investigate database.
Args:
patterns: An enumerable of RegEx domain patterns to search for
start: How far back results extend from in days (max is 30)
limit: Number of results to show (max is 1000)
include_category: Include OpenDNS security categories
Returns:
An enumerable of matching domain strings
|
juraj-google-style
|
def verify(self, message, signature):
message = _helpers._to_bytes(message, encoding='utf-8')
return PKCS1_v1_5.new(self._pubkey).verify(
SHA256.new(message), signature)
|
Verifies a message against a signature.
Args:
message: string or bytes, The message to verify. If string, will be
encoded to bytes as utf-8.
signature: string or bytes, The signature on the message.
Returns:
True if message was signed by the private key associated with the
public key that this object was constructed with.
|
juraj-google-style
|
def acquire(self, key: Text, constructor_fn: Callable[[], Any], tag: Any=None) -> Any:
with self._lock:
control_block = self._cache_map.get(key)
if control_block is None:
control_block = _SharedControlBlock()
self._cache_map[key] = control_block
result = control_block.acquire(constructor_fn, tag)
with self._lock:
self._keepalive = (key, result)
return result
|
Acquire a reference to a Shared object.
Args:
key: the key to the shared object
constructor_fn: function that initialises / constructs the object if not
present in the cache. This function should take no arguments. It should
return an initialised object, or None if the object could not be
initialised / constructed.
tag: an optional indentifier to store with the cached object. If
subsequent calls to acquire use different tags, the object will be
reloaded rather than returned from cache.
Returns:
A reference to the initialised object, either from the cache, or
newly-constructed.
|
github-repos
|
def connect(portname, baudrate):
global SERPORT
try:
SERPORT = serial.Serial(portname, baudrate, timeout=0.1)
except:
raise HerkulexError('could not open the serial port')
|
Connect to the Herkulex bus
Connect to serial port to which Herkulex Servos are attatched
Args:
portname (str): The serial port name
baudrate (int): The serial port baudrate
Raises:
SerialException: Error occured while opening serial port
|
codesearchnet
|
def __init__(self, value=b''):
super(CertificateValue, self).__init__(value, Tags.CERTIFICATE_VALUE)
|
Construct a CertificateValue byte string.
Args:
value (bytes): A byte string (e.g., b'\x00\x01...') containing the
certificate bytes to store. Optional, defaults to the empty
byte string.
|
juraj-google-style
|
def make_view(controller, context, data):
if isinstance(data, BlockModel):
view = _make_view_subclass(Block, controller, context, data)
elif isinstance(data, AttributeModel):
view = Attribute(controller, context, data)
elif isinstance(data, MethodModel):
view = Method(controller, context, data)
elif isinstance(data, Model):
view = _make_view_subclass(View, controller, context, data)
elif isinstance(data, dict):
d = OrderedDict()
for (k, v) in data.items():
d[k] = make_view(controller, context, v)
view = d
elif isinstance(data, list):
view = [make_view(controller, context, x) for x in data]
else:
view = data
return view
|
Make a View subclass containing properties specific for given data
Args:
controller (Controller): The child controller that hosts the data
context (Context): The context the parent has made that the View should
use for manipulating the data
data (Model): The actual data that context will be manipulating
Returns:
View: A View subclass instance that provides a user-focused API to
the given data
|
codesearchnet
|
def _create_dag_op(self, name, params, qargs):
if (name == 'u0'):
op_class = U0Gate
elif (name == 'u1'):
op_class = U1Gate
elif (name == 'u2'):
op_class = U2Gate
elif (name == 'u3'):
op_class = U3Gate
elif (name == 'x'):
op_class = XGate
elif (name == 'y'):
op_class = YGate
elif (name == 'z'):
op_class = ZGate
elif (name == 't'):
op_class = TGate
elif (name == 'tdg'):
op_class = TdgGate
elif (name == 's'):
op_class = SGate
elif (name == 'sdg'):
op_class = SdgGate
elif (name == 'swap'):
op_class = SwapGate
elif (name == 'rx'):
op_class = RXGate
elif (name == 'ry'):
op_class = RYGate
elif (name == 'rz'):
op_class = RZGate
elif (name == 'rzz'):
op_class = RZZGate
elif (name == 'id'):
op_class = IdGate
elif (name == 'h'):
op_class = HGate
elif (name == 'cx'):
op_class = CnotGate
elif (name == 'cy'):
op_class = CyGate
elif (name == 'cz'):
op_class = CzGate
elif (name == 'ch'):
op_class = CHGate
elif (name == 'crz'):
op_class = CrzGate
elif (name == 'cu1'):
op_class = Cu1Gate
elif (name == 'cu3'):
op_class = Cu3Gate
elif (name == 'ccx'):
op_class = ToffoliGate
elif (name == 'cswap'):
op_class = FredkinGate
else:
raise QiskitError(('unknown operation for ast node name %s' % name))
op = op_class(*params)
self.dag.apply_operation_back(op, qargs, [], condition=self.condition)
|
Create a DAG node out of a parsed AST op node.
Args:
name (str): operation name to apply to the dag.
params (list): op parameters
qargs (list(QuantumRegister, int)): qubits to attach to
Raises:
QiskitError: if encountering a non-basis opaque gate
|
codesearchnet
|
def process_files(self, path, recursive=False):
self._logger.info('Processing files in "%s"', path)
for (path, file) in files_generator(path, recursive):
if (not file.endswith(BATCH_EXTENSION)):
self.process_file(os.path.join(path, file))
|
Apply normalizations over all files in the given directory.
Iterate over all files in a given directory. Normalizations
will be applied to each file, storing the result in a new file.
The extension for the new file will be the one defined in
BATCH_EXTENSION.
Args:
path: Path to the directory.
recursive: Whether to find files recursively or not.
|
codesearchnet
|
def encode_csv(data_dict, column_names):
import csv
import six
values = [str(data_dict[x]) for x in column_names]
str_buff = six.StringIO()
writer = csv.writer(str_buff, lineterminator='')
writer.writerow(values)
return str_buff.getvalue()
|
Builds a csv string.
Args:
data_dict: dict of {column_name: 1 value}
column_names: list of column names
Returns:
A csv string version of data_dict
|
juraj-google-style
|
def AddBasicOptions(self, argument_group):
version_string = self.GetVersionInformation()
argument_group.add_argument(
'-h', '--help', action='help',
help='Show this help message and exit.')
argument_group.add_argument(
'--troubles', dest='show_troubleshooting', action='store_true',
default=False, help='Show troubleshooting information.')
argument_group.add_argument(
'-V', '--version', dest='version', action='version',
version=version_string, help='Show the version information.')
|
Adds the basic options to the argument group.
Args:
argument_group (argparse._ArgumentGroup): argparse argument group.
|
juraj-google-style
|
def interact(self, banner=None):
sys.ps1 = getattr(sys, 'ps1', '>>> ')
sys.ps2 = getattr(sys, 'ps2', '... ')
if banner is None:
print ('Pyringe (Python %s.%s.%s) on %s\n%s' %
(sys.version_info.major, sys.version_info.minor,
sys.version_info.micro, sys.platform, _WELCOME_MSG))
else:
print banner
more = False
while True:
try:
if more:
prompt = sys.ps2
else:
prompt = self.StatusLine() + '\n' + sys.ps1
try:
line = self.raw_input(prompt)
except EOFError:
print ''
break
else:
more = self.push(line)
except KeyboardInterrupt:
print '\nKeyboardInterrupt'
self.resetbuffer()
more = False
|
Closely emulate the interactive Python console.
This method overwrites its superclass' method to specify a different help
text and to enable proper handling of the debugger status line.
Args:
banner: Text to be displayed on interpreter startup.
|
juraj-google-style
|
def get_pyof_version(module_fullname):
ver_module_re = re.compile('(pyof\\.)(v0x\\d+)(\\..*)')
matched = ver_module_re.match(module_fullname)
if matched:
version = matched.group(2)
return version
return None
|
Get the module pyof version based on the module fullname.
Args:
module_fullname (str): The fullname of the module
(e.g.: pyof.v0x01.common.header)
Returns:
str: openflow version.
The openflow version, on the format 'v0x0?' if any. Or None
if there isn't a version on the fullname.
|
codesearchnet
|
def traverse_postorder(self, leaves=True, internal=True):
s1 = deque(); s2 = deque(); s1.append(self)
while len(s1) != 0:
n = s1.pop(); s2.append(n); s1.extend(n.children)
while len(s2) != 0:
n = s2.pop()
if (leaves and n.is_leaf()) or (internal and not n.is_leaf()):
yield n
|
Perform a postorder traversal starting at this ``Node`` object
Args:
``leaves`` (``bool``): ``True`` to include leaves, otherwise ``False``
``internal`` (``bool``): ``True`` to include internal nodes, otherwise ``False``
|
juraj-google-style
|
def execute_log(args, root_dir):
if args.get('keys'):
config_dir = os.path.join(root_dir, '.config/pueue')
queue_path = os.path.join(config_dir, 'queue')
if os.path.exists(queue_path):
queue_file = open(queue_path, 'rb')
try:
queue = pickle.load(queue_file)
except Exception:
print('Queue log file seems to be corrupted. Aborting.')
return
queue_file.close()
else:
print('There is no queue log file. Aborting.')
return
for key in args.get('keys'):
if (queue.get(key) and (queue[key]['status'] in ['failed', 'done'])):
entry = queue[key]
print('Log of entry: {}'.format(key))
print('Returncode: {}'.format(entry['returncode']))
print('Command: {}'.format(entry['command']))
print('Path: {}'.format(entry['path']))
print('Start: {}, End: {} \n'.format(entry['start'], entry['end']))
if (len(entry['stderr']) > 0):
print((Color('{autored}Stderr output: {/autored}\n ') + entry['stderr']))
if (len(entry['stdout']) > 0):
print((Color('{autogreen}Stdout output: {/autogreen}\n ') + entry['stdout']))
else:
print('No finished process with key {}.'.format(key))
else:
log_path = os.path.join(root_dir, '.local/share/pueue/queue.log')
log_file = open(log_path, 'r')
print(log_file.read())
|
Print the current log file.
Args:
args['keys'] (int): If given, we only look at the specified processes.
root_dir (string): The path to the root directory the daemon is running in.
|
codesearchnet
|
def pack(self, tensors: Sequence[Any], layout: layout_lib.Layout) -> Any:
if not context.executing_eagerly():
raise RuntimeError('`pack` must be called eagerly.')
self._register_mesh(layout.mesh)
with ops.device(self.name):
if all((isinstance(t, sparse_tensor.SparseTensor) for t in tensors)):
if not all((t.shape == tensors[0].shape for t in tensors)):
raise TypeError('All input SparseTensors to Pack must be same shape.')
is_sparse = True
tensors = [t.indices for t in tensors] + [t.values for t in tensors] + [ops.convert_to_tensor(t.shape, dtype=dtypes.int64) for t in tensors]
elif any((isinstance(t, sparse_tensor.SparseTensor) for t in tensors)):
raise TypeError('Cannot Pack SparseTensors with Tensors.')
else:
is_sparse = False
try:
return _pywrap_dtensor_device.Pack(context.context()._handle, tensors, layout.to_string(), self._device_info, is_sparse)
except core._NotOkStatusException as e:
raise core._status_to_exception(e) from None
|
Packs tensors into a DTensor handle on this DTensor device.
Packing and unpacking are inverse operations:
```
* unpack(pack(tensors)) == tensors
* pack(unpack(dtensor)) == dtensor
```
Refer to `dtensor.pack` for more information.
Args:
tensors: The list of tensors to pack into a DTensor.
layout: The layout of the DTensor to be created.
Returns:
A DTensor created from the individual component tensors.
Raises:
RuntimeError: When not called eagerly.
|
github-repos
|
def generate_output_header(self, query_type='RDAP'):
output = '\n{0}{1}{2} query for {3}:{4}\n\n'.format(ANSI['ul'], ANSI['b'], query_type, self.obj.address_str, ANSI['end'])
return output
|
The function for generating the CLI output header.
Args:
query_type (:obj:`str`): The IPWhois query type. Defaults to
'RDAP'.
Returns:
str: The generated output.
|
codesearchnet
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.