code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def forward(self, inputs_embeds, attention_mask: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) layer_outputs = encoder_layer(hidden_states, attention_mask, output_attentions=output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple((v for v in [hidden_states, encoder_states, all_attentions] if v is not None)) return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions)
Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Embedded representation of the inputs. Should be float, not int tokens. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
github-repos
def whatIfOrder(self, contract: Contract, order: Order) -> OrderState: return self._run(self.whatIfOrderAsync(contract, order))
Retrieve commission and margin impact without actually placing the order. The given order will not be modified in any way. This method is blocking. Args: contract: Contract to test. order: Order to test.
codesearchnet
def from_dict(cls, d, ignore=()): filtered = {} for (k, v) in d.items(): if (k == 'typeid'): assert (v == cls.typeid), ('Dict has typeid %s but %s has typeid %s' % (v, cls, cls.typeid)) elif (k not in ignore): filtered[k] = v try: inst = cls(**filtered) except TypeError as e: raise TypeError(('%s raised error: %s' % (cls.typeid, str(e)))) return inst
Create an instance from a serialized version of cls Args: d(dict): Endpoints of cls to set ignore(tuple): Keys to ignore Returns: Instance of this class
codesearchnet
def GetNumberOfRows(self): if (not self._database_object): raise IOError('Not opened.') if (self._number_of_rows is None): self._number_of_rows = self._database_object.GetNumberOfRows(self._table_name) return self._number_of_rows
Retrieves the number of rows of the table. Returns: int: number of rows. Raises: IOError: if the file-like object has not been opened. OSError: if the file-like object has not been opened.
codesearchnet
def squeeze_batch_dims(inp, op, inner_rank, name=None): with ops.name_scope(name, 'squeeze_batch_dims', [inp]): inp = ops.convert_to_tensor(inp, name='input') shape = inp.shape inner_shape = shape[-inner_rank:] if not inner_shape.is_fully_defined(): inner_shape = array_ops.shape(inp)[-inner_rank:] batch_shape = shape[:-inner_rank] if not batch_shape.is_fully_defined(): batch_shape = array_ops.shape(inp)[:-inner_rank] if isinstance(inner_shape, tensor_shape.TensorShape): inp_reshaped = array_ops.reshape(inp, [-1] + inner_shape.as_list()) else: inp_reshaped = array_ops.reshape(inp, array_ops.concat(([-1], inner_shape), axis=-1)) out_reshaped = op(inp_reshaped) out_inner_shape = out_reshaped.shape[-inner_rank:] if not out_inner_shape.is_fully_defined(): out_inner_shape = array_ops.shape(out_reshaped)[-inner_rank:] out = array_ops.reshape(out_reshaped, array_ops.concat((batch_shape, out_inner_shape), axis=-1)) out.set_shape(inp.shape[:-inner_rank] + out.shape[-inner_rank:]) return out
Returns `unsqueeze_batch(op(squeeze_batch(inp)))`. Where `squeeze_batch` reshapes `inp` to shape `[prod(inp.shape[:-inner_rank])] + inp.shape[-inner_rank:]` and `unsqueeze_batch` does the reverse reshape but on the output. Args: inp: A tensor with dims `batch_shape + inner_shape` where `inner_shape` is length `inner_rank`. op: A callable that takes a single input tensor and returns a single. output tensor. inner_rank: A python integer. name: A string. Returns: `unsqueeze_batch_op(squeeze_batch(inp))`.
github-repos
def _SetCredentials(self, **kwds): args = {'api_key': self._API_KEY, 'client': self, 'client_id': self._CLIENT_ID, 'client_secret': self._CLIENT_SECRET, 'package_name': self._PACKAGE, 'scopes': self._SCOPES, 'user_agent': self._USER_AGENT} args.update(kwds) from apitools.base.py import credentials_lib self._credentials = credentials_lib.GetCredentials(**args)
Fetch credentials, and set them for this client. Note that we can't simply return credentials, since creating them may involve side-effecting self. Args: **kwds: Additional keyword arguments are passed on to GetCredentials. Returns: None. Sets self._credentials.
codesearchnet
def setColumn(self, header, values): if any(isinstance(value, basestring) for value in values): values = list(map(str, values)) self._impl.setColumnStr(header, values, len(values)) elif all(isinstance(value, Real) for value in values): values = list(map(float, values)) self._impl.setColumnDbl(header, values, len(values)) else: print(values) raise NotImplementedError
Set the values of a column. Args: header: The header of the column to be set. values: The values to set.
juraj-google-style
def list_local_devices(session_config=None): def _convert(pb_str): m = device_attributes_pb2.DeviceAttributes() m.ParseFromString(pb_str) return m serialized_config = None if session_config is not None: serialized_config = session_config.SerializeToString() return [_convert(s) for s in _pywrap_device_lib.list_devices(serialized_config)]
List the available devices available in the local process. Args: session_config: a session config proto or None to use the default config. Returns: A list of `DeviceAttribute` protocol buffers.
github-repos
def edges(self, tail_head_iter): edge = self._edge_plain quote = self._quote_edge lines = ((edge % (quote(t), quote(h))) for (t, h) in tail_head_iter) self.body.extend(lines)
Create a bunch of edges. Args: tail_head_iter: Iterable of ``(tail_name, head_name)`` pairs.
codesearchnet
def write_json(self, fh, pretty=True): sjson = json.JSONEncoder().encode(self.json()) if pretty: json.dump(json.loads(sjson), fh, sort_keys=True, indent=4) else: json.dump(json.loads(sjson), fh) return
Write composite object to file handle in JSON format. Args: fh (file): File handle to write to. pretty (bool): Sort keys and indent in output.
juraj-google-style
def encode_dict(values_dict): return {key: encode_value(value) for (key, value) in six.iteritems(values_dict)}
Encode a dictionary into protobuf ``Value``-s. Args: values_dict (dict): The dictionary to encode as protobuf fields. Returns: Dict[str, ~google.cloud.firestore_v1beta1.types.Value]: A dictionary of string keys and ``Value`` protobufs as dictionary values.
codesearchnet
def metadata(self, path): if not self.exists(path): raise BeamIOError('Path does not exist: %s' % path) return FileMetadata(path, os.path.getsize(path), os.path.getmtime(path))
Fetch metadata fields of a file on the FileSystem. Args: path: string path of a file. Returns: :class:`~apache_beam.io.filesystem.FileMetadata`. Raises: ``BeamIOError``: if path isn't a file or doesn't exist.
github-repos
def delete_media_service_rg(access_token, subscription_id, rgname, msname): endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/resourceGroups/', rgname, '/providers/microsoft.media/mediaservices/', msname, '?api-version=', MEDIA_API]) return do_delete(endpoint, access_token)
Delete a media service. Args: access_token (str): A valid Azure authentication token. subscription_id (str): Azure subscription id. rgname (str): Azure resource group name. msname (str): Media service name. Returns: HTTP response.
codesearchnet
def _skip_tensor(self, op_id, out_tensor, report_handler): non_numeric_tensor_types = set([dtypes.variant, dtypes.resource, dtypes.string]) if out_tensor.dtype in non_numeric_tensor_types: report_handler.instrument_tensor(out_tensor, TensorTracer.reason(op_id, _REASON_NON_NUMERIC_TENSOR)) return True if [consumer for consumer in out_tensor.consumers() if TensorTracer.while_loop_op(consumer)]: report_handler.instrument_tensor(out_tensor, TensorTracer.reason(op_id, _REASON_FEEDS_WHILELOOP_OP)) return True if self._is_user_included_op(out_tensor.op): report_handler.instrument_tensor(out_tensor, TensorTracer.reason(op_id, _REASON_USER_INCLUDED)) if tensor_tracer_flags.TT_CHECK_FILTER.value: logging.info('USER_INCLUDED tensor %s', out_tensor.name) return False if self._is_user_excluded_op(out_tensor.op): report_handler.instrument_tensor(out_tensor, TensorTracer.reason(op_id, _REASON_USER_EXCLUDED)) if tensor_tracer_flags.TT_CHECK_FILTER.value: logging.info('USER_EXCLUDED tensor %s', out_tensor.name) return True if not out_tensor.get_shape().is_fully_defined(): if self._parameters.trace_mode in (tensor_tracer_flags.TRACE_MODE_NAN_INF, tensor_tracer_flags.TRACE_MODE_NORM, tensor_tracer_flags.TRACE_MODE_HISTORY, tensor_tracer_flags.TRACE_MODE_MAX_ABS, tensor_tracer_flags.TRACE_MODE_SUMMARY): report_handler.instrument_tensor(out_tensor, TensorTracer.reason(op_id, _REASON_TENSOR_GET_TRACED)) return False else: report_handler.instrument_tensor(out_tensor, TensorTracer.reason(op_id, _REASON_DYNAMIC_SHAPE)) return True rank = len(out_tensor.shape) if rank < 1: if self._parameters.trace_scalar_ops: if TensorTracer.unsafe_scalar_trace(out_tensor.op): report_handler.instrument_tensor(out_tensor, TensorTracer.reason(op_id, _REASON_UNSAFE_SCALAR)) return True else: report_handler.instrument_tensor(out_tensor, TensorTracer.reason(op_id, _REASON_SCALAR_GET_TRACED)) return False else: report_handler.instrument_tensor(out_tensor, TensorTracer.reason(op_id, _REASON_SKIP_SCALAR)) return True else: report_handler.instrument_tensor(out_tensor, TensorTracer.reason(op_id, _REASON_TENSOR_GET_TRACED)) return False
Returns True if we should not trace out_tensor. Args: op_id: Topological index of the op producing tensor. out_tensor: tf.Tensor report_handler: An instance of tensor_tracer_report.TTReportHandle. Returns: True if the tensor should not be traced, false otherwise.
github-repos
def quad_2d(width, height, xpos=0.0, ypos=0.0) -> VAO: pos = numpy.array([ xpos - width / 2.0, ypos + height / 2.0, 0.0, xpos - width / 2.0, ypos - height / 2.0, 0.0, xpos + width / 2.0, ypos - height / 2.0, 0.0, xpos - width / 2.0, ypos + height / 2.0, 0.0, xpos + width / 2.0, ypos - height / 2.0, 0.0, xpos + width / 2.0, ypos + height / 2.0, 0.0, ], dtype=numpy.float32) normals = numpy.array([ 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, ], dtype=numpy.float32) uvs = numpy.array([ 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, ], dtype=numpy.float32) vao = VAO("geometry:quad", mode=moderngl.TRIANGLES) vao.buffer(pos, '3f', ["in_position"]) vao.buffer(normals, '3f', ["in_normal"]) vao.buffer(uvs, '2f', ["in_uv"]) return vao
Creates a 2D quad VAO using 2 triangles with normals and texture coordinates. Args: width (float): Width of the quad height (float): Height of the quad Keyword Args: xpos (float): Center position x ypos (float): Center position y Returns: A :py:class:`demosys.opengl.vao.VAO` instance.
juraj-google-style
def get_backdoor(self, name, version=''): params = {} params['or'] = 1 params['c-name'] = name params['c-aliases__in'] = name r = requests.get('{0}/backdoors/'.format(self.url), params=params, verify=self.verify, proxies=self.proxies) if (r.status_code == 200): result_data = json.loads(r.text) if ('meta' not in result_data): return None if ('total_count' not in result_data['meta']): return None if (result_data['meta']['total_count'] <= 0): return None if ('objects' not in result_data): return None for backdoor in result_data['objects']: if ('version' in backdoor): if (backdoor['version'] == version): return backdoor else: log.error('Non-200 status code: {}'.format(r.status_code)) return None
Searches for the backdoor based on name and version. Args: name: The name of the backdoor. This can be an alias. version: The version. Returns: Returns a JSON object contain one or more backdoor results or None if not found.
codesearchnet
def save(self, target, format=None, encoding=None, **options): if encoding is None: encoding = config.DEFAULT_ENCODING if format is None: _, format = helpers.detect_scheme_and_format(target) writer_class = self.__custom_writers.get(format) if writer_class is None: if format not in config.WRITERS: message = 'Format "%s" is not supported' % format raise exceptions.FormatError(message) writer_class = helpers.import_attribute(config.WRITERS[format]) writer_options = helpers.extract_options(options, writer_class.options) if options: message = 'Not supported options "%s" for format "%s"' message = message % (', '.join(options), format) raise exceptions.TabulatorException(message) writer = writer_class(**writer_options) writer.write(self.iter(), target, headers=self.headers, encoding=encoding)
Save stream to the local filesystem. Args: target (str): Path where to save the stream. format (str, optional): The format the stream will be saved as. If None, detects from the ``target`` path. Defaults to None. encoding (str, optional): Saved file encoding. Defaults to ``config.DEFAULT_ENCODING``. **options: Extra options passed to the writer.
juraj-google-style
def _GetInode(self, inode_value): if isinstance(inode_value, py2to3.INTEGER_TYPES): return inode_value if isinstance(inode_value, float): return int(inode_value) if (not isinstance(inode_value, py2to3.STRING_TYPES)): return (- 1) if (b'-' in inode_value): (inode_value, _, _) = inode_value.partition(b'-') try: return int(inode_value, 10) except ValueError: return (- 1)
Retrieves the inode from the inode value. Args: inode_value (int|str): inode, such as 1 or '27-128-1'. Returns: int: inode or -1 if the inode value cannot be converted to an integer.
codesearchnet
def convert_gguf_tokenizer(architecture, tokenizer_dict) -> Tokenizer: tokenizer_class_name = architecture converter = GGUF_TO_FAST_CONVERTERS[tokenizer_class_name](tokenizer_dict) fast_tokenizer = converter.converted() return (fast_tokenizer, converter.additional_kwargs)
Utilities to convert a slow tokenizer instance in a fast tokenizer instance. Args: architecture (`str`): The model architecture derived from gguf file. transformer_tokenizer ([`~tokenization_utils_base.PreTrainedTokenizer`]): Instance of a slow tokenizer to convert in the backend tokenizer for [`~tokenization_utils_base.PreTrainedTokenizerFast`]. Return: A instance of [`~tokenizers.Tokenizer`] to be used as the backend tokenizer of a [`~tokenization_utils_base.PreTrainedTokenizerFast`]
github-repos
def rm(path): if (path and os.path.exists(path)): if os.path.isdir(path): shutil.rmtree(path) else: os.remove(path)
Equivalent to rm -rf. Make sure ``path`` doesn't exist after this call. If it's a dir, shutil.rmtree(); if it's a file, os.remove(); if it doesn't exist, ignore. Args: path (str): the path to nuke.
codesearchnet
def PushSection(self, name, pre_formatters): if (name == '@'): value = self.stack[(- 1)].context else: value = self.stack[(- 1)].context.get(name) for (i, (f, args, formatter_type)) in enumerate(pre_formatters): if (formatter_type == ENHANCED_FUNC): value = f(value, self, args) elif (formatter_type == SIMPLE_FUNC): value = f(value) else: assert False, ('Invalid formatter type %r' % formatter_type) self.stack.append(_Frame(value)) return value
Given a section name, push it on the top of the stack. Returns: The new section, or None if there is no such section.
codesearchnet
def dd2dms(dd): m, s = divmod(dd * 3600, 60) d, m = divmod(m, 60) return int(d), int(m), s
Decimal degrees to DMS. Args: dd (float). Decimal degrees. Return: tuple. Degrees, minutes, and seconds.
juraj-google-style
def _open_repo(args, path_key='<path>'): path = (pathlib.Path(args[path_key]) if args[path_key] else None) try: repo = open_repository(path) except ValueError as exc: raise ExitError(ExitCode.DATA_ERR, str(exc)) return repo
Open and return the repository containing the specified file. The file is specified by looking up `path_key` in `args`. This value or `None` is passed to `open_repository`. Returns: A `Repository` instance. Raises: ExitError: If there is a problem opening the repo.
codesearchnet
def __init__(self, property_type=TableFeaturePropType.OFPTFPT_MATCH, oxm_ids=None): super().__init__(property_type) self.oxm_ids = ListOfOxmHeader() if oxm_ids is None else oxm_ids self.update_length()
Create an OxmProperty with the optional parameters below. Args: type(|TableFeaturePropType_v0x04|): Property Type value of this instance. oxm_ids(|ListOfOxmHeader_v0x04|): List of OxmHeader instances.
juraj-google-style
async def close_interface(self, client_id, conn_string, interface): conn_id = self._client_connection(client_id, conn_string) (await self.adapter.close_interface(conn_id, interface)) self._hook_close_interface(conn_string, interface, client_id)
Close a device interface on behalf of a client. See :meth:`AbstractDeviceAdapter.close_interface`. Args: client_id (str): The client we are working for. conn_string (str): A connection string that will be passed to the underlying device adapter. interface (str): The name of the interface to close. Raises: DeviceServerError: There is an issue with your client_id such as not being connected to the device. DeviceAdapterError: The adapter had an issue closing the interface.
codesearchnet
def index_last_dim_with_indices(x, indices): assert len(x.shape) == len(indices.shape) + 1 x_shape = shape_list(x) vocab_size = x_shape[-1] flat_x = tf.reshape(x, [list_product(x_shape[:-1]), vocab_size]) flat_indices = tf.reshape(indices, [list_product(x_shape[:-1])]) idx = tf.stack( [ tf.range(tf.to_int64(shape_list(flat_indices)[0])), tf.to_int64(flat_indices) ], axis=1) flat_x_idx = tf.gather_nd(flat_x, idx) x_idx = tf.reshape(flat_x_idx, x_shape[:-1]) return x_idx
Use indices to index into the last axis of x. This can be useful for recovering the actual probabilities of a sample from a probability distribution. Args: x: Tensor, n-d. indices: Tensor, (n-1)-d, where the dimension sizes match the first (n-1) dimensions of x. The values of indices will be used to index into the last axis of x. Returns: Tensor, (n-1)-d.
juraj-google-style
def _ord_to_namespace(n, _max_length=None): if (_max_length is None): _max_length = MAX_NAMESPACE_LENGTH length = _LEX_DISTANCE[(_max_length - 1)] if (n == 0): return '' n -= 1 return (NAMESPACE_CHARACTERS[(n / length)] + _ord_to_namespace((n % length), (_max_length - 1)))
Convert a namespace ordinal to a namespace string. Converts an int, representing the sequence number of a namespace ordered lexographically, into a namespace string. >>> _ord_to_namespace(0) '' >>> _ord_to_namespace(1) '-' >>> _ord_to_namespace(2) '--' >>> _ord_to_namespace(3) '---' Args: n: A number representing the lexographical ordering of a namespace. _max_length: The maximum namespace length. Returns: A string representing the nth namespace in lexographical order.
codesearchnet
def rouge_l_fscore(predictions, labels, **unused_kwargs): outputs = tf.to_int32(tf.argmax(predictions, axis=-1)) outputs = tf.squeeze(outputs, axis=[-1, -2]) labels = tf.squeeze(labels, axis=[-1, -2]) rouge_l_f_score = tf.py_func(rouge_l_sentence_level, (outputs, labels), tf.float32) return rouge_l_f_score, tf.constant(1.0)
ROUGE scores computation between labels and predictions. This is an approximate ROUGE scoring method since we do not glue word pieces or decode the ids and tokenize the output. Args: predictions: tensor, model predictions labels: tensor, gold output. Returns: rouge_l_fscore: approx rouge-l f1 score.
juraj-google-style
def __init__(self, field, **kwargs): self.attrs = kwargs self.attrs.update(field.field.widget.attrs) self.field = field self.widget = field.field.widget self.values = {"class": [], "label": "", "help": "", "errors": ""}
Initializer for Field class. Args: field (BoundField): Form field **kwargs (dict): Field attributes
juraj-google-style
def provide(self, cls): support.verify_class_type(cls, 'cls') if not self._is_injectable_fn(cls): provide_loc = locations.get_back_frame_loc() raise errors.NonExplicitlyBoundClassError(provide_loc, cls) try: return self._obj_provider.provide_class( cls, self._injection_context_factory.new(cls.__init__), direct_init_pargs=[], direct_init_kwargs={}) except errors.Error as e: if self._use_short_stack_traces: raise e else: raise
Provides an instance of the given class. Args: cls: a class (not an instance) Returns: an instance of cls Raises: Error: an instance of cls is not providable
juraj-google-style
def _load(cls, prefix, user_agent_config_yaml, user_agent_lookup=None): if (not user_agent_config_yaml): user_agent_config_yaml = cls.default_user_agent_config_yaml logger.info(('No user agent or user agent config file given. Using default user agent config file: %s.' % user_agent_config_yaml)) if (not isfile(user_agent_config_yaml)): raise UserAgentError("User_agent should be supplied in a YAML config file. It can be your project's name for example.") logger.info(('Loading user agent config from: %s' % user_agent_config_yaml)) user_agent_config_dict = load_yaml(user_agent_config_yaml) if user_agent_lookup: user_agent_config_dict = user_agent_config_dict.get(user_agent_lookup) if (not user_agent_config_dict): raise UserAgentError(('No user agent information read from: %s' % user_agent_config_yaml)) ua = user_agent_config_dict.get('user_agent') return cls._construct(user_agent_config_dict, prefix, ua)
Load user agent YAML file Args: prefix (str): Text to put at start of user agent user_agent_config_yaml (str): Path to user agent YAML file user_agent_lookup (Optional[str]): Lookup key for YAML. Ignored if user_agent supplied. Returns: str: user agent
codesearchnet
def format_argspec_plus(fn, grouped=True): spec = ((callable(fn) and inspect.getargspec(fn)) or fn) args = inspect.formatargspec(*spec) if spec[0]: self_arg = spec[0][0] elif spec[1]: self_arg = ('%s[0]' % spec[1]) else: self_arg = None apply_pos = inspect.formatargspec(spec[0], spec[1], spec[2]) defaulted_vals = (((spec[3] is not None) and spec[0][(0 - len(spec[3])):]) or ()) apply_kw = inspect.formatargspec(spec[0], spec[1], spec[2], defaulted_vals, formatvalue=(lambda x: ('=' + x))) if grouped: return dict(args=args, self_arg=self_arg, apply_pos=apply_pos, apply_kw=apply_kw) else: return dict(args=args[1:(- 1)], self_arg=self_arg, apply_pos=apply_pos[1:(- 1)], apply_kw=apply_kw[1:(- 1)])
Returns a dictionary of formatted, introspected function arguments. A enhanced variant of inspect.formatargspec to support code generation. fn An inspectable callable or tuple of inspect getargspec() results. grouped Defaults to True; include (parens, around, argument) lists Returns: args Full inspect.formatargspec for fn self_arg The name of the first positional argument, varargs[0], or None if the function defines no positional arguments. apply_pos args, re-written in calling rather than receiving syntax. Arguments are passed positionally. apply_kw Like apply_pos, except keyword-ish args are passed as keywords. Example:: >>> format_argspec_plus(lambda self, a, b, c=3, **d: 123) {'args': '(self, a, b, c=3, **d)', 'self_arg': 'self', 'apply_kw': '(self, a, b, c=c, **d)', 'apply_pos': '(self, a, b, c, **d)'}
codesearchnet
def list_channels(self, collection_name, experiment_name): dont_care = 'image' chan = ChannelResource(name='', collection_name=collection_name, experiment_name=experiment_name, type=dont_care) return self._list_resource(chan)
List all channels belonging to the named experiment that is part of the named collection. Args: collection_name (string): Name of the parent collection. experiment_name (string): Name of the parent experiment. Returns: (list) Raises: requests.HTTPError on failure.
codesearchnet
def get_plot(self, ylim=None, units="thz"): u = freq_units(units) plt = pretty_plot(12, 8) band_linewidth = 1 data = self.bs_plot_data() for d in range(len(data['distances'])): for i in range(self._nb_bands): plt.plot(data['distances'][d], [data['frequency'][d][i][j] * u.factor for j in range(len(data['distances'][d]))], 'b-', linewidth=band_linewidth) self._maketicks(plt) plt.axhline(0, linewidth=1, color='k') plt.xlabel(r'$\mathrm{Wave\ Vector}$', fontsize=30) ylabel = r'$\mathrm{{Frequencies\ ({})}}$'.format(u.label) plt.ylabel(ylabel, fontsize=30) x_max = data['distances'][-1][-1] plt.xlim(0, x_max) if ylim is not None: plt.ylim(ylim) plt.tight_layout() return plt
Get a matplotlib object for the bandstructure plot. Args: ylim: Specify the y-axis (frequency) limits; by default None let the code choose. units: units for the frequencies. Accepted values thz, ev, mev, ha, cm-1, cm^-1.
juraj-google-style
def _get_best(values: List[float], losses: List[float], max_loss_div: float=0.9, min_val_div: float=10.0) -> float: assert (len(values) == len(losses)), 'lengths of values and losses should be equal' min_ind = np.argmin(losses) for i in range((min_ind - 1), 0, (- 1)): if (((losses[i] * max_loss_div) > losses[min_ind]) or ((values[i] * min_val_div) < values[min_ind])): return values[(i + 1)] return (values[min_ind] / min_val_div)
Find the best value according to given losses Args: values: list of considered values losses: list of obtained loss values corresponding to `values` max_loss_div: maximal divergence of loss to be considered significant min_val_div: minimum divergence of loss to be considered significant Returns: best value divided by `min_val_div`
codesearchnet
def correlation_matrix(df): columns = df.columns.tolist() corr = pd.DataFrame( np.corrcoef(df, rowvar=0), columns=columns, index=columns) return corr
Returns a pandas DataFrame with the pair-wise correlations of the columns. Args: df: pandas DataFrame with columns to run diagnostics on
juraj-google-style
def file_crc32(filePath): crc = 0 with open(filePath, 'rb') as f: for block in _file_iter(f, _BLOCK_SIZE): crc = binascii.crc32(block, crc) & 0xFFFFFFFF return crc
计算文件的crc32检验码: Args: filePath: 待计算校验码的文件路径 Returns: 文件内容的crc32校验码。
juraj-google-style
def remove(self, cluster_id): cluster = self._storage.pop(cluster_id) cluster.cleanup()
remove cluster and data stuff Args: cluster_id - cluster identity
juraj-google-style
def FromTimeString(cls, time_string, dayfirst=False, gmt_as_timezone=True, timezone=pytz.UTC): if ((not gmt_as_timezone) and time_string.endswith(' GMT')): time_string = '{0:s}UTC'.format(time_string[:(- 3)]) try: datetime_object = dateutil.parser.parse(time_string, dayfirst=dayfirst) except (TypeError, ValueError) as exception: raise errors.TimestampError('Unable to convert time string: {0:s} in to a datetime object with error: {1!s}'.format(time_string, exception)) if datetime_object.tzinfo: datetime_object = datetime_object.astimezone(pytz.UTC) else: datetime_object = timezone.localize(datetime_object) posix_time = int(calendar.timegm(datetime_object.utctimetuple())) timestamp = (posix_time * definitions.MICROSECONDS_PER_SECOND) return (timestamp + datetime_object.microsecond)
Converts a string containing a date and time value into a timestamp. Args: time_string: String that contains a date and time value. dayfirst: An optional boolean argument. If set to true then the parser will change the precedence in which it parses timestamps from MM-DD-YYYY to DD-MM-YYYY (and YYYY-MM-DD will be YYYY-DD-MM, etc). gmt_as_timezone: Sometimes the dateutil parser will interpret GMT and UTC the same way, that is not make a distinction. By default this is set to true, that is GMT can be interpreted differently than UTC. If that is not the expected result this attribute can be set to false. timezone: Optional timezone object (instance of pytz.timezone) that the data and time value in the string represents. This value is used when the timezone cannot be determined from the string. Returns: The timestamp which is an integer containing the number of micro seconds since January 1, 1970, 00:00:00 UTC or 0 on error. Raises: TimestampError: if the time string could not be parsed.
codesearchnet
def wait_ssh(roles, retries=100, interval=30): utils_playbook = os.path.join(ANSIBLE_DIR, 'utils.yml') options = {'enos_action': 'ping'} for i in range(0, retries): try: run_ansible([utils_playbook], roles=roles, extra_vars=options, on_error_continue=False) break except EnosUnreachableHostsError as e: logger.info(('Hosts unreachable: %s ' % e.hosts)) logger.info(('Retrying... %s/%s' % ((i + 1), retries))) time.sleep(interval) else: raise EnosSSHNotReady('Maximum retries reached')
Wait for all the machines to be ssh-reachable Let ansible initiates a communication and retries if needed. Args: inventory (string): path to the inventoy file to test retries (int): Number of time we'll be retrying an SSH connection interval (int): Interval to wait in seconds between two retries
codesearchnet
def set_quickchart_resource(self, resource): if isinstance(resource, int) and not isinstance(resource, bool): resource = self.get_resources()[resource] if isinstance(resource, hdx.data.resource.Resource) or isinstance(resource, dict): res = resource.get('id') if res is None: resource = resource['name'] else: resource = res elif not isinstance(resource, str): raise hdx.data.hdxobject.HDXError('Resource id cannot be found in type %s!' % type(resource).__name__) if is_valid_uuid(resource) is True: search = 'id' else: search = 'name' changed = False for dataset_resource in self.resources: if dataset_resource[search] == resource: dataset_resource.enable_dataset_preview() self.preview_resource() changed = True else: dataset_resource.disable_dataset_preview() return changed
Set the resource that will be used for displaying QuickCharts in dataset preview Args: resource (Union[hdx.data.resource.Resource,Dict,str,int]): Either resource id or name, resource metadata from a Resource object or a dictionary or position Returns: bool: Returns True if resource for QuickCharts in dataset preview set or False if not
juraj-google-style
def refactor_string(self, data, name): features = _detect_future_features(data) if ('print_function' in features): self.driver.grammar = pygram.python_grammar_no_print_statement try: tree = self.driver.parse_string(data) except Exception as err: self.log_error("Can't parse %s: %s: %s", name, err.__class__.__name__, err) return finally: self.driver.grammar = self.grammar tree.future_features = features self.log_debug('Refactoring %s', name) self.refactor_tree(tree, name) return tree
Refactor a given input string. Args: data: a string holding the code to be refactored. name: a human-readable name for use in error/log messages. Returns: An AST corresponding to the refactored input stream; None if there were errors during the parse.
codesearchnet
def sort_variant_file(infile): command = [ 'sort', ] command.append('-n') command.append('-k1') command.append('-k3') command = command + [infile, '-o', infile] logger.info("Start sorting variants...") logger.info("Sort command: {0}".format(' '.join(command))) sort_start = datetime.now() try: call(command) except OSError as e: logger.warning("unix command sort does not seem to exist on your system...") logger.warning("genmod needs unix sort to provide a sorted output.") logger.warning("Output VCF will not be sorted since genmod can not find"\ "unix sort") raise e logger.info("Sorting done. Time to sort: {0}".format(datetime.now()-sort_start)) return
Sort a modified variant file. Sorting is based on the first column and the POS. Uses unix sort to sort the variants and overwrites the infile. Args: infile : A string that is the path to a file mode : 'chromosome' or 'rank' outfile : The path to an outfile where the variants should be printed Returns: 0 if sorting was performed 1 if variants where not sorted
juraj-google-style
def selfSignCert(self, cert, pkey): cert.set_issuer(cert.get_subject()) cert.sign(pkey, self.signing_digest)
Self-sign a certificate. Args: cert (OpenSSL.crypto.X509): The certificate to sign. pkey (OpenSSL.crypto.PKey): The PKey with which to sign the certificate. Examples: Sign a given certificate with a given private key: cdir.selfSignCert(mycert, myotherprivatekey) Returns: None
codesearchnet
def GetCharacterDisplayWidth(char): if not isinstance(char, str): return 1 char = unicodedata.normalize('NFC', char) if unicodedata.combining(char) != 0: return 0 elif unicodedata.category(char) == 'Cf': return 0 elif unicodedata.east_asian_width(char) in 'FW': return 2 else: return 1
Returns the monospaced terminal display width of char. Assumptions: - monospaced display - ambiguous or unknown chars default to width 1 - ASCII control char width is 1 => don't use this for control chars Args: char: The character to determine the display width of. Returns: The monospaced terminal display width of char: either 0, 1, or 2.
github-repos
def min(x, axis=None, keepdims=False): return math_ops.reduce_min(x, axis, keepdims)
Minimum value in a tensor. Args: x: A tensor or variable. axis: An integer, the axis to find minimum values. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. Returns: A tensor with minimum values of `x`.
github-repos
def get_size(fileobj): old_pos = fileobj.tell() try: fileobj.seek(0, 2) return fileobj.tell() finally: fileobj.seek(old_pos, 0)
Returns the size of the file. The position when passed in will be preserved if no error occurs. Args: fileobj (fileobj) Returns: int: The size of the file Raises: IOError
juraj-google-style
def branches(): out = shell.run('git branch', capture=True, never_pretend=True).stdout.strip() return [x.strip('* \t\n') for x in out.splitlines()]
Return a list of branches in the current repo. Returns: list[str]: A list of branches in the current repo.
codesearchnet
def create_datastore_for_topline(self, delete_first=0, path=None): data = load_yaml(script_dir_plus_file(join('..', 'hdx_datasource_topline.yml'), Resource)) self.create_datastore_from_dict_schema(data, delete_first, path=path)
For tabular data, create a resource in the HDX datastore which enables data preview in HDX using the built in YAML definition for a topline. If path is not supplied, the file is first downloaded from HDX. Args: delete_first (int): Delete datastore before creation. 0 = No, 1 = Yes, 2 = If no primary key. Defaults to 0. path (Optional[str]): Local path to file that was uploaded. Defaults to None. Returns: None
codesearchnet
def _ParseCString(self, page_data, string_offset): cstring_map = self._GetDataTypeMap('cstring') try: value_string = self._ReadStructureFromByteStream( page_data[string_offset:], string_offset, cstring_map) except (ValueError, errors.ParseError) as exception: raise errors.ParseError(( 'Unable to map string data at offset: 0x{0:08x} with error: ' '{1!s}').format(string_offset, exception)) return value_string.rstrip('\x00')
Parses a C string from the page data. Args: page_data (bytes): page data. string_offset (int): offset of the string relative to the start of the page. Returns: str: string. Raises: ParseError: when the string cannot be parsed.
juraj-google-style
def fetch(self, customer_id, token_id, data={}, **kwargs): url = '{}/{}/tokens/{}'.format(self.base_url, customer_id, token_id) return self.get_url(url, data, **kwargs)
Fetch Token for given Id and given customer Id Args: customer_id : Customer Id for which tokens have to be fetched token_id : Id for which TOken object has to be fetched Returns: Token dict for given token Id
codesearchnet
def remove_alias(type_): if isinstance(type_, cpptypes.type_t): type_ref = type_ elif isinstance(type_, typedef.typedef_t): type_ref = type_.decl_type else: return type_ if type_ref.cache.remove_alias: return type_ref.cache.remove_alias no_alias = __remove_alias(type_ref.clone()) type_ref.cache.remove_alias = no_alias return no_alias
Returns `type_t` without typedef Args: type_ (type_t | declaration_t): type or declaration Returns: type_t: the type associated to the inputted declaration
juraj-google-style
def body(self, features): features['targets'] = features['inputs'] is_training = (self.hparams.mode == tf.estimator.ModeKeys.TRAIN) inputs = tf.to_float(features['targets_raw']) z = tf.random_uniform([self.hparams.batch_size, self.hparams.bottleneck_bits], minval=(- 1), maxval=1, name='z') out_shape = common_layers.shape_list(inputs)[1:4] g = self.generator(z, is_training, out_shape) losses = self.losses(inputs, g) summary_g_image = tf.reshape(g[(0, :)], ([1] + common_layers.shape_list(inputs)[1:])) tf.summary.image('generated', summary_g_image, max_outputs=1) if is_training: return (tf.zeros_like(inputs), losses) return (tf.reshape(g, tf.shape(inputs)), losses)
Body of the model. Args: features: a dictionary with the tensors. Returns: A pair (predictions, losses) where predictions is the generated image and losses is a dictionary of losses (that get added for the final loss).
codesearchnet
def dump(self, filename, encoding="utf8"): with open(filename, mode='w', encoding=encoding) as text_file: text_file.write(self.single_string())
Dumps the ascii art in the file. Args: filename (str): File to dump the ascii art. encoding (str): Optional. Default "utf-8".
juraj-google-style
def recipe_salesforce_to_bigquery(config, domain, client, secret, username, password, query, auth_read, dataset, table, schema): salesforce(config, {'auth': auth_read, 'domain': domain, 'client': client, 'secret': secret, 'username': username, 'password': password, 'query': query, 'out': {'bigquery': {'dataset': dataset, 'table': table, 'schema': schema}}})
Move query results into a BigQuery table. Args: domain (string) - Retrieve from a Salesforce Domain. client (string) - Retrieve from a Salesforce App. secret (string) - Retrieve from a Salesforce App. username (email) - Your Salesforce user email. password (password) - Your Salesforce login password. query (string) - The query to run in Salesforce. auth_read (authentication) - Credentials used for reading data. dataset (string) - Existing BigQuery dataset. table (string) - Table to create from this report. schema (json) - Schema provided in JSON list format or empty list.
github-repos
def get_messages(self, name): return self._loop.run_coroutine(self._client.get_messages(name))
Get stored messages for a service. Args: name (string): The name of the service to get messages from. Returns: list(ServiceMessage): A list of the messages stored for this service
juraj-google-style
def convert(self, vroot, entry_variables): self.graph_info = GraphInfo(vroot) self.entry_variables = entry_variables with nn.parameter_scope(self.name): for t, func in enumerate(self.graph_info.funcs): if func.name in self.activation_functions: activation_func = func o = self._fixed_point_activation_conversion( activation_func) continue o = self._identity_conversion(func) self.end_variable = o return self.end_variable
All functions are replaced with the same `new` function. Args: vroot (:obj:`Variable`): NNabla Variable entry_variables (:obj:`Variable`): Entry variable from which the conversion starts.
juraj-google-style
def get_box_folder_location(): box_prefs_path = 'Library/Application Support/Box/Box Sync/sync_root_folder.txt' box_home = None box_prefs = os.path.join(os.environ['HOME'], box_prefs_path) try: with open(box_prefs, 'r') as sync_path: data = sync_path.read() box_home = data except IOError: error('Unable to find your Box prefs =(') return box_home
Try to locate the Box folder. Returns: (str) Full path to the current Box folder
codesearchnet
def GetEventData(self, data_type): event_data = events.EventData(data_type=data_type) for (property_name, property_value) in iter(self._properties.items()): if isinstance(property_value, py2to3.BYTES_TYPE): property_value = repr(property_value) setattr(event_data, property_name, property_value) return event_data
Retrieves the properties as event data. Args: data_type (str): event data type. Returns: EventData: event data.
codesearchnet
def read_user_data(self, user_data_path): raw_user_data = read_value_from_path(user_data_path) variables = self.get_variables() return parse_user_data(variables, raw_user_data, self.name)
Reads and parses a user_data file. Args: user_data_path (str): path to the userdata file Returns: str: the parsed user data file
codesearchnet
def flatten(schedule: ScheduleComponent, name: str=None) -> Schedule: if (name is None): name = schedule.name return Schedule(*schedule.instructions, name=name)
Create a flattened schedule. Args: schedule: Schedules to flatten name: Name of the new schedule. Defaults to first element of `schedules`
codesearchnet
def sample(self, sample_shape=(), seed=None, name='sample'): return self._call_sample_n(sample_shape, seed, name)
Generate samples of the specified shape. Note that a call to `sample()` without arguments will generate a single sample. Args: sample_shape: 0D or 1D `int32` `Tensor`. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a `Tensor` with prepended dimensions `sample_shape`.
github-repos
def parse_log(file_path): if (not os.path.isfile(file_path)): return elements.error('Output Log', ('Could not open file: ' + file_path.split(os.sep)[(- 1)])) headers = ['Converged Iterations', 'Avg. Iterations to Converge', 'Processor Count', 'Dycore Type'] with open(file_path, 'r') as f: dycore_types = {'0': 'Glide', '1': 'Glam', '2': 'Glissade', '3': 'Albany_felix', '4': 'BISICLES'} curr_step = 0 proc_count = 0 iter_number = 0 converged_iters = [] iters_to_converge = [] for line in f: split = line.split() if ('CISM dycore type' in line): if (line.split()[(- 1)] == '='): dycore_type = dycore_types[next(f).strip()] else: dycore_type = dycore_types[line.split()[(- 1)]] elif ('total procs' in line): proc_count += int(line.split()[(- 1)]) elif ('Nonlinear Solver Step' in line): curr_step = int(line.split()[4]) elif ('Compute ice velocities, time = ' in line): converged_iters.append(curr_step) curr_step = float(line.split()[(- 1)]) elif ('"SOLVE_STATUS_CONVERGED"' in line): split = line.split() iters_to_converge.append(int(split[(split.index('"SOLVE_STATUS_CONVERGED"') + 2)])) elif ('Compute dH/dt' in line): iters_to_converge.append(int(iter_number)) elif ((len(split) > 0) and split[0].isdigit()): iter_number = split[0] if (iters_to_converge == []): iters_to_converge.append(int(iter_number)) data = {'Dycore Type': dycore_type, 'Processor Count': proc_count, 'Converged Iterations': len(converged_iters), 'Avg. Iterations to Converge': np.mean(iters_to_converge)} return elements.table('Output Log', headers, data)
Parse a CISM output log and extract some information. Args: file_path: absolute path to the log file Return: A dictionary created by the elements object corresponding to the results of the bit for bit testing
codesearchnet
def create_handlers_map(prefix='.*'): return [ (prefix + '/output', _BarrierHandler), (prefix + '/run', _PipelineHandler), (prefix + '/finalized', _PipelineHandler), (prefix + '/cleanup', _CleanupHandler), (prefix + '/abort', _PipelineHandler), (prefix + '/fanout', _FanoutHandler), (prefix + '/fanout_abort', _FanoutAbortHandler), (prefix + '/callback', _CallbackHandler), (prefix + '/rpc/tree', status_ui._TreeStatusHandler), (prefix + '/rpc/class_paths', status_ui._ClassPathListHandler), (prefix + '/rpc/list', status_ui._RootListHandler), (prefix + '(/.+)', status_ui._StatusUiHandler), ]
Create new handlers map. Args: prefix: url prefix to use. Returns: list of (regexp, handler) pairs for WSGIApplication constructor.
juraj-google-style
def with_doc(fn_with_doc_to_copy): def decorator(wrapper_init): @wrapt.decorator def wrapping_fn(unused_wrapped, instance, args, kwargs): wrapper_init(instance, *args, **kwargs) return wrapping_fn(fn_with_doc_to_copy) return decorator
Returns a decorator to copy documentation from the given function. Docstring is copied, including *args and **kwargs documentation. Args: fn_with_doc_to_copy: Function whose docstring, including *args and **kwargs documentation, is to be copied. Returns: Decorated version of `wrapper_init` with documentation copied from `fn_with_doc_to_copy`.
codesearchnet
def update_from_string(self, update_str: str): d = dict((x.split('=') for x in update_str.split(','))) for k, v in d.items(): if not hasattr(self, k): raise ValueError(f"key {k} isn't in the original config dict") old_v = getattr(self, k) if isinstance(old_v, bool): if v.lower() in ['true', '1', 'y', 'yes']: v = True elif v.lower() in ['false', '0', 'n', 'no']: v = False else: raise ValueError(f"can't derive true or false from {v} (key {k})") elif isinstance(old_v, int): v = int(v) elif isinstance(old_v, float): v = float(v) elif not isinstance(old_v, str): raise TypeError(f'You can only update int, float, bool or string values in the config, got {v} for key {k}') setattr(self, k, v)
Updates attributes of this class with attributes from `update_str`. The expected format is ints, floats and strings as is, and for booleans use `true` or `false`. For example: "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" The keys to change have to already exist in the config object. Args: update_str (`str`): String with attributes that should be updated for this class.
github-repos
def createEditor(self, parent, option, index): combo = QtGui.QComboBox(parent) combo.addItems(SupportedDtypes.names()) combo.currentIndexChanged.connect(self.currentIndexChanged) return combo
Creates an Editor Widget for the given index. Enables the user to manipulate the displayed data in place. An editor is created, which performs the change. The widget used will be a `QComboBox` with all available datatypes in the `pandas` project. Args: parent (QtCore.QWidget): Defines the parent for the created editor. option (QtGui.QStyleOptionViewItem): contains all the information that QStyle functions need to draw the items. index (QtCore.QModelIndex): The item/index which shall be edited. Returns: QtGui.QWidget: he widget used to edit the item specified by index for editing.
codesearchnet
def _example_short_number_for_cost(region_code, cost): metadata = PhoneMetadata.short_metadata_for_region(region_code) if metadata is None: return U_EMPTY_STRING desc = None if cost == ShortNumberCost.TOLL_FREE: desc = metadata.toll_free elif cost == ShortNumberCost.STANDARD_RATE: desc = metadata.standard_rate elif cost == ShortNumberCost.PREMIUM_RATE: desc = metadata.premium_rate else: pass if desc is not None and desc.example_number is not None: return desc.example_number return U_EMPTY_STRING
Gets a valid short number for the specified cost category. Arguments: region_code -- the region for which an example short number is needed. cost -- the cost category of number that is needed. Returns a valid short number for the specified region and cost category. Returns an empty string when the metadata does not contain such information, or the cost is UNKNOWN_COST.
juraj-google-style
def tas53(msg): d = hex2bin(data(msg)) if d[33] == '0': return None tas = bin2int(d[34:46]) * 0.5 return round(tas, 1)
Aircraft true airspeed, BDS 5,3 message Args: msg (String): 28 bytes hexadecimal message Returns: float: true airspeed in knots
juraj-google-style
class ConditionalDetrEncoder(ConditionalDetrPreTrainedModel): def __init__(self, config: ConditionalDetrConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop self.layers = nn.ModuleList([ConditionalDetrEncoderLayer(config) for _ in range(config.encoder_layers)]) self.post_init() def forward(self, inputs_embeds=None, attention_mask=None, object_queries=None, output_attentions=None, output_hidden_states=None, return_dict=None): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = inputs_embeds hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if attention_mask is not None: attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: to_drop = True if to_drop: layer_outputs = (None, None) else: layer_outputs = encoder_layer(hidden_states, attention_mask, object_queries=object_queries, output_attentions=output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple((v for v in [hidden_states, encoder_states, all_attentions] if v is not None)) return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions)
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`ConditionalDetrEncoderLayer`]. The encoder updates the flattened feature map through multiple self-attention layers. Small tweak for ConditionalDETR: - object_queries are added to the forward pass. Args: config: ConditionalDetrConfig
github-repos
def split(x, axis=0): from .function_bases import split as split_base return split_base(x, axis, x.shape[axis])
Split arrays at the specified axis. It returns a number corresponding the size of the given axis (i.e ``x.shape[axis]``) of :obj:`~nnabla.Variable` s. Args: x(~nnabla.Variable): N-D array axis(int): Axis Returns: A :obj:`tuple` of :obj:`~nnabla.Variable` s See Also: :func:`nnabla.function_bases.split`.
codesearchnet
def _GetUncompressedStreamSize(self): self._file_object.seek(0, os.SEEK_SET) self._decompressor = self._GetDecompressor() self._uncompressed_data = b'' compressed_data_offset = 0 compressed_data_size = self._file_object.get_size() uncompressed_stream_size = 0 while (compressed_data_offset < compressed_data_size): read_count = self._ReadCompressedData(self._COMPRESSED_DATA_BUFFER_SIZE) if (read_count == 0): break compressed_data_offset += read_count uncompressed_stream_size += self._uncompressed_data_size return uncompressed_stream_size
Retrieves the uncompressed stream size. Returns: int: uncompressed stream size.
codesearchnet
def calculate_expiration(self, token): if (not token): return None now = datetime.utcnow() time_to_live = self.config['expiration'] if ('exp' not in token): return (now + timedelta(seconds=time_to_live)) elif self.config['refresh']: exp = datetime.utcfromtimestamp(token['exp']) if ((exp - now) < timedelta(seconds=(0.5 * time_to_live))): return (now + timedelta(seconds=time_to_live)) return None
Calculate token expiration return expiration if the token need to set expiration or refresh, otherwise return None. Args: token (dict): a decoded token
codesearchnet
def get_month_list(to_date, from_date): num_months = get_months_apart(to_date, from_date) month_offset = from_date.month month_list = [] for month in range((month_offset - 1), (month_offset + num_months)): year = (from_date.year + (month / 12)) real_month = ((month % 12) + 1) month_list.append((year, real_month)) return month_list
Generate a list containing year+month between two dates. Returns: [(2013, 11), (2013, 12), (2014, 1)]
codesearchnet
def __init__(self, num_evals, steps_per_run=1): self._num_evals = num_evals self._evals_completed = None self._steps_per_run_initial_value = steps_per_run
Constructs the run hook. Args: num_evals: The number of evaluations to run for. if set to None, will iterate the dataset until all inputs are exhausted. steps_per_run: Number of steps executed per run call.
github-repos
def generate(self, output_path=None, in_memory=False): result = (dict() if in_memory else 0) logger.info('Generating Statik build...') try: if ((output_path is None) and (not in_memory)): raise InternalError('If project is not to be generated in-memory, an output path must be specified') self.error_context.update(filename=self.config_file_path) self.config = (self.config or StatikConfig(self.config_file_path)) if (self.config.encoding is not None): logger.debug('Using encoding: %s', self.config.encoding) else: logger.debug('Using encoding: %s', self.config.encoding) self.error_context.clear() self.models = self.load_models() self.template_engine = StatikTemplateEngine(self) if (self.config.external_database is not None): self.config.external_database.write_files(output_path, self.models) self.views = self.load_views() if (not self.views): raise NoViewsError() self.db = self.load_db_data(self.models) self.project_context = self.load_project_context() in_memory_result = self.process_views() if in_memory: result = in_memory_result else: file_count = self.dump_in_memory_result(in_memory_result, output_path) logger.info('Wrote %d output file(s) to folder: %s', file_count, output_path) self.copy_assets(output_path) result = file_count logger.info('Success!') except StatikError as exc: logger.debug(traceback.format_exc()) logger.error(exc.render()) raise exc except Exception as exc: logger.debug(traceback.format_exc()) _exc = StatikError(message=('Failed to build project. Run Statik in verbose mode (-v) to see ' + 'additional traceback information about this error.'), orig_exc=exc, context=self.error_context) logger.error(_exc.render()) raise _exc finally: try: if (self.db is not None): self.db.shutdown() except Exception as e: logger.exception('Unable to clean up properly: %s', e) return result
Executes the Statik project generator. Args: output_path: The path to which to write output files. in_memory: Whether or not to generate the results in memory. If True, this will generate the output result as a dictionary. If False, this will write the output to files in the output_path. Returns: If in_memory is True, this returns a dictionary containing the actual generated static content. If in_memory is False, this returns an integer indicating the number of files generated in the output path.
codesearchnet
def period_max_neighborhood_probability(self, threshold, radius, sigmas=None): if (sigmas is None): sigmas = [0] weights = disk(radius) neighborhood_prob = np.zeros(self.data.shape[2:], dtype=np.float32) thresh_data = np.zeros(self.data.shape[2:], dtype=np.uint8) for m in range(self.data.shape[0]): thresh_data[(self.data[m].max(axis=0) >= threshold)] = 1 maximized = fftconvolve(thresh_data, weights, mode='same') maximized[(maximized > 1)] = 1 neighborhood_prob += fftconvolve(maximized, weights, mode='same') neighborhood_prob[(neighborhood_prob < 1)] = 0 neighborhood_prob /= (self.data.shape[0] * float(weights.sum())) consensus_probs = [] for sigma in sigmas: if (sigma > 0): filtered_prob = gaussian_filter(neighborhood_prob, sigma=sigma) else: filtered_prob = neighborhood_prob ec = EnsembleConsensus(filtered_prob, 'neighbor_prob_{0:02d}-hour_r_{1:d}_s_{2:d}'.format(self.data.shape[1], radius, sigma), self.ensemble_name, self.run_date, (self.variable + '_{0:0.2f}'.format(float(threshold))), self.start_date, self.end_date, '') consensus_probs.append(ec) return consensus_probs
Calculates the neighborhood probability of exceeding a threshold at any time over the period loaded. Args: threshold (float): splitting threshold for probability calculatations radius (int): distance from point in number of grid points to include in neighborhood calculation. sigmas (array of ints): Radii for Gaussian filter used to smooth neighborhood probabilities. Returns: list of EnsembleConsensus objects
codesearchnet
def calculate(self, token_list_x, token_list_y): x, y = self.unique(token_list_x, token_list_y) try: result = 2 * len(x & y) / float(sum(map(len, (x, y)))) except ZeroDivisionError: result = 0.0 return result
Calculate similarity with the Dice coefficient. Concrete method. Args: token_list_x: [token, token, token, ...] token_list_y: [token, token, token, ...] Returns: Similarity.
juraj-google-style
def __init__(self, *args, **kwargs): super(IssueTransaction, self).__init__(*args, **kwargs) self.Type = TransactionType.IssueTransaction
Create an instance. Args: *args: **kwargs:
juraj-google-style
def get_tag(filepath: PurePath) -> Optional[Tag]: with open(filepath, encoding='utf-8') as parsed_file: lines = parsed_file.readlines() line_start: Optional[int] = None line_finish: Optional[int] = None tag_prefix: Optional[str] = '' for idx, line in enumerate(lines): if line_start is None and line.endswith(Config.BEAM_PLAYGROUND_TITLE): line_start = idx prefix_len = len(line) - len(Config.BEAM_PLAYGROUND_TITLE) tag_prefix = line[:prefix_len] elif line_start and (not line.startswith(tag_prefix)): line_finish = idx break if not line_start or not line_finish: return None embdedded_yaml_content = ''.join((line[len(tag_prefix):] for line in lines[line_start:line_finish])) yml = yaml.load(embdedded_yaml_content, Loader=yaml.SafeLoader) try: return Tag(filepath=str(filepath), line_start=line_start, line_finish=line_finish, **yml[Config.BEAM_PLAYGROUND]) except pydantic.ValidationError as err: if len(err.errors()) == 1 and err.errors()[0]['msg'] == 'multifile is True but no files defined': logging.warning('incomplete multifile example ignored %s', filepath) return None raise
Parse file by filepath and find beam tag Args: filepath: path of the file Returns: If file contains tag, returns Tag object If file doesn't contain tag, returns None
github-repos
def single_gate_matrix(gate, params=None): (theta, phi, lam) = map(float, single_gate_params(gate, params)) return np.array([[np.cos(theta / 2), -np.exp(1j * lam) * np.sin(theta / 2)], [np.exp(1j * phi) * np.sin(theta / 2), np.exp(1j * phi + 1j * lam) * np.cos(theta / 2)]])
Get the matrix for a single qubit. Args: gate(str): the single qubit gate name params(list): the operation parameters op['params'] Returns: array: A numpy array representing the matrix
juraj-google-style
def on_deleted(self, event): if not self._event_error: self.logger.info(u"Change detected from deletion of: %s", event.src_path) self.compile_dependencies(event.src_path, include_self=False)
Called when a file or directory is deleted. Todo: May be bugged with inspector and sass compiler since the does not exists anymore. Args: event: Watchdog event, ``watchdog.events.DirDeletedEvent`` or ``watchdog.events.FileDeletedEvent``.
juraj-google-style
def mark_point(img, x, y): overlay = img.copy() output = img.copy() alpha = 0.5 radius = max(5, min(img.shape[:2]) center = int(x), int(y) color = (0, 0, 255) cv2.circle(overlay, center, radius, color, -1) cv2.addWeighted(overlay, alpha, output, 1-alpha, 0, output) return output
Mark a point Args: - img(numpy): the source image - x, y(int): position
juraj-google-style
def decrypt(self, message): message = json.loads(message) unencrypted_msg = [] for line in message: enc_line = binascii.a2b_base64(line) unencrypted_line = rsa.decrypt(enc_line, self.private_key) unencrypted_msg.append(unencrypted_line) unencrypted_msg = ''.join(unencrypted_msg) return unencrypted_msg
Decrypts a string using our own private key object. Args: message (string): The string of the message to decrypt. Returns: The unencrypted string.
codesearchnet
def moses_pipeline(self, text: str) -> List[str]: text = self.moses_punct_norm(text) text = self.moses_tokenize(text) text = tokenize_numbers(text) return text
Does basic tokenization using [`sacremoses.MosesPunctNormalizer`] and [`sacremoses.MosesTokenizer`] with *aggressive_dash_splits=True* (see [`sacremoses.tokenize.MosesTokenizer.tokenize`]). Additionally, large comma-separated numbers and floating point values are split. E.g. "23,000 people are 1.80m tall" -> "23 @,@ 000 people are 1 @.@ 80m tall" Args: text: Text to be tokenize Returns: A list of tokenized string Example: ```python >>> tokenizer = TransfoXLTokenizer.from_pretrained("transfo-xl/transfo-xl-wt103") >>> tokenizer.moses_pipeline("23,000 people are 1.80 m tall") ['23', '@,@', '000', 'people', 'are', '1', '@.@', '80', 'm', 'tall'] ```
github-repos
def get_special_tokens_mask(self, token_ids_0: List[int], token_ids_1: Optional[List[int]]=None, already_has_special_tokens: bool=False) -> List[int]: if already_has_special_tokens: if token_ids_1 is not None: raise ValueError('You should not supply a second sequence if the provided sequence of ids is already formatted with special tokens for the model.') return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_0] if token_ids_1 is None: return [1] + [0] * len(token_ids_0) + [1] return [1] + [0] * len(token_ids_0) + [1] + [0] * len(token_ids_1) + [1]
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of ids. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Set to True if the token list is already formatted with special tokens for the model Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
github-repos
def action_range_type(self) -> Sequence[str]: fluents = self.domain.action_fluents ordering = self.domain.action_fluent_ordering return self._fluent_range_type(fluents, ordering)
The range type of each action fluent in canonical order. Returns: Sequence[str]: A tuple of range types representing the range of each fluent.
codesearchnet
def enable(self, information, id_or_uri, timeout=-1): uri = self._client.build_uri(id_or_uri) return self._client.update(information, uri, timeout=timeout)
Enables or disables a range. Args: information (dict): Information to update. id_or_uri: ID or URI of range. timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation in OneView; it just stops waiting for its completion. Returns: dict: Updated resource.
juraj-google-style
def read_from_hdx(identifier, configuration=None): organization = Organization(configuration=configuration) result = organization._load_from_hdx('organization', identifier) if result: return organization return None
Reads the organization given by identifier from HDX and returns Organization object Args: identifier (str): Identifier of organization configuration (Optional[Configuration]): HDX configuration. Defaults to global configuration. Returns: Optional[Organization]: Organization object if successful read, None if not
codesearchnet
def get_default_configfile_path(): base = homebase.user_config_dir(app_author=CONF_AUTHOR, app_name=CONF_APP, roaming=False, use_virtualenv=False, create=False) path = os.path.join(base, CONF_FILENAME) return path
Return the default configuration-file path. Typically returns a user-local configuration file; e.g: ``~/.config/dwave/dwave.conf``. Returns: str: Configuration file path. Examples: This example displays the default configuration file on an Ubuntu Unix system running IPython 2.7. >>> import dwave.cloud as dc >>> # Display paths >>> dc.config.get_configfile_paths(only_existing=False) # doctest: +SKIP ['/etc/xdg/xdg-ubuntu/dwave/dwave.conf', '/usr/share/upstart/xdg/dwave/dwave.conf', '/etc/xdg/dwave/dwave.conf', '/home/mary/.config/dwave/dwave.conf', './dwave.conf'] >>> # Find default configuration path >>> dc.config.get_default_configfile_path() # doctest: +SKIP '/home/mary/.config/dwave/dwave.conf'
codesearchnet
def get_config_value(self, overrides, skip_environment=False): (label, override, key) = self._search_overrides(overrides, skip_environment) if ((override is None) and (self.default is None) and self.required): raise YapconfItemNotFound('Could not find config value for {0}'.format(self.fq_name), self) if (override is None): self.logger.debug('Config value not found for {0}, falling back to default.'.format(self.name)) value = self.default else: value = override[key] if (value is None): return value converted_value = self.convert_config_value(value, label) self._validate_value(converted_value) return converted_value
Get the configuration value from all overrides. Iterates over all overrides given to see if a value can be pulled out from them. It will convert each of these values to ensure they are the correct type. Args: overrides: A list of tuples where each tuple is a label and a dictionary representing a configuration. skip_environment: Skip looking through the environment. Returns: The converted configuration value. Raises: YapconfItemNotFound: If an item is required but could not be found in the configuration. YapconfItemError: If a possible value was found but the type cannot be determined. YapconfValueError: If a possible value is found but during conversion, an exception was raised.
codesearchnet
def _parse_property(cls, name, value): prop = cls._props.get(name) return_value = value if (not prop): logger.debug(('"%s" with value "%s" is not a valid property for "%s".' % (name, value, cls))) return_value = None elif isinstance(prop, properties.Instance): return_value = prop.instance_class.from_api(**value) elif isinstance(prop, properties.List): return_value = cls._parse_property_list(prop, value) elif isinstance(prop, properties.Color): return_value = cls._parse_property_color(value) return return_value
Parse a property received from the API into an internal object. Args: name (str): Name of the property on the object. value (mixed): The unparsed API value. Raises: HelpScoutValidationException: In the event that the property name is not found. Returns: mixed: A value compatible with the internal models.
codesearchnet
def _parse_batch_lastlog(last_log): regexp = re.compile('(-?[0-9]\\d*):\\W+(.*)') wrong_commands = list() for line in last_log: result = regexp.match(line) if (result is not None): status_code = result.group(1) command = result.group(2) if (int(status_code) < 0): wrong_commands.append((status_code, command)) return wrong_commands
This static method will help reading the result of the commit, command by command. Args: last_log(list): A list containing, line by line, the result of committing the changes. Returns: A list of tuples that went wrong. The tuple will contain (*status_code*, *command*)
codesearchnet
def create_prefetch(self, addresses): with self._lock: for add in addresses: self._state[add] = _ContextFuture(address=add, wait_for_tree=True)
Create futures needed before starting the process of reading the address's value from the merkle tree. Args: addresses (list of str): addresses in the txn's inputs that aren't in any base context (or any in the chain).
juraj-google-style
def get_auth_token(self, user_payload): now = datetime.utcnow() payload = { 'user': user_payload } if 'iat' in self.verify_claims: payload['iat'] = now if 'nbf' in self.verify_claims: payload['nbf'] = now + self.leeway if 'exp' in self.verify_claims: payload['exp'] = now + self.expiration_delta if self.audience is not None: payload['aud'] = self.audience if self.issuer is not None: payload['iss'] = self.issuer return jwt.encode( payload, self.secret_key, algorithm=self.algorithm, json_encoder=ExtendedJSONEncoder).decode('utf-8')
Create a JWT authentication token from ``user_payload`` Args: user_payload(dict, required): A `dict` containing required information to create authentication token
juraj-google-style
def write(self, output_stream, kmip_version=enums.KMIPVersion.KMIP_1_0): local_stream = BytearrayStream() if self._cryptographic_parameters: self._cryptographic_parameters.write( local_stream, kmip_version=kmip_version ) if self._initialization_vector: self._initialization_vector.write( local_stream, kmip_version=kmip_version ) if self._derivation_data: self._derivation_data.write( local_stream, kmip_version=kmip_version ) if self._salt: self._salt.write( local_stream, kmip_version=kmip_version ) if self._iteration_count: self._iteration_count.write( local_stream, kmip_version=kmip_version ) self.length = local_stream.length() super(DerivationParameters, self).write( output_stream, kmip_version=kmip_version ) output_stream.write(local_stream.buffer)
Write the data encoding the DerivationParameters struct to a stream. Args: output_stream (stream): A data stream in which to encode object data, supporting a write method; usually a BytearrayStream object. kmip_version (KMIPVersion): An enumeration defining the KMIP version with which the object will be encoded. Optional, defaults to KMIP 1.0.
juraj-google-style
def get_bond_lengths(self, indices): coords = ['x', 'y', 'z'] if isinstance(indices, pd.DataFrame): i_pos = self.loc[(indices.index, coords)].values b_pos = self.loc[(indices.loc[(:, 'b')], coords)].values else: indices = np.array(indices) if (len(indices.shape) == 1): indices = indices[(None, :)] i_pos = self.loc[(indices[(:, 0)], coords)].values b_pos = self.loc[(indices[(:, 1)], coords)].values return np.linalg.norm((i_pos - b_pos), axis=1)
Return the distances between given atoms. Calculates the distance between the atoms with indices ``i`` and ``b``. The indices can be given in three ways: * As simple list ``[i, b]`` * As list of lists: ``[[i1, b1], [i2, b2]...]`` * As :class:`pd.DataFrame` where ``i`` is taken from the index and ``b`` from the respective column ``'b'``. Args: indices (list): Returns: :class:`numpy.ndarray`: Vector of angles in degrees.
codesearchnet
def matrix_worker(data): matrix = data['matrix'] Logger.get_logger((__name__ + '.worker')).info("Processing pipeline for matrix entry '%s'", matrix['name']) env = matrix['env'].copy() env.update({'PIPELINE_MATRIX': matrix['name']}) pipeline = Pipeline(model=data['model'], env=env, options=data['options']) pipeline.hooks = data['hooks'] return pipeline.process(data['pipeline'])
Run pipelines in parallel. Args: data(dict): parameters for the pipeline (model, options, ...). Returns: dict: with two fields: success True/False and captured output (list of str).
codesearchnet
def default_value(self): if (callable(self.default) and self.call_default): return self.default() return self.default
Property to return the default value. If the default value is callable and call_default is True, return the result of default(). Else return default. Returns: object: the default value.
codesearchnet
class IncStdevTracker(WindowedTracker, StdevTracker): def __init__(self, window_mode, **kwargs): super().__init__(window_mode, **kwargs) self._mean = 0 self._m2 = 0 def push(self, x): if not math.isnan(x): self._n += 1 delta1 = x - self._mean else: delta1 = 0 if self._window_mode == WindowMode.SLIDING: if len(self._queue) >= self._window_size and (not math.isnan((old_x := self.pop()))): self._n -= 1 delta2 = self._mean - old_x else: delta2 = 0 super().push(x) else: delta2 = 0 if self._n > 0: self._mean += (delta1 + delta2) / self._n if delta1 != 0: self._m2 += delta1 * (x - self._mean) if delta2 != 0: self._m2 += delta2 * (old_x - self._mean) else: self._mean = 0 self._m2 = 0 def get(self): if self._n < 2: return float('nan') dof = self._n - 1 return math.sqrt(self._m2 / dof)
Abstract base class for incremental standard deviation trackers. This class implements an online algorithm for calculating standard deviation, updating the standard deviation incrementally as new data points arrive. Args: window_mode: A `WindowMode` enum specifying whether the window is `LANDMARK` or `SLIDING`. **kwargs: Keyword arguments passed to the parent class constructor.
github-repos