code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def get_text_features(self, input_ids: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, token_type_ids: Optional[torch.Tensor]=None, position_ids: Optional[torch.Tensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None) -> torch.FloatTensor: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) last_hidden_state = text_outputs[0][:, 0, :] text_features = self.text_projection(last_hidden_state) return text_features
Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`AlignTextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, AlignModel >>> model = AlignModel.from_pretrained("kakaobrain/align-base") >>> tokenizer = AutoTokenizer.from_pretrained("kakaobrain/align-base") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```
github-repos
def __eq__(self, other): res = False if type(self) is type(other) and \ self.name == other.name and \ self.size == other.size: res = True return res
Two Registers are the same if they are of the same type (i.e. quantum/classical), and have the same name and size. Args: other (Register): other Register Returns: bool: are self and other equal.
juraj-google-style
def label_contains(node, triggers): for trigger in triggers: if (trigger.trigger_word in node.label): (yield TriggerNode(trigger, node))
Determine if node contains any of the trigger_words provided. Args: node(Node): CFG node to check. trigger_words(list[Union[Sink, Source]]): list of trigger words to look for. Returns: Iterable of TriggerNodes found. Can be multiple because multiple trigger_words can be in one node.
codesearchnet
def __call__(self, x: core.Tensor) -> Mapping[str, core.Tensor]: out = nn_ops.conv2d(x, self.filters, strides=[1, 1, 2, 1], dilations=[1, 1, 1, 1], padding='SAME', data_format='NHWC') return {'output': out}
Performs a 2D convolution operation. Args: x: Input tensor to perform convolution on. Returns: A map of: output key -> output result.
github-repos
def _has_valid_abs_ref(self, i, construction_table): c_table = construction_table abs_refs = constants.absolute_refs A = np.empty((3, 3)) row = c_table.index.get_loc(i) if (row > 2): message = 'The index {i} is not from the first three, rows'.format raise ValueError(message(i=i)) for k in range(3): if (k < row): A[k] = self.loc[(c_table.iloc[(row, k)], ['x', 'y', 'z'])] else: A[k] = abs_refs[c_table.iloc[(row, k)]] (v1, v2) = ((A[2] - A[1]), (A[1] - A[0])) K = np.cross(v1, v2) zero = np.full(3, 0.0) return (not (np.allclose(K, zero) or np.allclose(v1, zero) or np.allclose(v2, zero)))
Checks, if ``i`` uses valid absolute references. Checks for each index from first to third row of the ``construction_table``, if the references are colinear. This case has to be specially treated, because the references are not only atoms (to fix internal degrees of freedom) but also points in cartesian space called absolute references. (to fix translational and rotational degrees of freedom) Args: i (label): The label has to be in the first three rows. construction_table (pd.DataFrame): Returns: bool:
codesearchnet
def score_braycurtis(self, term1, term2, **kwargs): t1_kde = self.kde(term1, **kwargs) t2_kde = self.kde(term2, **kwargs) return (1 - distance.braycurtis(t1_kde, t2_kde))
Compute a weighting score based on the "City Block" distance between the kernel density estimates of two terms. Args: term1 (str) term2 (str) Returns: float
codesearchnet
def tag_sharding_attribute_for_dequeued_tensors(dequeues, dims): nest.assert_shallow_structure(dequeues, dims) return nest.map_structure_up_to(dequeues, _tag_sharding_attribute_for_dequeued_tensor, dequeues, dims)
Tags appropriate XLA sharding attribute to the dequeued tensors. Args: dequeues: A list of dequeued tensors on TPU. dims: A list of integer describes how the tensor is partitioned. Returns: The same dequeues with appropriate xla_sharding attribute.
github-repos
def Delete(self, queue, tasks, mutation_pool=None): if (queue is None): return if (mutation_pool is None): raise ValueError("Mutation pool can't be none.") mutation_pool.QueueDeleteTasks(queue, tasks)
Removes the tasks from the queue. Note that tasks can already have been removed. It is not an error to re-delete an already deleted task. Args: queue: A queue to clear. tasks: A list of tasks to remove. Tasks may be Task() instances or integers representing the task_id. mutation_pool: A MutationPool object to schedule deletions on. Raises: ValueError: Mutation pool was not passed in.
codesearchnet
def getcallargs_forhints(func, *type_args, **type_kwargs): try: signature = get_signature(func) except ValueError as e: logging.warning('Could not get signature for function: %s: %s', func, e) return {} try: bindings = signature.bind(*type_args, **type_kwargs) except TypeError as e: raise TypeCheckError(e) bound_args = bindings.arguments for param in signature.parameters.values(): if param.name in bound_args: if param.kind == param.VAR_POSITIONAL: bound_args[param.name] = _normalize_var_positional_hint(bound_args[param.name]) elif param.kind == param.VAR_KEYWORD: bound_args[param.name] = _normalize_var_keyword_hint(bound_args[param.name], param.name) elif param.annotation != param.empty: bound_args[param.name] = param.annotation elif param.kind == param.VAR_POSITIONAL: bound_args[param.name] = _ANY_VAR_POSITIONAL elif param.kind == param.VAR_KEYWORD: bound_args[param.name] = _ANY_VAR_KEYWORD elif param.default is not param.empty: bound_args[param.name] = typehints.Any else: raise ValueError('Unexpected unbound parameter: %s' % param.name) return dict(bound_args)
Bind type_args and type_kwargs to func. Works like inspect.getcallargs, with some modifications to support type hint checks. For unbound args, will use annotations and fall back to Any (or variants of Any). Returns: A mapping from parameter name to argument.
github-repos
def poll(self, timeout=None): p = select.poll() p.register(self._fd, (select.POLLIN | select.POLLPRI)) events = p.poll(int((timeout * 1000))) if (len(events) > 0): return True return False
Poll for data available for reading from the serial port. `timeout` can be positive for a timeout in seconds, 0 for a non-blocking poll, or negative or None for a blocking poll. Default is a blocking poll. Args: timeout (int, float, None): timeout duration in seconds. Returns: bool: ``True`` if data is available for reading from the serial port, ``False`` if not.
codesearchnet
def _SetExtractionPreferredTimeZone(self, knowledge_base): if self._preferred_time_zone: try: knowledge_base.SetTimeZone(self._preferred_time_zone) except ValueError: logger.warning( 'Unsupported time zone: {0:s}, defaulting to {1:s}'.format( self._preferred_time_zone, knowledge_base._time_zone.zone))
Sets the preferred time zone before extraction. Args: knowledge_base (KnowledgeBase): contains information from the source data needed for parsing.
juraj-google-style
def __init__(self, breakpoints_func=None): self._run_key_to_original_graphs = dict() self._run_key_to_debug_graphs = dict() if breakpoints_func: assert callable(breakpoints_func) self._breakpoints_func = breakpoints_func
Constructor of RunStates. Args: breakpoint_func: A callable of the signatuer: def breakpoint_func(): which returns all the currently activated breakpoints.
juraj-google-style
def set_s3_bucket(self, region, name, bucketName): ct = self.session.client('cloudtrail', region_name=region) ct.update_trail(Name=name, S3BucketName=bucketName) auditlog( event='cloudtrail.set_s3_bucket', actor=self.ns, data={ 'account': self.account.account_name, 'region': region } ) self.log.info('Updated S3BucketName to {} for {} in {}/{}'.format( bucketName, name, self.account.account_name, region ))
Sets the S3 bucket location for logfile delivery Args: region (`str`): Name of the AWS region name (`str`): Name of the CloudTrail Trail bucketName (`str`): Name of the S3 bucket to deliver log files to Returns: `None`
juraj-google-style
def search_variants(self, variant_ids): query = {'_id': {'$in': variant_ids}} return self.db.variant.find(query)
Make a batch search for variants in the database Args: variant_ids(list(str)): List of variant ids Returns: res(pymngo.Cursor(variant_obj)): The result
juraj-google-style
def verify_json(self, json, user_key, user_id, device_id): try: signatures = json.pop('signatures') except KeyError: return False key_id = 'ed25519:{}'.format(device_id) try: signature_base64 = signatures[user_id][key_id] except KeyError: json['signatures'] = signatures return False unsigned = json.pop('unsigned', None) try: olm.ed25519_verify(user_key, encode_canonical_json(json), signature_base64) success = True except olm.utility.OlmVerifyError: success = False json['signatures'] = signatures if unsigned: json['unsigned'] = unsigned return success
Verifies a signed key object's signature. The object must have a 'signatures' key associated with an object of the form `user_id: {key_id: signature}`. Args: json (dict): The JSON object to verify. user_key (str): The public ed25519 key which was used to sign the object. user_id (str): The user who owns the device. device_id (str): The device who owns the key. Returns: True if the verification was successful, False if not.
codesearchnet
def _FlushCache(cls, format_categories): if definitions.FORMAT_CATEGORY_ARCHIVE in format_categories: cls._archive_remainder_list = None cls._archive_scanner = None cls._archive_store = None if definitions.FORMAT_CATEGORY_COMPRESSED_STREAM in format_categories: cls._compressed_stream_remainder_list = None cls._compressed_stream_scanner = None cls._compressed_stream_store = None if definitions.FORMAT_CATEGORY_FILE_SYSTEM in format_categories: cls._file_system_remainder_list = None cls._file_system_scanner = None cls._file_system_store = None if definitions.FORMAT_CATEGORY_STORAGE_MEDIA_IMAGE in format_categories: cls._storage_media_image_remainder_list = None cls._storage_media_image_scanner = None cls._storage_media_image_store = None if definitions.FORMAT_CATEGORY_VOLUME_SYSTEM in format_categories: cls._volume_system_remainder_list = None cls._volume_system_scanner = None cls._volume_system_store = None
Flushes the cached objects for the specified format categories. Args: format_categories (set[str]): format categories.
juraj-google-style
def get_country_by_name(self, country_name) -> 'Country': VALID_STR.validate(country_name, 'get_country_by_name', exc=ValueError) if country_name not in self._countries_by_name.keys(): for country in self.countries: if country.country_name == country_name: return country raise ValueError(country_name) else: return self._countries_by_name[country_name]
Gets a country in this coalition by its name Args: country_name: country name Returns: Country
juraj-google-style
def close(self, virtual_account_id, data={}, **kwargs): url = '{}/{}'.format(self.base_url, virtual_account_id) data['status'] = 'closed' return self.patch_url(url, data, **kwargs)
Close Virtual Account from given Id Args: virtual_account_id : Id for which Virtual Account objects has to be Closed
codesearchnet
def check_subword_sampling(tokenizer: PreTrainedTokenizer, text: Optional[str]=None, test_sentencepiece_ignore_case: bool=True) -> None: text = 'This is a test for subword regularization.' if text is None else text if test_sentencepiece_ignore_case: text = text.lower() tokens_list = [] for _ in range(5): tokens_list.append(tokenizer.tokenize(text)) combinations = itertools.combinations(tokens_list, 2) subword_sampling_found = False for combination in combinations: if combination[0] != combination[1]: subword_sampling_found = True unittest.TestCase().assertTrue(subword_sampling_found) for tokens in tokens_list: if test_sentencepiece_ignore_case: unittest.TestCase().assertEqual(text, tokenizer.convert_tokens_to_string(tokens).lower()) else: unittest.TestCase().assertEqual(text, tokenizer.convert_tokens_to_string(tokens))
Check if the tokenizer generates different results when subword regularization is enabled. Subword regularization augments training data with subword sampling. This has a random component. Args: tokenizer: The tokenizer to check. text: The text to use for the checks. test_sentencepiece_ignore_case: See `TokenizerTesterMixin.test_sentencepiece_ignore_case`.
github-repos
def __init__(self, project: str=None, retry: Retry=None, timeout: float=120, metadata: Sequence[Tuple[str, str]]=(), catalog_name: str='default_catalog', event_store: str='default_event_store'): self.project = project self.retry = retry self.timeout = timeout self.metadata = metadata self.catalog_name = catalog_name self.event_store = event_store
Initializes a :class:`WriteUserEvent` transform. Args: project (str): Optional. GCP project name in which the catalog data will be imported. retry: Optional. Designation of what errors, if any, should be retried. timeout (float): Optional. The amount of time, in seconds, to wait for the request to complete. metadata: Optional. Strings which should be sent along with the request as metadata. catalog_name (str): Optional. Name of the catalog. Default: 'default_catalog' event_store (str): Optional. Name of the event store. Default: 'default_event_store'
github-repos
def get_path_from_query_string(req): if req.args.get('path') is None: raise exceptions.UserError('Path not found in query string') return req.args.get('path')
Gets path from query string Args: req (flask.request): Request object from Flask Returns: path (str): Value of "path" parameter from query string Raises: exceptions.UserError: If "path" is not found in query string
juraj-google-style
def CheckInvalidIncrement(filename, clean_lines, linenum, error): line = clean_lines.elided[linenum] if _RE_PATTERN_INVALID_INCREMENT.match(line): error(filename, linenum, 'runtime/invalid_increment', 5, 'Changing pointer instead of value (or unused value of operator*).')
Checks for invalid increment *count++. For example following function: void increment_counter(int* count) { *count++; } is invalid, because it effectively does count++, moving pointer, and should be replaced with ++*count, (*count)++ or *count += 1. Args: filename: The name of the current file. clean_lines: A CleansedLines instance containing the file. linenum: The number of the line to check. error: The function to call with any errors found.
juraj-google-style
def update_panel(self, panel_obj, version=None, date_obj=None): LOG.info('Updating panel %s', panel_obj['panel_name']) date = panel_obj['date'] if version: LOG.info('Updating version from {0} to version {1}'.format(panel_obj['version'], version)) panel_obj['version'] = version if date_obj: date = date_obj else: date = (date_obj or dt.datetime.now()) panel_obj['date'] = date updated_panel = self.panel_collection.find_one_and_replace({'_id': panel_obj['_id']}, panel_obj, return_document=pymongo.ReturnDocument.AFTER) return updated_panel
Replace a existing gene panel with a new one Keeps the object id Args: panel_obj(dict) version(float) date_obj(datetime.datetime) Returns: updated_panel(dict)
codesearchnet
def list(sandbox_name, results=15, start=0): result = util.callm("%s/%s" % ('sandbox', 'list'), {'sandbox':sandbox_name, 'results': results, 'start': start}) assets = result['response']['assets'] start = result['response']['start'] total = result['response']['total'] return ResultList(assets, start, total)
Returns a list of all assets available in this sandbox Args: sandbox_name (str): A string representing the name of the sandbox Kwargs: results (int): An integer number of results to return start (int): An integer starting value for the result set Returns: A list of asset dictionaries Example: >>> sandbox.list('bluenote') [{}, {}] >>>
juraj-google-style
def get_contract_data(self, contract_name): contract_data_path = self.output_dir + '/{0}.json'.format(contract_name) with open(contract_data_path, 'r') as contract_data_file: contract_data = json.load(contract_data_file) abi = contract_data['abi'] bytecode = contract_data['evm']['bytecode']['object'] return abi, bytecode
Returns the contract data for a given contract Args: contract_name (str): Name of the contract to return. Returns: str, str: ABI and bytecode of the contract
juraj-google-style
def __init__(self, batch_env): self._batch_env = batch_env batch_dims = (len(self._batch_env),) observ_shape = self._parse_shape(self._batch_env.observation_space) observ_dtype = self._parse_dtype(self._batch_env.observation_space) action_shape = self._parse_shape(self._batch_env.action_space) action_dtype = self._parse_dtype(self._batch_env.action_space) with tf.variable_scope('env_temporary'): self._observ = tf.Variable( lambda: tf.zeros(batch_dims + observ_shape, observ_dtype), name='observ', trainable=False) self._action = tf.Variable( lambda: tf.zeros(batch_dims + action_shape, action_dtype), name='action', trainable=False) self._reward = tf.Variable( lambda: tf.zeros(batch_dims, tf.float32), name='reward', trainable=False) self._done = tf.Variable( lambda: tf.cast(tf.ones(batch_dims), tf.bool), name='done', trainable=False)
Batch of environments inside the TensorFlow graph. Args: batch_env: Batch environment.
juraj-google-style
def create_temp_grad(node, namer, tangent=False): if not isinstance(node, (gast.Subscript, gast.Name)): raise TypeError def _name_temp_grad(node): name = namer.temp_grad(node.id, tangent) temp_node = gast.Name(id=name, annotation=None, ctx=None) return temp_node if isinstance(node, gast.Subscript): temp_node = _name_temp_grad(node.value) else: temp_node = _name_temp_grad(node) anno.setanno(temp_node, 'temp_adjoint_var', node) return temp_node
Create a variable to store partial gradients. Args: node: See `create_grad`. namer: See `create_grad`. tangent: See `create_grad`. Returns: node: See `create_grad`. Returns a node representing the partial gradient. Note that this is always a simple variable e.g. the temporary partial of `x[i]` can be something like `_dxi`. Nodes are given an annotation `temp_adjoint_var`.
juraj-google-style
def SetConfiguredUsers(self, users): prefix = self.logger.name + '-' with tempfile.NamedTemporaryFile( mode='w', prefix=prefix, delete=True) as updated_users: updated_users_file = updated_users.name for user in users: updated_users.write(user + '\n') updated_users.flush() if not os.path.exists(self.google_users_dir): os.makedirs(self.google_users_dir) shutil.copy(updated_users_file, self.google_users_file) file_utils.SetPermissions(self.google_users_file, mode=0o600, uid=0, gid=0)
Set the list of configured Google user accounts. Args: users: list, the username strings of the Linux accounts.
juraj-google-style
def call_remoteckan(self, *args, **kwargs): requests_kwargs = kwargs.get('requests_kwargs', dict()) credentials = self._get_credentials() if credentials: requests_kwargs['auth'] = credentials kwargs['requests_kwargs'] = requests_kwargs apikey = kwargs.get('apikey', self.get_api_key()) kwargs['apikey'] = apikey return self.remoteckan().call_action(*args, **kwargs)
Calls the remote CKAN Args: *args: Arguments to pass to remote CKAN call_action method **kwargs: Keyword arguments to pass to remote CKAN call_action method Returns: Dict: The response from the remote CKAN call_action method
codesearchnet
def filepaths_in_dir(path): filepaths = [] for root, directories, filenames in os.walk(path): for filename in filenames: filepath = os.path.join(root, filename) filepath = filepath.replace(path, '').lstrip('/') filepaths.append(filepath) return filepaths
Find all files in a directory, and return the relative paths to those files. Args: path (str): the directory path to walk Returns: list: the list of relative paths to all files inside of ``path`` or its subdirectories.
juraj-google-style
def DeregisterCredentials(cls, credentials): if credentials.type_indicator not in cls._credentials: raise KeyError( 'Credential object not set for type indicator: {0:s}.'.format( credentials.type_indicator)) del cls._credentials[credentials.type_indicator]
Deregisters a path specification credentials. Args: credentials (Credentials): credentials. Raises: KeyError: if credential object is not set for the corresponding type indicator.
juraj-google-style
def get_unscaled_gradients(self, grads): loss_scale_reciprocal = 1.0 / self.loss_scale return [_multiply_gradient(g, loss_scale_reciprocal) if g is not None else None for g in grads]
Unscales the gradients by the loss scale. This method is only needed if you compute gradients manually, e.g. with `tf.GradientTape`. In that case, call this method to unscale the gradients after computing them with `tf.GradientTape`. If you use `LossScaleOptimizer.minimize` or `LossScaleOptimizer.get_gradients`, loss scaling is automatically applied and this method is unneeded. If this method is called, `get_scaled_loss` should also be called. See the `tf.keras.mixed_precision.LossScaleOptimizer` doc for an example. Args: grads: A list of tensors, each which will be divided by the loss scale. Can have None values, which are ignored. Returns: A new list the same size as `grads`, where every non-None value in `grads` is divided by `LossScaleOptimizer.loss_scale`.
github-repos
def get_fieldset_index(fieldsets, index_or_name): if isinstance(index_or_name, six.integer_types): return index_or_name for (key, value) in enumerate(fieldsets): if (value[0] == index_or_name): return key raise KeyError("Key not found: '{}'.".format(index_or_name))
Return the index of a fieldset in the ``fieldsets`` list. Args: fieldsets (list): The original ``fieldsets`` list. index_or_name (int or str): The value of the reference element, or directly its numeric index. Returns: (int) The index of the fieldset in the ``fieldsets`` list.
codesearchnet
def make_ordered_column_names(include_label=True): result = ['clicked'] if include_label else [] for name in _INTEGER_COLUMN_NAMES: result.append(name) for name in _CATEGORICAL_COLUMN_NAMES: result.append(name) return result
Returns the column names in the dataset in the order as they appear. Args: include_label: Indicates whether the label feature should be included. Returns: A list of column names in the dataset.
github-repos
def input_defs(self, transitive: bool=True) -> List['SymbolDefinition']: parent_func = self.parent_func() var_producers: Dict[str, Set[SymbolDefinition]] = {arg: set() for arg in parent_func.args} var_producers[parent_func.name] = set() def analyze_var_producers(k: pg.KeyPath, v: Any, p: pg.Symbolic): del k, p if v is self: return pg.TraverseAction.STOP if isinstance(v, SymbolDefinition): var_entry = set([v]) if transitive: for var_name in v.input_vars(): var_entry.update(var_producers[var_name]) var_producers[v.name] = var_entry if v is not parent_func and isinstance(v, Function): return pg.TraverseAction.CONTINUE return pg.TraverseAction.ENTER pg.traverse(parent_func, analyze_var_producers) dependencies: Set[SymbolDefinition] = set() for var_name in self.input_vars(): if var_name not in var_producers: raise ValueError(f"Undefined variable {repr(var_name)} found in function '{parent_func.name}' line dependencies.update(var_producers[var_name]) return sorted(dependencies, key=lambda x: x.line_number())
Returns the symbol definitions for the inputs of this code entity. Args: transitive: If True, transitive inputs will be included. Otherwise, only the direct dependencies will be included. Returns: A list of `SymbolDefinition` in their declaration order that produce the inputs required for current code entity.
github-repos
def replace_case(self, case_obj): LOG.info('Saving case %s', case_obj['_id']) case_obj['updated_at'] = (datetime.datetime.now(),) updated_case = self.case_collection.find_one_and_replace({'_id': case_obj['_id']}, case_obj, return_document=pymongo.ReturnDocument.AFTER) return updated_case
Replace a existing case with a new one Keeps the object id Args: case_obj(dict) Returns: updated_case(dict)
codesearchnet
def register_extension(self, group, name, extension): if isinstance(extension, str): name, extension = self.load_extension(extension)[0] if group not in self._registered_extensions: self._registered_extensions[group] = [] self._registered_extensions[group].append((name, extension))
Register an extension. Args: group (str): The type of the extension name (str): A name for the extension extension (str or class): If this is a string, then it will be interpreted as a path to import and load. Otherwise it will be treated as the extension object itself.
juraj-google-style
def serve(self, server=None): if server is None: from wsgiref.simple_server import make_server server = lambda app: make_server('', 8000, app).serve_forever() print('Listening on 0.0.0.0:8000') try: server(self) finally: server.socket.close()
Serve app using wsgiref or provided server. Args: - server (callable): An callable
juraj-google-style
def _log_submission(submission, student_item): logger.info( u"Created submission uuid={submission_uuid} for " u"(course_id={course_id}, item_id={item_id}, " u"anonymous_student_id={anonymous_student_id})" .format( submission_uuid=submission["uuid"], course_id=student_item["course_id"], item_id=student_item["item_id"], anonymous_student_id=student_item["student_id"] ) )
Log the creation of a submission. Args: submission (dict): The serialized submission model. student_item (dict): The serialized student item model. Returns: None
juraj-google-style
def db_en020(self, value=None): if (value is not None): try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float for field `db_en020`'.format(value)) self._db_en020 = value
Corresponds to IDD Field `db_en020` mean coincident dry-bulb temperature to Enthalpy corresponding to 2.0% annual cumulative frequency of occurrence Args: value (float): value for IDD Field `db_en020` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
codesearchnet
def total_covariance_fn(self): return self._total_covariance_fn
The total covariance of the process between two times. Returns: A Python callable returning the integrated covariances between two times. The callable accepts two real `Tensor` arguments. The first argument is the left end point and the second is the right end point of the time interval for which the total covariance is needed. The shape of the two input arguments and their dtypes must match. The output of the callable is a `Tensor` of shape `times_shape + [dim, dim]` containing the integrated covariance matrix between the start times and end times.
github-repos
def run(self, dag): num_dag_qubits = sum([qreg.size for qreg in dag.qregs.values()]) if (num_dag_qubits > self.coupling_map.size()): raise TranspilerError('Number of qubits greater than device.') self.property_set['layout'] = Layout.generate_trivial_layout(*dag.qregs.values())
Pick a layout by assigning n circuit qubits to device qubits 0, .., n-1. Args: dag (DAGCircuit): DAG to find layout for. Raises: TranspilerError: if dag wider than self.coupling_map
codesearchnet
def __init__(self, input_file="mol.qin", output_file="mol.qout", rca_gdm_thresh=1.0E-3, scf_max_cycles=200): self.input_file = input_file self.output_file = output_file self.scf_max_cycles = scf_max_cycles self.geom_max_cycles = geom_max_cycles self.qcinp = QCInput.from_file(self.input_file) self.outdata = None self.errors = None self.qchem_job = qchem_job
Initializes the error handler from a set of input and output files. Args: input_file (str): Name of the QChem input file. output_file (str): Name of the QChem output file. rca_gdm_thresh (float): The threshold for the prior scf algorithm. If last deltaE is larger than the threshold try RCA_DIIS first, else, try DIIS_GDM first. scf_max_cycles (int): The max iterations to set to fix SCF failure.
juraj-google-style
def from_file(filename, file_format="xyz"): mols = list(pb.readfile(str(file_format), str(filename))) return BabelMolAdaptor(mols[0].OBMol)
Uses OpenBabel to read a molecule from a file in all supported formats. Args: filename: Filename of input file file_format: String specifying any OpenBabel supported formats. Returns: BabelMolAdaptor object
juraj-google-style
def output(self, value): return super(Source, self).output(self.stream, value)
SPL output port assignment expression. Arguments: value(str): SPL expression used for an output assignment. This can be a string, a constant, or an :py:class:`Expression`. Returns: Expression: Output assignment expression that is valid as a the context of this operator.
juraj-google-style
def AddArguments(cls, argument_group): argument_group.add_argument( '--name', '--timeline_name', '--timeline-name', dest='timeline_name', type=str, action='store', default=cls._DEFAULT_NAME, required=False, help=( 'The name of the timeline in Timesketch. Default: ' 'hostname if present in the storage file. If no hostname ' 'is found then manual input is used.')) argument_group.add_argument( '--index', dest='index', type=str, action='store', default=cls._DEFAULT_UUID, required=False, help=( 'The name of the Elasticsearch index. Default: Generate a random ' 'UUID')) argument_group.add_argument( '--flush_interval', '--flush-interval', dest='flush_interval', type=int, action='store', default=cls._DEFAULT_FLUSH_INTERVAL, required=False, help=( 'The number of events to queue up before sent in bulk ' 'to Elasticsearch.')) argument_group.add_argument( '--doc_type', dest='document_type', type=str, action='store', default=cls._DEFAULT_DOCUMENT_TYPE, help=( 'Name of the document type that will be used in ElasticSearch.')) argument_group.add_argument( '--username', dest='username', type=str, action='store', default=cls._DEFAULT_USERNAME, help=( 'Username of a Timesketch user that will own the timeline.'))
Adds command line arguments the helper supports to an argument group. This function takes an argument parser or an argument group object and adds to it all the command line arguments this helper supports. Args: argument_group (argparse._ArgumentGroup|argparse.ArgumentParser): argparse group.
juraj-google-style
def get(self, vrf=None): match = '^router ospf .*' if vrf: match += (' vrf %s' % vrf) config = self.get_block(match) if (not config): return None response = dict() response.update(self._parse_router_id(config)) response.update(self._parse_vrf(config)) response.update(self._parse_networks(config)) response.update(self._parse_ospf_process_id(config)) response.update(self._parse_redistribution(config)) response.update(self._parse_shutdown(config)) return response
Returns the OSPF routing configuration Args: vrf (str): VRF name to return OSPF routing config for Returns: dict: keys: router_id (int): OSPF router-id vrf (str): VRF of the OSPF process networks (dict): All networks that are advertised in OSPF ospf_process_id (int): OSPF proc id redistribution (dict): All protocols that are configured to be redistributed in OSPF shutdown (bool): Gives the current shutdown off the process
codesearchnet
def MapFile(self, key_path_prefix, registry_file): self._registry_files[key_path_prefix.upper()] = registry_file registry_file.SetKeyPathPrefix(key_path_prefix)
Maps the Windows Registry file to a specific key path prefix. Args: key_path_prefix (str): key path prefix. registry_file (WinRegistryFile): Windows Registry file.
codesearchnet
def _shape_union(shapes): return Shape(sorted(list(set(sum([s.dims for s in shapes], [])))))
A shape containing the union of all dimensions in the input shapes. Args: shapes: a list of Shapes Returns: a Shape
codesearchnet
def get_problem_name(base_name, was_reversed=False, was_copy=False): if any(base_name.endswith(suffix) for suffix in ("_rev", "_copy")): raise ValueError("`base_name` cannot end in '_rev' or '_copy'") name = base_name if was_copy: name = "%s_copy" % name if was_reversed: name = "%s_rev" % name return name
Construct a problem name from base and reversed/copy options. Inverse of `parse_problem_name`. Args: base_name: base problem name. Should not end in "_rev" or "_copy" was_reversed: if the problem is to be reversed was_copy: if the problem is to be copied Returns: string name consistent with use with `parse_problem_name`. Raises: ValueError if `base_name` ends with "_rev" or "_copy"
juraj-google-style
def raw_dict_factory(cursor, row): d = {} for idx, col in enumerate(cursor.description): val = row[idx] name = col[0] if name == Field.Time_Stamp or name == Field.Meter_Address: d[name] = str(val) continue if name == "Raw_A" or name == "Raw_B": d[name] = str(val) continue return d
Sqlite callback accepting the cursor and the original row as a tuple. Simple return of JSON safe types, including raw read hex strings. Args: cursor (sqlite cursor): Original cursory row (sqlite row tuple): Original row. Returns: dict: modified row.
juraj-google-style
def fetch(args: List[str], env: Dict[str, str] = None, encoding: str = sys.getdefaultencoding()) -> str: stdout, _ = run(args, env=env, capture_stdout=True, echo_stdout=False, encoding=encoding) log.debug(stdout) return stdout
Run a command and returns its stdout. Args: args: the command-line arguments env: the operating system environment to use encoding: the encoding to use for ``stdout`` Returns: the command's ``stdout`` output
juraj-google-style
def SetUpdateTimestamp(self, value): if value is None or isinstance(value, int): self._last_update_timestamp = value else: raise TypeError('timestamp can only be int or None, not %r', value)
Set the last update timestamp of this map. Args: value: An int containing seconds since epoch, or None. Raises: TypeError: The argument is not an int or None.
github-repos
def repl_member_add(self, params): repl_config = self.config member_id = max([member['_id'] for member in repl_config['members']]) + 1 member_config = self.member_create(params, member_id) repl_config['members'].append(member_config) if not self.repl_update(repl_config): self.member_del(member_id, reconfig=True) raise ReplicaSetError("Could not add member to ReplicaSet.") return member_id
create new mongod instances and add it to the replica set. Args: params - mongod params return True if operation success otherwise False
juraj-google-style
async def pull(self, from_image: str, *, auth: Optional[Union[(MutableMapping, str, bytes)]]=None, tag: str=None, repo: str=None, stream: bool=False) -> Mapping: image = from_image params = {'fromImage': image} headers = {} if repo: params['repo'] = repo if tag: params['tag'] = tag if (auth is not None): (registry, has_registry_host, _) = image.partition('/') if (not has_registry_host): raise ValueError('Image should have registry host when auth information is provided') headers['X-Registry-Auth'] = compose_auth_header(auth, registry) response = (await self.docker._query('images/create', 'POST', params=params, headers=headers)) return (await json_stream_result(response, stream=stream))
Similar to `docker pull`, pull an image locally Args: fromImage: name of the image to pull repo: repository name given to an image when it is imported tag: if empty when pulling an image all tags for the given image to be pulled auth: special {'auth': base64} pull private repo
codesearchnet
def from_filenames(filenames, transformations=None, primitive=True, extend_collection=False): allcifs = [] for fname in filenames: with open(fname, 'r') as f: allcifs.append(f.read()) return CifTransmuter('\n'.join(allcifs), transformations, primitive=primitive, extend_collection=extend_collection)
Generates a TransformedStructureCollection from a cif, possibly containing multiple structures. Args: filenames: List of strings of the cif files transformations: New transformations to be applied to all structures primitive: Same meaning as in __init__. extend_collection: Same meaning as in __init__.
codesearchnet
async def run_commentator(video_mode: str) -> None: pya = pyaudio.PyAudio() video_mode_enum = video.VideoMode(video_mode) input_processor = video.VideoIn(video_mode=video_mode_enum) + audio_io.PyAudioIn(pya) async def input_stream(): try: while True: await asyncio.sleep(1) finally: yield content_api.ProcessorPart('Ending the stream') commentator_processor = commentator.create_live_commentator(API_KEY) consume_output = audio_io.PyAudioOut(pya) live_commentary_agent = input_processor + commentator_processor + consume_output async for _ in live_commentary_agent(input_stream()): pass
Runs a live commentator in a CLI environment. The commentator is run from a CLI environment. The audio and video input and output are connected to the local machine's default input and output devices. Args: video_mode: The video mode to use for the video. Can be CAMERA or SCREEN.
github-repos
def _CheckIsFile(self, file_entry): if (definitions.FILE_ENTRY_TYPE_FILE not in self._file_entry_types): return False return file_entry.IsFile()
Checks the is_file find specification. Args: file_entry (FileEntry): file entry. Returns: bool: True if the file entry matches the find specification, False if not.
codesearchnet
def attribute_string(self): escape_map = {ord('='): '%3D', ord(','): '%2C', ord(';'): '%3B', ord('&'): '%26', ord('\t'): '%09'} list_type = type(list()) attrs = self.attributes if (type(attrs) is OrderedDict): reserved_attrs = [] other_attrs = [] for (name, value) in attrs.items(): name = name.translate(escape_map) if (type(value) == list_type): value = ','.join([i.translate(escape_map) for i in value]) else: value = value.translate(escape_map) out_attr = '{0}={1}'.format(name, value) if name[0].isupper(): reserved_attrs.append(out_attr) else: other_attrs.append(out_attr) out_attrs = ';'.join((reserved_attrs + other_attrs)) else: out_attrs = attrs return out_attrs
Restore an entries attributes in original format, escaping reserved characters when necessary Returns: str: escaped attributes as tag=value pairs, separated by semi-colon
codesearchnet
def _deserialization_helper(self, state, ray_forking): worker = ray.worker.get_global_worker() worker.check_connected() if state["ray_forking"]: actor_handle_id = state["actor_handle_id"] else: actor_handle_id = compute_actor_handle_id_non_forked( state["actor_handle_id"], worker.current_task_id) self.__init__( state["actor_id"], state["module_name"], state["class_name"], state["actor_cursor"], state["actor_method_names"], state["method_signatures"], state["method_num_return_vals"], state["actor_creation_dummy_object_id"], state["actor_method_cpus"], state["actor_driver_id"], actor_handle_id=actor_handle_id)
This is defined in order to make pickling work. Args: state: The serialized state of the actor handle. ray_forking: True if this is being called because Ray is forking the actor handle and false if it is being called by pickling.
juraj-google-style
def samefile(path1, path2): path1, path1_is_storage = format_and_is_storage(path1) path2, path2_is_storage = format_and_is_storage(path2) if not path1_is_storage and not path2_is_storage: return os_path_samefile(path1, path2) if not path1_is_storage or not path2_is_storage: return False with handle_os_exceptions(): system = get_instance(path1) if system is not get_instance(path2): return False elif system.relpath(path1) != system.relpath(path2): return False return True
Return True if both pathname arguments refer to the same file or directory. Equivalent to "os.path.samefile". Args: path1 (path-like object): Path or URL. path2 (path-like object): Path or URL. Returns: bool: True if same file or directory.
juraj-google-style
def main(jlink_serial, device): buf = StringIO.StringIO() jlink = pylink.JLink(log=buf.write, detailed_log=buf.write) jlink.open(serial_no=jlink_serial) jlink.set_tif(pylink.enums.JLinkInterfaces.SWD) jlink.connect(device, verbose=True) sys.stdout.write(('ARM Id: %d\n' % jlink.core_id())) sys.stdout.write(('CPU Id: %d\n' % jlink.core_cpu())) sys.stdout.write(('Core Name: %s\n' % jlink.core_name())) sys.stdout.write(('Device Family: %d\n' % jlink.device_family()))
Prints the core's information. Args: jlink_serial (str): the J-Link serial number device (str): the target CPU Returns: Always returns ``0``. Raises: JLinkException: on error
codesearchnet
def from_graph(cls, graph, linear_energy_ranges, quadratic_energy_ranges): get_env().enable_infix_notation = True theta = cls.empty(dimod.SPIN) theta.add_offset(Symbol('offset', REAL)) def Linear(v): 'Create a Symbol for the linear bias including the energy range\n constraints.' bias = Symbol('h_{}'.format(v), REAL) (min_, max_) = linear_energy_ranges[v] theta.assertions.add(LE(bias, limitReal(max_))) theta.assertions.add(GE(bias, limitReal(min_))) return bias def Quadratic(u, v): 'Create a Symbol for the quadratic bias including the energy range\n constraints.' bias = Symbol('J_{},{}'.format(u, v), REAL) if ((v, u) in quadratic_energy_ranges): (min_, max_) = quadratic_energy_ranges[(v, u)] else: (min_, max_) = quadratic_energy_ranges[(u, v)] theta.assertions.add(LE(bias, limitReal(max_))) theta.assertions.add(GE(bias, limitReal(min_))) return bias for v in graph.nodes: theta.add_variable(v, Linear(v)) for (u, v) in graph.edges: theta.add_interaction(u, v, Quadratic(u, v)) return theta
Create Theta from a graph and energy ranges. Args: graph (:obj:`networkx.Graph`): Provides the structure for Theta. linear_energy_ranges (dict): A dict of the form {v: (min, max), ...} where min and max are the range of values allowed to v. quadratic_energy_ranges (dict): A dict of the form {(u, v): (min, max), ...} where min and max are the range of values allowed to (u, v). Returns: :obj:`.Theta`
codesearchnet
def from_dict(cls, pwinput_dict): pwinput = cls(structure=Structure.from_dict(pwinput_dict['structure']), pseudo=pwinput_dict['pseudo'], control=pwinput_dict['sections']['control'], system=pwinput_dict['sections']['system'], electrons=pwinput_dict['sections']['electrons'], ions=pwinput_dict['sections']['ions'], cell=pwinput_dict['sections']['cell'], kpoints_mode=pwinput_dict['kpoints_mode'], kpoints_grid=pwinput_dict['kpoints_grid'], kpoints_shift=pwinput_dict['kpoints_shift']) return pwinput
Load a PWInput object from a dictionary. Args: pwinput_dict (dict): dictionary with PWInput data Returns: PWInput object
juraj-google-style
def _check_positional_parameters(method_signature, base_signature, is_subtype, ctx): check_types = True for base_param_pos, base_param_name in enumerate(base_signature.param_names): if base_param_pos == 0 or base_param_pos < base_signature.posonly_count: continue if base_param_name == '_': continue if base_param_pos < method_signature.posonly_count: return SignatureError(SignatureErrorType.POSITIONAL_PARAMETER_COUNT_MISMATCH, 'Too many positional-only parameters in overriding method.') elif base_param_pos < len(method_signature.param_names): method_param_name = method_signature.param_names[base_param_pos] else: if method_signature.varargs_name: break return SignatureError(SignatureErrorType.POSITIONAL_PARAMETER_COUNT_MISMATCH, 'Not enough positional parameters in overriding method.') method_param_name = method_signature.param_names[base_param_pos] if method_param_name not in (base_param_name, '_'): log.warning('Name mismatch for parameter %r.', base_param_name) if not ctx.options.overriding_renamed_parameter_count_checks: return None check_types = False remaining_method_params = method_signature.param_names[len(base_signature.param_names):] if not base_signature.varargs_name else [] for method_param_name in remaining_method_params: if method_param_name in base_signature.kwonly_params: continue if method_param_name not in method_signature.defaults: return SignatureError(SignatureErrorType.DEFAULT_PARAMETER_MISMATCH, f"Parameter '{method_param_name}' must have a default value.") if not check_types: return None return _check_positional_parameter_annotations(method_signature, base_signature, is_subtype)
Checks that the positional parameters of the overriding method match. Args: method_signature: signature of the overriding method. base_signature: signature of the overridden method. is_subtype: a binary function to compare types. ctx: Context Returns: SignatureError if a mismatch is detected. Otherwise returns None.
github-repos
def new_space(self, name=None, bases=None, formula=None, refs=None): space = self._impl.model.currentspace = self._impl.new_space(name=name, bases=get_impls(bases), formula=formula, refs=refs) return space.interface
Create a child space. Args: name (str, optional): Name of the space. Defaults to ``SpaceN``, where ``N`` is a number determined automatically. bases (optional): A space or a sequence of spaces to be the base space(s) of the created space. formula (optional): Function to specify the parameters of dynamic child spaces. The signature of this function is used for setting parameters for dynamic child spaces. This function should return a mapping of keyword arguments to be passed to this method when the dynamic child spaces are created. Returns: The new child space.
codesearchnet
def stream_matching(self, address, name): matching = [x for x in self.entries if x.valid and x.target.matches(address, name)] rpc_list = [] for var in matching: rpc_list.extend(var.generate_rpcs(address)) return rpc_list
Return the RPCs needed to stream matching config variables to the given tile. This function will return a list of tuples suitable for passing to EmulatedDevice.deferred_rpc. Args: address (int): The address of the tile that we wish to stream to name (str or bytes): The 6 character name of the target tile. Returns: list of tuple: The list of RPCs to send to stream these variables to a tile.
juraj-google-style
def DeleteFeaturesFromFeatureLayer(self, url, sql, chunksize=0): fl = None try: fl = FeatureLayer(url=url, securityHandler=self._securityHandler) totalDeleted = 0 if (chunksize > 0): qRes = fl.query(where=sql, returnIDsOnly=True) if ('error' in qRes): print(qRes) return qRes elif ('objectIds' in qRes): oids = qRes['objectIds'] total = len(oids) if (total == 0): return {'success': True, 'message': 'No features matched the query'} i = 0 print(('%s features to be deleted' % total)) while (i <= len(oids)): oidsDelete = ','.join((str(e) for e in oids[i:(i + chunksize)])) if (oidsDelete == ''): continue else: results = fl.deleteFeatures(objectIds=oidsDelete) if ('deleteResults' in results): totalDeleted += len(results['deleteResults']) print(('%s%% Completed: %s/%s ' % (int(((totalDeleted / float(total)) * 100)), totalDeleted, total))) i += chunksize else: print(results) return {'success': True, 'message': ('%s deleted' % totalDeleted)} qRes = fl.query(where=sql, returnIDsOnly=True) if ('objectIds' in qRes): oids = qRes['objectIds'] if (len(oids) > 0): print(('%s features to be deleted' % len(oids))) results = fl.deleteFeatures(where=sql) if ('deleteResults' in results): totalDeleted += len(results['deleteResults']) return {'success': True, 'message': ('%s deleted' % totalDeleted)} else: return results return {'success': True, 'message': ('%s deleted' % totalDeleted)} else: print(qRes) else: results = fl.deleteFeatures(where=sql) if (results is not None): if ('deleteResults' in results): return {'success': True, 'message': (totalDeleted + len(results['deleteResults']))} else: return results except: (line, filename, synerror) = trace() raise common.ArcRestHelperError({'function': 'DeleteFeaturesFromFeatureLayer', 'line': line, 'filename': filename, 'synerror': synerror}) finally: fl = None del fl gc.collect()
Removes features from a hosted feature service layer by SQL query. Args: url (str): The URL of the feature service layer. sql (str): The SQL query to apply against the feature service. Those features that satisfy the query will be deleted. chunksize (int): The maximum amount of features to remove at a time. Defaults to 0. Returns: The result from :py:func:`arcrest.agol.services.FeatureLayer.deleteFeatures`. Notes: If you want to delete all features, it is suggested to use the SQL query ``"1=1"``.
codesearchnet
def convert_upsample_bilinear(params, w_name, scope_name, inputs, layers, weights, names): print('Converting upsample...') if (names == 'short'): tf_name = ('UPSL' + random_string(4)) elif (names == 'keep'): tf_name = w_name else: tf_name = (w_name + str(random.random())) output_size = params['output_size'] align_corners = (params['align_corners'] > 0) def target_layer(x, size=output_size, align_corners=align_corners): import tensorflow as tf x = tf.transpose(x, [0, 2, 3, 1]) x = tf.image.resize_images(x, size, align_corners=align_corners) x = tf.transpose(x, [0, 3, 1, 2]) return x lambda_layer = keras.layers.Lambda(target_layer) layers[scope_name] = lambda_layer(layers[inputs[0]])
Convert upsample_bilinear2d layer. Args: params: dictionary with layer parameters w_name: name prefix in state_dict scope_name: pytorch scope name inputs: pytorch node inputs layers: dictionary with keras tensors weights: pytorch state_dict names: use short names for keras layers
codesearchnet
def xmlstring(self, pretty_print=False): s = ElementTree.tostring(self.xml(), xml_declaration=False, pretty_print=pretty_print, encoding='utf-8') if (sys.version < '3'): if isinstance(s, str): s = unicode(s, 'utf-8') elif isinstance(s, bytes): s = str(s, 'utf-8') s = s.replace('ns0:', '') s = s.replace(':ns0', '') return s
Serialises this FoLiA element and all its contents to XML. Returns: str: a string with XML representation for this element and all its children
codesearchnet
def from_json(cls, json, image_config=None): cls.image_config = image_config return cls(**{ attr: json.get(attr if key is None else key) for attr, key in cls.JSON_MAPPING.items() })
Create a model instance Arguments: json (:py:class:`dict`): The parsed JSON data. image_config (:py:class:`dict`): The API image configuration data. Returns: :py:class:`BaseModel`: The model instance.
juraj-google-style
def _update_context_field_binary_composition(present_locations, expression): if (not any((isinstance(expression.left, ContextField), isinstance(expression.right, ContextField)))): raise AssertionError(u'Received a BinaryComposition {} without any ContextField operands. This should never happen.'.format(expression)) if isinstance(expression.left, ContextField): context_field = expression.left (location_name, _) = context_field.location.get_location_name() if (location_name not in present_locations): return TrueLiteral if isinstance(expression.right, ContextField): context_field = expression.right (location_name, _) = context_field.location.get_location_name() if (location_name not in present_locations): return TrueLiteral return expression
Lower BinaryCompositions involving non-existent ContextFields to True. Args: present_locations: set of all locations in the current MatchQuery that have not been pruned expression: BinaryComposition with at least one ContextField operand Returns: TrueLiteral iff either ContextField operand is not in `present_locations`, and the original expression otherwise
codesearchnet
def wind_speed(self, value=999.0): if (value is not None): try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float for field `wind_speed`'.format(value)) if (value < 0.0): raise ValueError('value need to be greater or equal 0.0 for field `wind_speed`') if (value > 40.0): raise ValueError('value need to be smaller 40.0 for field `wind_speed`') self._wind_speed = value
Corresponds to IDD Field `wind_speed` Args: value (float): value for IDD Field `wind_speed` Unit: m/s value >= 0.0 value <= 40.0 Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
codesearchnet
def __new__(cls, name, bases, attrs): new_class = super(PipelineFormMediaMetaClass, cls).__new__( cls, name, bases, attrs) if 'css_packages' in attrs: new_class.css = PipelineFormMediaProperty( cls._get_css_files, new_class, attrs.get('css') or {}) if 'js_packages' in attrs: new_class.js = PipelineFormMediaProperty( cls._get_js_files, new_class, attrs.get('js') or []) return new_class
Construct the class. Args: name (bytes): The name of the class. bases (tuple): The base classes for the class. attrs (dict): The attributes going into the class. Returns: type: The new class.
juraj-google-style
def google_api_build_errors(config, auth, api_call, errors): if 'bigquery' in errors: errors['bigquery']['schema'] = ERROR_SCHEMA errors['bigquery']['format'] = 'JSON' errors['bigquery']['skip_rows'] = 0 errors['bigquery']['disposition'] = 'WRITE_TRUNCATE' table_create(config, errors['bigquery'].get('auth', auth), config.project, errors['bigquery']['dataset'], errors['bigquery']['table'], errors['bigquery']['schema'], overwrite=False) return errors
Builds the BigQuery table to house the Google API call errors. Optional piece of the recipe, will create a BigQuery table for errors. Takes errors, which defines a bigquery endpoint, and adds fields. Args: auth (string): either "user" or "service" to make the BigQuery call. api_call (dict): the JSON for the API call as defined in recipe. errors (dict): defines where the data will be written Returns (dict): A modified results JSON with additional API values added. Raises: ValueError: If a required key in the recipe is missing.
github-repos
def logical_and(x1, x2): if any_symbolic_tensors((x1, x2)): return LogicalAnd().symbolic_call(x1, x2) return backend.numpy.logical_and(x1, x2)
Computes the element-wise logical AND of the given input tensors. Zeros are treated as `False` and non-zeros are treated as `True`. Args: x1: Input tensor. x2: Input tensor. Returns: Output tensor, element-wise logical AND of the inputs.
github-repos
def _update_state_from_shard_states(self, state, shard_states, control): state.active_shards, state.aborted_shards, state.failed_shards = 0, 0, 0 total_shards = 0 processed_counts = [] processed_status = [] state.counters_map.clear() for s in shard_states: total_shards += 1 status = 'unknown' if s.active: state.active_shards += 1 status = 'running' if s.result_status == model.ShardState.RESULT_SUCCESS: status = 'success' elif s.result_status == model.ShardState.RESULT_ABORTED: state.aborted_shards += 1 status = 'aborted' elif s.result_status == model.ShardState.RESULT_FAILED: state.failed_shards += 1 status = 'failed' state.counters_map.add_map(s.counters_map) processed_counts.append(s.counters_map.get(context.COUNTER_MAPPER_CALLS)) processed_status.append(status) state.set_processed_counts(processed_counts, processed_status) state.last_poll_time = datetime.datetime.utcfromtimestamp(self._time()) spec = state.mapreduce_spec if total_shards != spec.mapper.shard_count: logging.error("Found %d shard states. Expect %d. " "Issuing abort command to job '%s'", total_shards, spec.mapper.shard_count, spec.mapreduce_id) model.MapreduceControl.abort(spec.mapreduce_id) state.active = bool(state.active_shards) if not control and (state.failed_shards or state.aborted_shards): model.MapreduceControl.abort(spec.mapreduce_id) if not state.active: if state.failed_shards or not total_shards: state.result_status = model.MapreduceState.RESULT_FAILED elif state.aborted_shards: state.result_status = model.MapreduceState.RESULT_ABORTED else: state.result_status = model.MapreduceState.RESULT_SUCCESS self._finalize_outputs(spec, state) self._finalize_job(spec, state) else: @db.transactional(retries=5) def _put_state(): fresh_state = model.MapreduceState.get_by_job_id(spec.mapreduce_id) if not fresh_state.active: logging.warning( "Job %s is not active. Looks like spurious task execution. " "Dropping controller task.", spec.mapreduce_id) return config = util.create_datastore_write_config(spec) state.put(config=config) _put_state()
Update mr state by examing shard states. Args: state: current mapreduce state as MapreduceState. shard_states: an iterator over shard states. control: model.MapreduceControl entity.
juraj-google-style
def check_and_update_resources(num_cpus, num_gpus, resources): if resources is None: resources = {} resources = resources.copy() assert "CPU" not in resources assert "GPU" not in resources if num_cpus is not None: resources["CPU"] = num_cpus if num_gpus is not None: resources["GPU"] = num_gpus if "CPU" not in resources: resources["CPU"] = multiprocessing.cpu_count() gpu_ids = ray.utils.get_cuda_visible_devices() if ("GPU" in resources and gpu_ids is not None and resources["GPU"] > len(gpu_ids)): raise Exception("Attempting to start raylet with {} GPUs, " "but CUDA_VISIBLE_DEVICES contains {}.".format( resources["GPU"], gpu_ids)) if "GPU" not in resources: resources["GPU"] = _autodetect_num_gpus() if gpu_ids is not None: resources["GPU"] = min(resources["GPU"], len(gpu_ids)) resources = { resource_label: resource_quantity for resource_label, resource_quantity in resources.items() if resource_quantity != 0 } for _, resource_quantity in resources.items(): assert (isinstance(resource_quantity, int) or isinstance(resource_quantity, float)) if (isinstance(resource_quantity, float) and not resource_quantity.is_integer()): raise ValueError( "Resource quantities must all be whole numbers. Received {}.". format(resources)) if resource_quantity < 0: raise ValueError( "Resource quantities must be nonnegative. Received {}.".format( resources)) if resource_quantity > ray_constants.MAX_RESOURCE_QUANTITY: raise ValueError("Resource quantities must be at most {}.".format( ray_constants.MAX_RESOURCE_QUANTITY)) return resources
Sanity check a resource dictionary and add sensible defaults. Args: num_cpus: The number of CPUs. num_gpus: The number of GPUs. resources: A dictionary mapping resource names to resource quantities. Returns: A new resource dictionary.
juraj-google-style
def _UpdateSudoer(self, user, sudoer=False): if sudoer: self.logger.info('Adding user %s to the Google sudoers group.', user) command = self.gpasswd_add_cmd.format(user=user, group=self.google_sudoers_group) else: self.logger.info('Removing user %s from the Google sudoers group.', user) command = self.gpasswd_remove_cmd.format(user=user, group=self.google_sudoers_group) try: subprocess.check_call(command.split(' ')) except subprocess.CalledProcessError as e: self.logger.warning('Could not update user %s. %s.', user, str(e)) return False else: self.logger.debug('Removed user %s from the Google sudoers group.', user) return True
Update sudoer group membership for a Linux user account. Args: user: string, the name of the Linux user account. sudoer: bool, True if the user should be a sudoer. Returns: bool, True if user update succeeded.
codesearchnet
def stage_tc_batch(self, owner, staging_data): batch = self.tcex.batch(owner) for group in staging_data.get('group') or []: variable = group.pop('variable', None) path = group.pop('path', None) data = self.path_data(group, path) if group.get('xid') is None: group['xid'] = self.stage_tc_batch_xid(group.get('type'), group.get('name'), owner) group['ownerName'] = owner batch.add_group(group) if variable is not None and data is not None: self.stage_redis(variable, self.stage_tc_group_entity(data)) for indicator in staging_data.get('indicator') or []: variable = indicator.pop('variable', None) path = indicator.pop('path', None) if indicator.get('xid') is None: indicator['xid'] = self.stage_tc_batch_xid( indicator.get('type'), indicator.get('summary'), owner ) indicator['ownerName'] = owner batch.add_indicator(indicator) data = self.path_data(dict(indicator), path) if variable is not None and data is not None: self.stage_redis(variable, self.stage_tc_indicator_entity(data)) batch_results = batch.submit() self.log.debug('[stage] Batch Results: {}'.format(batch_results)) for error in batch_results.get('errors') or []: self.log.error('[stage] {}'.format(error))
Stage data in ThreatConnect Platform using batch API. Args: owner (str): The ThreatConnect owner to submit batch job. staging_data (dict): A dict of ThreatConnect batch data.
juraj-google-style
def __new__(mcls, name, parents, attributes): return type.__new__(mcls, name, parents, attributes)
Creates a new Type object (an instance of TypeMetaclass). Args: name (str): the name of the new type. parents (list(str)): a list of superclasses. attributes: (???): a map from name to value for "parameters" for defining the new type.
juraj-google-style
def get_video_transcript_url(video_id, language_code): video_transcript = VideoTranscript.get_or_none(video_id, language_code) if video_transcript: return video_transcript.url()
Returns course video transcript url or None if no transcript Arguments: video_id: it can be an edx_video_id or an external_id extracted from external sources in a video component. language_code: language code of a video transcript
juraj-google-style
def _create_node(self, index: int, name: str, external_id: Optional[str] = None) -> IGraphNode: return IGraphNode(graph=self._graph, index=index, name=name, external_id=external_id)
Returns a new `IGraphNode` instance with the given index and name. Arguments: index (int): The index of the node to create. name (str): The name of the node to create. external_id (Optional[str]): The external ID of the node.
juraj-google-style
def sym_jsonify(self, compact: bool=True, type_info: bool=True, **kwargs) -> Any: if not compact: json_value = super().sym_jsonify(**kwargs) assert isinstance(json_value, dict), json_value if self._cloneable_metadata_keys: json_value['_cloneable_metadata_keys'] = list(self._cloneable_metadata_keys) return json_value if self.children: child_nodes = [c.sym_jsonify(compact, type_info=False, **kwargs) for c in self.children] if self.value is not None: if len(child_nodes) == 1: single_choice = child_nodes[0] if isinstance(single_choice, tuple): value = (self.value,) + single_choice else: value = (self.value, single_choice) else: value = (self.value, child_nodes) else: value = child_nodes else: value = self.value if type_info: json_value = {utils.JSONConvertible.TYPE_NAME_KEY: self.__class__.__serialization_key__, 'format': 'compact', 'value': symbolic.to_json(value)} if self.metadata: json_value['metadata'] = symbolic.to_json(self.metadata) if self._cloneable_metadata_keys: json_value['_cloneable_metadata_keys'] = list(self._cloneable_metadata_keys) return json_value else: return value
Convert DNA to JSON object. Args: compact: Whether use compact form. If compact, the nested number structure in DNA.parse will be used, otherwise members will be rendered out as regular symbolic Object. type_info: If True, type information will be included in output, otherwise type information will not be included. Applicable when compact is set to True. **kwargs: Keyword arguments that will be passed to symbolic.Object if compact is False. Returns: JSON representation of DNA.
github-repos
def make_graph_def_with_constant_nodes(node_sizes: Sequence[int], dtype: Optional[dtypes.DType]=None, **function_node_sizes) -> graph_pb2.GraphDef: dtype = dtypes.float32 graph_def = graph_pb2.GraphDef() n = 0 def add_nodes(node_list, sizes): nonlocal n for s in sizes: node = node_list.add(name=f'Const_{n}', op='Const') node.attr['value'].tensor.MergeFrom(tensor_util.make_tensor_proto(np.ones([]), dtype=dtype)) remaining_size = s - node.ByteSize() if remaining_size < 0: raise ValueError(f'Unable to create node of size {s} bytes.') constant_size = [math.ceil(remaining_size / dtype.size)] node.attr['value'].tensor.Clear() node.attr['value'].tensor.MergeFrom(tensor_util.make_tensor_proto(np.random.random_sample(constant_size), dtype=dtype)) n += 1 add_nodes(graph_def.node, node_sizes) for fn_name, fn_sizes in function_node_sizes.items(): fn = graph_def.library.function.add() fn.signature.name = fn_name add_nodes(fn.node_def, fn_sizes) return graph_def
Creates a GraphDef with approximate node sizes. Args: node_sizes: list of ints, the approximate desired sizes of the nodes in the GraphDef. dtype: Dtype of encoded constant values (float32 or float64). **function_node_sizes: Map of function name to FunctionDef node sizes (see `node_sizes`). Returns: A GraphDef proto.
github-repos
def split(self, amount): split_objs = list(self.all()) if (not split_objs): raise NoSplitsFoundForRecurringCost() portions = [split_obj.portion for split_obj in split_objs] split_amounts = ratio_split(amount, portions) return [(split_objs[i], split_amount) for (i, split_amount) in enumerate(split_amounts)]
Split the value given by amount according to the RecurringCostSplit's portions Args: amount (Decimal): Returns: list[(RecurringCostSplit, Decimal)]: A list with elements in the form (RecurringCostSplit, Decimal)
codesearchnet
def save_model(self, fname, pretty=False): with open(fname, 'w') as f: xml_str = ET.tostring(self.root, encoding='unicode') if pretty: parsed_xml = xml.dom.minidom.parseString(xml_str) xml_str = parsed_xml.toprettyxml(newl='') f.write(xml_str)
Saves the xml to file. Args: fname: output file location pretty: attempts!! to pretty print the output
codesearchnet
def add_execution_event(self, context_id, event): if context_id not in self._contexts: LOGGER.warning("Context_id not in contexts, %s", context_id) return False context = self._contexts.get(context_id) context.add_execution_event(event) return True
Within a context, append data to the execution result. Args: context_id (str): the context id returned by create_context data_type (str): type of data to append data (bytes): data to append Returns: (bool): True if the operation is successful, False if the context_id doesn't reference a known context.
juraj-google-style
class EosTokenCriteria(StoppingCriteria): def __init__(self, eos_token_id: Union[int, List[int], torch.Tensor]): if not isinstance(eos_token_id, torch.Tensor): if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] eos_token_id = torch.tensor(eos_token_id) self.eos_token_id = eos_token_id @add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor: self.eos_token_id = self.eos_token_id.to(input_ids.device) is_done = isin_mps_friendly(input_ids[:, -1], self.eos_token_id) return is_done
This class can be used to stop generation whenever the "end-of-sequence" token is generated. By default, it uses the `model.generation_config.eos_token_id`. Args: eos_token_id (`Union[int, List[int], torch.Tensor]`): The id(s) of the *end-of-sequence* token.
github-repos
def AssertIterableType(iterable, expected_item_type): if isinstance(iterable, collections.Iterator): message = "Expected iterable container but got iterator `%s` instead" message %= iterable raise TypeError(message) AssertType(iterable, collections.Iterable) for item in iterable: AssertType(item, expected_item_type)
Ensures that given iterable container has certain type. Args: iterable: An iterable container to assert the type for. expected_item_type: An expected type of the container items. Raises: TypeError: If given container does is not an iterable or its items do not have the expected type.
juraj-google-style
def filecmp(filename_a, filename_b): size_a = FileIO(filename_a, 'rb').size() size_b = FileIO(filename_b, 'rb').size() if size_a != size_b: return False crc_a = file_crc32(filename_a) crc_b = file_crc32(filename_b) return crc_a == crc_b
Compare two files, returning True if they are the same, False otherwise. We check size first and return False quickly if the files are different sizes. If they are the same size, we continue to generating a crc for the whole file. You might wonder: why not use Python's `filecmp.cmp()` instead? The answer is that the builtin library is not robust to the many different filesystems TensorFlow runs on, and so we here perform a similar comparison with the more robust FileIO. Args: filename_a: string path to the first file. filename_b: string path to the second file. Returns: True if the files are the same, False otherwise.
github-repos
def registration_info_request(self, registration_id): return self.requests_session.get( self.INFO_END_POINT + registration_id, params={'details': 'true'} )
Makes a request for registration info and returns the response object Args: registration_id: id to be checked Returns: response of registration info request
juraj-google-style
def json(self) -> dict: content = {} content['name'] = self.name content['callback'] = self.callback self.control_json['content'] = content return self.control_json
Returns json compatible state of the Button instance. Returns: control_json: Json representation of Button state.
codesearchnet
def __init__(self, dns_ip): self._dns_ip = dns_ip self._resolver = ProxyResolver() try: self._resolver.set_proxies([self._dns_ip]) except async_dns.address.InvalidHost as e: msg = f'RecordChecker got invalid DNS server IP: {e}.' raise exceptions.InvalidDNSHost(msg)
Setup RecordChecker object. Args: dns_ip: DNS server IP to query.
juraj-google-style
def extract_object_files(archive_file: io.BufferedIOBase, dest_dir: str) -> None: if not os.path.exists(dest_dir): os.makedirs(dest_dir) _check_archive_signature(archive_file) extracted_files = dict() for name, file_content in _extract_next_file(archive_file): digest = hashlib.md5(file_content).digest() for final_name in _generate_modified_filenames(name): if final_name not in extracted_files: extracted_files[final_name] = digest with open(os.path.join(dest_dir, final_name), 'wb') as object_file: object_file.write(file_content) break elif extracted_files[final_name] == digest: break
Extracts object files from the archive path to the destination directory. Extracts object files from the given BSD variant archive file. The extracted files are written to the destination directory, which will be created if the directory does not exist. Colliding object file names are automatically renamed upon extraction in order to avoid unintended overwriting. Args: archive_file: The archive file object pointing at its beginning. dest_dir: The destination directory path in which the extracted object files will be written. The directory will be created if it does not exist.
github-repos
def check_valid_values(function): def decorated(self, X, *args, **kwargs): if isinstance(X, pd.DataFrame): W = X.values else: W = X if not len(W): raise ValueError('Your dataset is empty.') if W.dtype not in [np.dtype('float64'), np.dtype('int64')]: raise ValueError('There are non-numerical values in your data.') if np.isnan(W).any().any(): raise ValueError('There are nan values in your data.') return function(self, X, *args, **kwargs) return decorated
Raises an exception if the given values are not supported. Args: function(callable): Method whose unique argument is a numpy.array-like object. Returns: callable: Decorated function Raises: ValueError: If there are missing or invalid values or if the dataset is empty.
juraj-google-style
def _convert_as_saved_model(self): temp_dir = tempfile.mkdtemp() try: self._freeze_keras_model(temp_dir) if self.saved_model_dir: return super(TFLiteKerasModelConverter, self).convert() finally: shutil.rmtree(temp_dir, True)
Converts a Keras model as a saved model. Returns: The converted data in serialized format.
github-repos
def _init_from_args(self, maximum_iterations, parallel_iterations, back_prop, swap_memory, name): if not isinstance(parallel_iterations, int) or parallel_iterations <= 0: raise ValueError("'parallel_iterations' must be a positive integer: %s" % parallel_iterations) self._name = ops.get_default_graph().unique_name(name) self._maximum_iterations = maximum_iterations self._parallel_iterations = parallel_iterations self._back_prop = back_prop self._swap_memory = swap_memory self._pivot_for_pred = None self._pivot_for_body = None self._pivot = None self._loop_exits = [] self._loop_enters = [] self._graph = ops.get_default_graph()
Creates a new `WhileContext` from arguments. Args: maximum_iterations: Optional upper bound on number of loop iterations. parallel_iterations: The number of iterations allowed to run in parallel. back_prop: Whether backprop is enabled for this while loop. swap_memory: Whether GPU-CPU memory swap is enabled for this loop. name: Optional name prefix for the returned tensors. Raises: ValueError: If `parallel_iterations` has invalid value.
github-repos
def setup(app): for (name, (default, rebuild, _)) in ref.CONFIG_VALUES.iteritems(): app.add_config_value(name, default, rebuild) app.add_directive('javaimport', ref.JavarefImportDirective) app.add_role('javaref', ref.JavarefRole(app)) app.connect('builder-inited', initialize_env) app.connect('env-purge-doc', ref.purge_imports) app.connect('env-merge-info', ref.merge_imports) app.connect('build-finished', ref.cleanup)
Register the extension with Sphinx. Args: app: The Sphinx application.
codesearchnet
def average(self, selector=identity): if self.closed(): raise ValueError('Attempt to call average() on a closed Queryable.') if (not is_callable(selector)): raise TypeError('average() parameter selector={0} is not callable'.format(repr(selector))) total = 0 count = 0 for item in self.select(selector): total += item count += 1 if (count == 0): raise ValueError('Cannot compute average() of an empty sequence.') return (total / count)
Return the arithmetic mean of the values in the sequence.. All of the source sequence will be consumed. Note: This method uses immediate execution. Args: selector: An optional single argument function which will be used to project the elements of the sequence. If omitted, the identity function is used. Returns: The arithmetic mean value of the projected sequence. Raises: ValueError: If the Queryable has been closed. ValueError: I the source sequence is empty.
codesearchnet