code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def eigvalsh(a, eigvec=False):
if (eigvec == True):
(val, vec) = eigh(a, eigvec=True)
return (val, gvar.mean(vec))
else:
return eigh(a, eigvec=False) | Eigenvalues of Hermitian matrix ``a``.
Args:
a: Two-dimensional, square Hermitian matrix/array of numbers
and/or :class:`gvar.GVar`\s. Array elements must be
real-valued if `gvar.GVar`\s are involved (i.e., symmetric
matrix).
eigvec (bool): If ``True``, method returns a tuple of arrays
``(val, vec)`` where ``val[i]`` are the
eigenvalues of ``a``, and ``vec[:, i]`` are the mean
values of the corresponding eigenvectors. Only ``val`` is
returned if ``eigvec=False`` (default).
Returns:
Array ``val`` of eigenvalues of matrix ``a`` if parameter
``eigvec==False`` (default); otherwise a tuple of
arrays ``(val, vec)`` where ``val[i]`` are the eigenvalues
(in ascending order) and ``vec[:, i]`` are the mean values
of the corresponding eigenvectors.
Raises:
ValueError: If matrix is not square and two-dimensional. | codesearchnet |
def get_status(self):
return (self._initialized, self._error_message) | Get status of `_Reqs` initialization.
Returns:
Tuple
(Boolean indicating initialization status,
List of error messages, if any) | github-repos |
def OpenFileSystem(cls, path_spec_object, resolver_context=None):
if (not isinstance(path_spec_object, path_spec.PathSpec)):
raise TypeError('Unsupported path specification type.')
if (resolver_context is None):
resolver_context = cls._resolver_context
if (path_spec_object.type_indicator == definitions.TYPE_INDICATOR_MOUNT):
if path_spec_object.HasParent():
raise errors.PathSpecError('Unsupported mount path specification with parent.')
mount_point = getattr(path_spec_object, 'identifier', None)
if (not mount_point):
raise errors.PathSpecError('Unsupported path specification without mount point identifier.')
path_spec_object = mount_manager.MountPointManager.GetMountPoint(mount_point)
if (not path_spec_object):
raise errors.MountPointError('No such mount point: {0:s}'.format(mount_point))
file_system = resolver_context.GetFileSystem(path_spec_object)
if (not file_system):
resolver_helper = cls._GetResolverHelper(path_spec_object.type_indicator)
file_system = resolver_helper.NewFileSystem(resolver_context)
try:
file_system.Open(path_spec_object)
except (IOError, ValueError) as exception:
raise errors.BackEndError('Unable to open file system with error: {0!s}'.format(exception))
return file_system | Opens a file system object defined by path specification.
Args:
path_spec_object (PathSpec): path specification.
resolver_context (Optional[Context]): resolver context, where None
represents the built in context which is not multi process safe.
Returns:
FileSystem: file system or None if the path specification could not
be resolved or has no file system object.
Raises:
AccessError: if the access to open the file system was denied.
BackEndError: if the file system cannot be opened.
MountPointError: if the mount point specified in the path specification
does not exist.
PathSpecError: if the path specification is incorrect.
TypeError: if the path specification type is unsupported. | codesearchnet |
def __init__(self,
g=None,
default_device=None,
global_step=None):
if g is None:
self._g = tf.get_default_graph()
else:
self._g = g
self._train_op = None
self._summary_tags = set()
if global_step and global_step.dtype.base_dtype not in (tf.int32, tf.int64):
raise ValueError('Global step must be an int32 or int64 variable: %s' %
global_step.dtype)
self._global_step = global_step
if default_device:
self.g._device_function_stack.append(default_device)
self._recurrent_state = None
self.reset_summary_collections() | Creates a Bookkeeper.
Args:
g: A graph, if not specified then the default graph is used.
default_device: A default device or function.
global_step: A variable to use as a global step.
Raises:
ValueError: If global_step is not an integer variable. | juraj-google-style |
def cumsum(x, axis=None, dtype=None):
return Cumsum(axis=axis, dtype=dtype)(x) | Returns the cumulative sum of elements along a given axis.
Args:
x: Input tensor.
axis: Axis along which the cumulative sum is computed.
By default the input is flattened.
dtype: dtype of returned tensor. Defaults to x.dtype.
Returns:
Output tensor. | github-repos |
def MICECache(subsystem, parent_cache=None):
if config.REDIS_CACHE:
cls = RedisMICECache
else:
cls = DictMICECache
return cls(subsystem, parent_cache=parent_cache) | Construct a |MICE| cache.
Uses either a Redis-backed cache or a local dict cache on the object.
Args:
subsystem (Subsystem): The subsystem that this is a cache for.
Kwargs:
parent_cache (MICECache): The cache generated by the uncut
version of ``subsystem``. Any cached |MICE| which are
unaffected by the cut are reused in this cache. If None,
the cache is initialized empty. | codesearchnet |
def download_aspera(self, user, host, silent=False):
aspera_home = os.environ.get("ASPERA_HOME", None)
if not aspera_home:
raise ValueError("environment variable $ASPERA_HOME not set")
if not os.path.exists(aspera_home):
raise ValueError(
"$ASPERA_HOME directory {} does not exist".format(aspera_home))
ascp = os.path.join(aspera_home, "connect/bin/ascp")
key = os.path.join(aspera_home, "connect/etc/asperaweb_id_dsa.openssh")
if not os.path.exists(ascp):
raise ValueError("could not find ascp binary")
if not os.path.exists(key):
raise ValueError("could not find openssh key")
parsed_url = urlparse(self.url)
cmd = "{} -i {} -k1 -T -l400m {}@{}:{} {}".format(
ascp, key, user, host, parsed_url.path, self._temp_file_name)
logger.debug(cmd)
try:
pr = sp.Popen(cmd, shell=True, stdout=sp.PIPE, stderr=sp.PIPE)
stdout, stderr = pr.communicate()
if not silent:
logger.debug("Aspera stdout: " + str(stdout))
logger.debug("Aspera stderr: " + str(stderr))
if pr.returncode == 0:
logger.debug("Moving %s to %s" % (
self._temp_file_name,
self.destination))
shutil.move(self._temp_file_name, self.destination)
logger.debug("Successfully downloaded %s" % self.url)
else:
logger.error(
"Failed to download %s using Aspera Connect" % self.url)
finally:
try:
os.remove(self._temp_file_name)
except OSError:
pass | Download file with Aspera Connect.
For details see the documentation ov Aspera Connect
Args:
user (:obj:`str`): FTP user.
host (:obj:`str`): FTP host. Defaults to "ftp-trace.ncbi.nlm.nih.gov". | juraj-google-style |
def build_worker_instruction(*args):
tuple_class = collections.namedtuple(*args)
tuple_class.__str__ = worker_object_to_string
tuple_class.__repr__ = worker_object_to_string
return tuple_class | Create an object representing a ParallelInstruction protobuf.
This will be a collections.namedtuple with a custom __str__ method.
Alas, this wrapper is not known to pylint, which thinks it creates
constants. You may have to put a disable=invalid-name pylint
annotation on any use of this, depending on your names.
Args:
*args: first argument is the name of the type to create. Should
start with "Worker". Second arguments is alist of the
attributes of this object.
Returns:
A new class, a subclass of tuple, that represents the protobuf. | github-repos |
def submit_file_content(self, method, url, data, headers, params, halt_on_error=True):
r = None
try:
r = self.tcex.session.request(method, url, data=data, headers=headers, params=params)
except Exception as e:
self.tcex.handle_error(580, [e], halt_on_error)
return r | Submit File Content for Documents and Reports to ThreatConnect API.
Args:
method (str): The HTTP method for the request (POST, PUT).
url (str): The URL for the request.
data (str;bytes;file): The body (data) for the request.
headers (dict): The headers for the request.
params (dict): The query string parameters for the request.
halt_on_error (bool, default:True): If True any exception will raise an error.
Returns:
requests.models.Response: The response from the request. | codesearchnet |
def __init__(self, maximum_number_of_queued_items=0, timeout=None):
super(MultiProcessingQueue, self).__init__()
self._timeout = timeout
queue_max_length = _multiprocessing.SemLock.SEM_VALUE_MAX
if maximum_number_of_queued_items > queue_max_length:
logger.warning((
'Requested maximum queue size: {0:d} is larger than the maximum '
'size supported by the system. Defaulting to: {1:d}').format(
maximum_number_of_queued_items, queue_max_length))
maximum_number_of_queued_items = queue_max_length
self._queue = multiprocessing.Queue(maxsize=maximum_number_of_queued_items) | Initializes a multi-processing queue.
Args:
maximum_number_of_queued_items (Optional[int]): maximum number of queued
items, where 0 represents no limit.
timeout (Optional[float]): number of seconds for the get to time out,
where None will block until a new item is put onto the queue. | juraj-google-style |
def get_primitives_paths():
primitives_paths = list()
entry_points = pkg_resources.iter_entry_points('mlprimitives')
for entry_point in entry_points:
if (entry_point.name == 'jsons_path'):
path = entry_point.load()
primitives_paths.append(path)
return (_PRIMITIVES_PATHS + primitives_paths) | Get the list of folders where the primitives will be looked for.
This list will include the value of any `entry_point` named `jsons_path` published under
the name `mlprimitives`.
An example of such an entry point would be::
entry_points = {
'mlprimitives': [
'jsons_path=some_module:SOME_VARIABLE'
]
}
where the module `some_module` contains a variable such as::
SOME_VARIABLE = os.path.join(os.path.dirname(__file__), 'jsons')
Returns:
list:
The list of folders. | codesearchnet |
def __ge__(self, other):
if not isinstance(other, interface.DateTimeValues):
raise ValueError('Other not an instance of DateTimeValues')
if not isinstance(other, SemanticTime):
return False
return self._SORT_ORDER >= other._SORT_ORDER | Determines if the date time values are greater than or equal to other.
Args:
other (DateTimeValues): date time values to compare against.
Returns:
bool: True if the date time values are greater than or equal to other.
Raises:
ValueError: if other is not an instance of DateTimeValues. | juraj-google-style |
def _start_process(self, classpath):
cache_dir = self.config['cache-dir']
java_flags = self.config['java-flags']
iswindows = (os.name == 'nt')
Util.mkdir_p(cache_dir)
log_path = os.path.join(cache_dir, 'server.log')
log = open(log_path, 'w')
null = open(os.devnull, 'r')
java = os.path.join(self.config['java-home'], 'bin', ('java.exe' if iswindows else 'java'))
if (not os.path.exists(java)):
raise InvalidJavaPathError(errno.ENOENT, 'No such file or directory', java)
elif (not os.access(java, os.X_OK)):
raise InvalidJavaPathError(errno.EACCES, 'Permission denied', java)
args = (([java, '-cp', (';' if iswindows else ':').join(classpath)] + [a for a in java_flags if a]) + ['-Densime.config={}'.format(self.config.filepath), 'org.ensime.server.Server'])
process = subprocess.Popen(args, stdin=null, stdout=log, stderr=subprocess.STDOUT)
pid_path = os.path.join(cache_dir, 'server.pid')
Util.write_file(pid_path, str(process.pid))
def on_stop():
log.close()
null.close()
with catch(Exception):
os.remove(pid_path)
return EnsimeProcess(cache_dir, process, log_path, on_stop) | Given a classpath prepared for running ENSIME, spawns a server process
in a way that is otherwise agnostic to how the strategy installs ENSIME.
Args:
classpath (list of str): list of paths to jars or directories
(Within this function the list is joined with a system dependent
path separator to create a single string argument suitable to
pass to ``java -cp`` as a classpath)
Returns:
EnsimeProcess: A process handle for the launched server. | codesearchnet |
def stage_job_resources(self, resources: List[Tuple[str, str, str]], staging_location: Optional[str]=None):
if staging_location is None:
raise RuntimeError('The staging_location must be specified.')
staged_resources = []
for file_path, staged_path, sha256 in resources:
self.stage_artifact(file_path, FileSystems.join(staging_location, staged_path), sha256)
staged_resources.append(staged_path)
return staged_resources | For internal use only; no backwards-compatibility guarantees.
Stages job resources to staging_location.
Args:
resources: A list of tuples of local file paths and file names (no
paths) to be used for staging resources.
staging_location: Location to stage the file.
Returns:
A list of file names (no paths) for the resources staged. All the
files are assumed to be staged at staging_location.
Raises:
RuntimeError: If files specified are not found or error encountered
while trying to create the resources (e.g., build a setup package). | github-repos |
def write(self, data, echo=None):
if (echo or ((echo is None) and self.echo)):
sys.stdout.write(data.decode('latin1'))
sys.stdout.flush()
self.channel.write(data) | Write data to channel.
Args:
data(bytes): The data to write to the channel.
echo(bool): Whether to echo the written data to stdout.
Raises:
EOFError: If the channel was closed before all data was sent. | codesearchnet |
def _slice_params_to_dict(dist, params_event_ndims, slices):
override_dict = {}
for (param_name, param_event_ndims) in six.iteritems(params_event_ndims):
if (param_name not in dist.parameters):
raise ValueError('Distribution {} is missing advertised parameter {}'.format(dist, param_name))
param = dist.parameters[param_name]
if (param is None):
continue
dtype = None
if hasattr(dist, param_name):
attr = getattr(dist, param_name)
dtype = getattr(attr, 'dtype', None)
if (dtype is None):
dtype = dist.dtype
warnings.warn('Unable to find property getter for parameter Tensor {} on {}, falling back to Distribution.dtype {}'.format(param_name, dist, dtype))
param = tf.convert_to_tensor(value=param, dtype=dtype)
override_dict[param_name] = _slice_single_param(param, param_event_ndims, slices, dist.batch_shape_tensor())
return override_dict | Computes the override dictionary of sliced parameters.
Args:
dist: The tfd.Distribution being batch-sliced.
params_event_ndims: Per-event parameter ranks, a `str->int` `dict`.
slices: Slices as received by __getitem__.
Returns:
overrides: `str->Tensor` `dict` of batch-sliced parameter overrides. | codesearchnet |
def test_encode(self, base_id: str, expected_context_element: str, expected_sql_expression: str, expected_fhir_path_expression: str, expected_fields_referenced_by_expression: List[str]):
error_reporter = fhir_errors.ListErrorReporter()
all_resources = list(self.resources.values())
encoder = fhir_path_validator.FhirProfileStandardSqlEncoder(unittest.mock.Mock(iter_structure_definitions=lambda: all_resources), primitive_handler.PrimitiveHandler(), error_reporter, options=fhir_path_validator.SqlGenerationOptions(verbose_error_reporting=True))
resource = self.resources[f'http:
actual_bindings = encoder.encode(resource)
self.assertEmpty(error_reporter.warnings)
self.assertEmpty(error_reporter.errors)
self.assertEqual(actual_bindings[0].element_path, expected_context_element)
self.assertEqual(actual_bindings[0].fhir_path_expression, expected_fhir_path_expression)
self.assertEqual(actual_bindings[0].fields_referenced_by_expression, expected_fields_referenced_by_expression)
self.assertEqual(actual_bindings[0].sql_expression, expected_sql_expression) | Ensures we build the expected constraints to validate a structure definition.
Given the `base_id` to a structure definition, ensure we generate the
expected constraints to validate that structure definition.
Args:
base_id: The structure definition to use in the test.
expected_context_element: The expected element_path for the resulting
constraint.
expected_sql_expression: The expected SQL expression for the resulting
constraint.
expected_fhir_path_expression: The expected FHIRPath expression for the
resulting constraint.
expected_fields_referenced_by_expression: The expected
fields_referenced_by_expression for the resulting constraint. | github-repos |
def append(self, item):
if isinstance(item, list):
self.extend(item)
elif not self:
list.append(self, item)
elif item.__class__ == self[0].__class__:
list.append(self, item)
else:
raise exceptions.WrongListItemType(item.__class__.__name__,
self[0].__class__.__name__) | Append one item to the list.
Args:
item: Item to be appended.
Raises:
:exc:`~.exceptions.WrongListItemType`: If an item has a different
type than the first item to be stored. | juraj-google-style |
def set_value(x, value):
value = numpy_compat.np_asarray(value, dtype=dtype_numpy(x))
if ops.executing_eagerly_outside_functions():
x.assign(value)
else:
with get_graph().as_default():
tf_dtype = dtypes_module.as_dtype(x.dtype.name.split('_')[0])
if hasattr(x, '_assign_placeholder'):
assign_placeholder = x._assign_placeholder
assign_op = x._assign_op
else:
placeholder_shape = tensor_shape.TensorShape([None] * value.ndim)
assign_placeholder = array_ops.placeholder(tf_dtype, shape=placeholder_shape)
assign_op = x.assign(assign_placeholder)
x._assign_placeholder = assign_placeholder
x._assign_op = assign_op
get_session().run(assign_op, feed_dict={assign_placeholder: value}) | Sets the value of a variable, from a Numpy array.
`backend.set_value` is the complement of `backend.get_value`, and provides
a generic interface for assigning to variables while abstracting away the
differences between TensorFlow 1.x and 2.x semantics.
{snippet}
Args:
x: Variable to set to a new value.
value: Value to set the tensor to, as a Numpy array
(of the same shape). | github-repos |
def __call__(self, stats):
if 'elapsed_time' not in stats:
stats['elapsed_time'] = _get_time() - self._start_at
self._log.append(stats)
with tempdir(prefix=self._log_name, dir=self._out_path) as tempd:
path = os.path.join(tempd, 'log.json')
with open(path, 'w') as f:
json.dump(self._log, f, indent=4)
new_path = os.path.join(self._out_path, self._log_name)
shutil.move(path, new_path) | Add training log.
Args:
stats (dict): Training log values. The object must be key-value
style and values type must be `float` or `int`. When the object
does not have 'elapsed_time' key, the function set the time
automatically. The measurement starts when create new instance. | juraj-google-style |
def load_pyfile(self, path):
with open(path) as config_file:
contents = config_file.read()
try:
exec(compile(contents, path, 'exec'), self)
except Exception as e:
raise MalformedConfig(path, six.text_type(e)) | Load python file as config.
Args:
path (string): path to the python file | juraj-google-style |
def swo_set_emu_buffer_size(self, buf_size):
buf = ctypes.c_uint32(buf_size)
res = self._dll.JLINKARM_SWO_Control(enums.JLinkSWOCommands.SET_BUFFERSIZE_EMU, ctypes.byref(buf))
if (res < 0):
raise errors.JLinkException(res)
return None | Sets the size of the buffer used by the J-Link to collect SWO data.
Args:
self (JLink): the ``JLink`` instance
buf_size (int): the new size of the emulator buffer
Returns:
``None``
Raises:
JLinkException: on error | codesearchnet |
def __init__(self, y_tensor=None):
self._uuid = uuid.uuid4().hex
_gradient_debuggers[self._uuid] = self
self._gradient_tensors = {}
self._y_tensor = y_tensor
self._graph = None
if y_tensor:
self._graph = y_tensor.graph
self._is_active_context = False | Constructor of GradientsDebugger.
Args:
y_tensor: optional: the `tf.Tensor` to be differentiated, i.e., the tensor
on the numerator of the differentiation. | github-repos |
def _resize_image_if_necessary(image_fobj, target_pixels=None):
if target_pixels is None:
return image_fobj
cv2 = tfds.core.lazy_imports.cv2
image = cv2.imdecode(
np.fromstring(image_fobj.read(), dtype=np.uint8), flags=3)
height, width, _ = image.shape
actual_pixels = height * width
if actual_pixels > target_pixels:
factor = np.sqrt(target_pixels / actual_pixels)
image = cv2.resize(image, dsize=None, fx=factor, fy=factor)
_, buff = cv2.imencode(".jpg", image, [int(cv2.IMWRITE_JPEG_QUALITY), 72])
return io.BytesIO(buff.tostring()) | Resize an image to have (roughly) the given number of target pixels.
Args:
image_fobj: File object containing the original image.
target_pixels: If given, number of pixels that the image must have.
Returns:
A file object. | juraj-google-style |
def length_squared(x, keep_dims=False, name=None, reduction_dim=None):
with tf.name_scope(name, 'length_squared', [x]) as scope:
x = tf.convert_to_tensor(x, name='x')
if (not reduction_dim):
reduction_dim = _last_index(x, 1)
return tf.reduce_sum(tf.square(x), reduction_dim, keep_dims=keep_dims, name=scope) | Computes the squared length of x.
Args:
x: A tensor.
keep_dims: If true, reduction does not change the rank of the input.
name: Optional name for this op.
reduction_dim: The dimension to reduce, by default choose the last one
and if no shape is specified guess 1.
Returns:
The squared length of x. | codesearchnet |
def download_to_tempfile(url, file_name=None, extension=None):
if (not file_name):
file_name = generate_timestamped_string('wtf_temp_file')
if extension:
file_path = temp_path((file_name + extension))
else:
ext = ''
try:
ext = re.search(u'\\.\\w+$', file_name).group(0)
except:
pass
file_path = temp_path((file_name + ext))
webFile = urllib.urlopen(url)
localFile = open(file_path, 'w')
localFile.write(webFile.read())
webFile.close()
localFile.close()
return file_path | Downloads a URL contents to a tempfile. This is useful for testing downloads.
It will download the contents of a URL to a tempfile, which you then can
open and use to validate the downloaded contents.
Args:
url (str) : URL of the contents to download.
Kwargs:
file_name (str): Name of file.
extension (str): Extension to use.
Return:
str - Returns path to the temp file. | codesearchnet |
def _list(self, dir_or_prefix):
try:
for path, (size, updated) in self._gcsIO().list_files(dir_or_prefix, with_metadata=True):
yield FileMetadata(path, size, updated)
except Exception as e:
raise BeamIOError('List operation failed', {dir_or_prefix: e}) | List files in a location.
Listing is non-recursive, for filesystems that support directories.
Args:
dir_or_prefix: (string) A directory or location prefix (for filesystems
that don't have directories).
Returns:
Generator of ``FileMetadata`` objects.
Raises:
``BeamIOError``: if listing fails, but not if no files were found. | github-repos |
def verify(self, obj):
if not isinstance(obj, str):
raise ValidationError("Object is not a string", reason='object is not a string',
object=obj, type=type(obj), str_type=str)
return obj | Verify that the object conforms to this verifier's schema
Args:
obj (object): A python object to verify
Raises:
ValidationError: If there is a problem verifying the dictionary, a
ValidationError is thrown with at least the reason key set indicating
the reason for the lack of validation. | juraj-google-style |
def add(self, arg, options=None):
fut = tasklets.Future('%s.add(%s, %s)' % (self, arg, options))
todo = self._queues.get(options)
if todo is None:
utils.logging_debug('AutoBatcher(%s): creating new queue for %r',
self._todo_tasklet.__name__, options)
if not self._queues:
eventloop.add_idle(self._on_idle)
todo = self._queues[options] = []
todo.append((fut, arg))
if len(todo) >= self._limit:
del self._queues[options]
self.run_queue(options, todo)
return fut | Adds an arg and gets back a future.
Args:
arg: one argument for _todo_tasklet.
options: rpc options.
Return:
An instance of future, representing the result of running
_todo_tasklet without batching. | juraj-google-style |
def filter_publication(publication, cmp_authors=True):
query = None
isbn_query = False
if (publication.optionals and publication.optionals.ISBN):
query = aleph.ISBNQuery(publication.optionals.ISBN)
isbn_query = True
else:
query = aleph.TitleQuery(publication.title)
result = aleph.reactToAMQPMessage(aleph.SearchRequest(query), '')
if (not result.records):
return publication
if isbn_query:
for record in result.records:
epub = record.epublication
if (compare_names(epub.nazev, publication.title) >= 80):
return None
return publication
for record in result.records:
epub = record.epublication
if (not (compare_names(epub.nazev, publication.title) >= 80)):
continue
if (not cmp_authors):
return None
for author in epub.autori:
author_str = ('%s %s %s' % (author.firstName, author.lastName, author.title))
pub_authors = map((lambda x: x.name), publication.authors)
if (type(pub_authors) not in [list, tuple, set]):
pub_authors = [pub_authors]
for pub_author in pub_authors:
if (compare_names(author_str, pub_author) >= 50):
return None
return publication | Filter publications based at data from Aleph.
Args:
publication (obj): :class:`.Publication` instance.
Returns:
obj/None: None if the publication was found in Aleph or `publication` \
if not. | codesearchnet |
def indicator_body(indicators):
hash_patterns = {'md5': re.compile('^([a-fA-F\\d]{32})$'), 'sha1': re.compile('^([a-fA-F\\d]{40})$'), 'sha256': re.compile('^([a-fA-F\\d]{64})$')}
body = {}
for indicator in indicators:
if (indicator is None):
continue
if hash_patterns['md5'].match(indicator):
body['md5'] = indicator
elif hash_patterns['sha1'].match(indicator):
body['sha1'] = indicator
elif hash_patterns['sha256'].match(indicator):
body['sha256'] = indicator
return body | Generate the appropriate dictionary content for POST of an File indicator
Args:
indicators (list): A list of one or more hash value(s). | codesearchnet |
def horizontal_infrared_radiation_intensity(self, value=9999.0):
if value is not None:
try:
value = float(value)
except ValueError:
raise ValueError(
'value {} need to be of type float '
'for field `horizontal_infrared_radiation_intensity`'.format(value))
if value < 0.0:
raise ValueError(
'value need to be greater or equal 0.0 '
'for field `horizontal_infrared_radiation_intensity`')
self._horizontal_infrared_radiation_intensity = value | Corresponds to IDD Field `horizontal_infrared_radiation_intensity`
Args:
value (float): value for IDD Field `horizontal_infrared_radiation_intensity`
Unit: Wh/m2
value >= 0.0
Missing value: 9999.0
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value | juraj-google-style |
def noisy_wrap(__func: Callable) -> Callable:
def wrapper(*args, **kwargs):
DebugPrint.enable()
try:
__func(*args, **kwargs)
finally:
DebugPrint.disable()
return wrapper | Decorator to enable DebugPrint for a given function.
Args:
__func: Function to wrap
Returns:
Wrapped function | codesearchnet |
def _get_type_name(type_):
name = repr(type_)
if name.startswith("<"):
name = getattr(type_, "__qualname__", getattr(type_, "__name__", ""))
return name.rsplit(".", 1)[-1] or repr(type_) | Return a displayable name for the type.
Args:
type_: A class object.
Returns:
A string value describing the class name that can be used in a natural
language sentence. | juraj-google-style |
def sam2rnf(args):
rnftools.mishmash.Source.recode_sam_reads(sam_fn=args.sam_fn, fastq_rnf_fo=args.fq_fo, fai_fo=args.fai_fo, genome_id=args.genome_id, number_of_read_tuples=(10 ** 9), simulator_name=args.simulator_name, allow_unmapped=args.allow_unmapped) | Convert SAM to RNF-based FASTQ with respect to argparse parameters.
Args:
args (...): Arguments parsed by argparse | codesearchnet |
def _get_context():
try:
import google.colab
import IPython
except ImportError:
pass
else:
if (IPython.get_ipython() is not None):
return _CONTEXT_COLAB
try:
import IPython
except ImportError:
pass
else:
ipython = IPython.get_ipython()
if ((ipython is not None) and ipython.has_trait('kernel')):
return _CONTEXT_IPYTHON
return _CONTEXT_NONE | Determine the most specific context that we're in.
Returns:
_CONTEXT_COLAB: If in Colab with an IPython notebook context.
_CONTEXT_IPYTHON: If not in Colab, but we are in an IPython notebook
context (e.g., from running `jupyter notebook` at the command
line).
_CONTEXT_NONE: Otherwise (e.g., by running a Python script at the
command-line or using the `ipython` interactive shell). | codesearchnet |
def __init__(self, max_age, client_chunksize=25, **kwargs):
super(IterateAllClients, self).__init__(**kwargs)
self.client_chunksize = client_chunksize
self.max_age = max_age | Iterate over all clients in a threadpool.
Args:
max_age: Maximum age in seconds of clients to check.
client_chunksize: A function to call with each client urn.
**kwargs: Arguments passed to init. | juraj-google-style |
def plot_accuracy(data, output_dir_path='.', output_filename='accuracy.png',
width=10, height=8):
output_path = os.path.join(output_dir_path, output_filename)
max_val_data = get_epoch_max_val_acc(data)
max_val_label = round(max_val_data['acc'].values[0], 4)
max_epoch_data = data[data['epoch'] == data['epoch'].max()]
plot = ggplot(data, aes('epoch', 'acc', color='factor(data)')) + \
geom_line(size=1, show_legend=False) + \
geom_vline(aes(xintercept='epoch', color='data'),
data=max_val_data, alpha=0.5, show_legend=False) + \
geom_label(aes('epoch', 'acc'), data=max_val_data,
label=max_val_label, nudge_y=-0.02, va='top', label_size=0,
show_legend=False) + \
geom_text(aes('epoch', 'acc', label='data'), data=max_epoch_data,
nudge_x=2, ha='center', show_legend=False) + \
geom_point(aes('epoch', 'acc'), data=max_val_data,
show_legend=False) + \
labs(y='Accuracy', x='Epochs') + \
theme_bw(base_family='Arial', base_size=15) + \
scale_color_manual(['
plot.save(output_path, width=width, height=height) | Plot accuracy.
Args:
data: Panda dataframe in *the* format. | juraj-google-style |
def on_message(self, fragment):
try:
message = yield self._receive(fragment)
except Exception as e:
log.error("Unhandled exception receiving a message: %r: %r", e, fragment, exc_info=True)
self._internal_error("server failed to parse a message")
try:
if message:
if _message_test_port is not None:
_message_test_port.received.append(message)
work = yield self._handle(message)
if work:
yield self._schedule(work)
except Exception as e:
log.error("Handler or its work threw an exception: %r: %r", e, message, exc_info=True)
self._internal_error("server failed to handle a message")
raise gen.Return(None) | Process an individual wire protocol fragment.
The websocket RFC specifies opcodes for distinguishing text frames
from binary frames. Tornado passes us either a text or binary string
depending on that opcode, we have to look at the type of the fragment
to see what we got.
Args:
fragment (unicode or bytes) : wire fragment to process | juraj-google-style |
def union(self, other):
if not hasattr(other, "__iter__"):
other = [other]
bounds = self.bounds[:]
for range in other:
bounds += range.bounds
bounds = self._union(bounds)
range = VersionRange(None)
range.bounds = bounds
return range | OR together version ranges.
Calculates the union of this range with one or more other ranges.
Args:
other: VersionRange object (or list of) to OR with.
Returns:
New VersionRange object representing the union. | juraj-google-style |
def write8(self, offset, value):
if (not isinstance(offset, (int, long))):
raise TypeError('Invalid offset type, should be integer.')
if (not isinstance(value, (int, long))):
raise TypeError('Invalid value type, should be integer.')
if ((value < 0) or (value > 255)):
raise ValueError('Value out of bounds.')
offset = self._adjust_offset(offset)
self._validate_offset(offset, 1)
self.mapping[offset:(offset + 1)] = struct.pack('B', value) | Write 8-bits to the specified `offset` in bytes, relative to the
base physical address of the MMIO region.
Args:
offset (int, long): offset from base physical address, in bytes.
value (int, long): 8-bit value to write.
Raises:
TypeError: if `offset` or `value` type are invalid.
ValueError: if `offset` or `value` are out of bounds. | codesearchnet |
def file_create(filename, settings):
if len(settings) != 1:
raise ValueError("Settings must only contain one item with key "
"'content'.")
for k, v in settings.items():
if k == "content":
with open(filename, 'w') as f:
f.write(v) | Creates a file.
Args:
filename (str): Filename.
settings (dict): Must be {"content": actual_content} | juraj-google-style |
def merge(cls, schema_list: Sequence['Schema'], name: Optional[str]=None, description: Optional[str]=None) -> 'Schema':
fields = {}
kw_field = None
for schema in schema_list:
for key, field in schema.fields.items():
if key.is_const:
if key not in fields or (field.origin is not None and fields[key].origin is not None and issubclass(field.origin, fields[key].origin)):
fields[key] = field
elif kw_field is None:
kw_field = field
if kw_field is not None:
fields[kw_field.key] = kw_field
return Schema(list(fields.values()), name=name, description=description, allow_nonconst_keys=True) | Merge multiple schemas into one.
For fields shared by multiple schemas, the first appeared onces will be
used in the merged schema.
Args:
schema_list: A list of schemas to merge.
name: (Optional) name of the merged schema.
description: (Optinoal) description of the schema.
Returns:
The merged schema. | github-repos |
def run_independently(self, op):
self._independent_ops.append(op)
op._set_attr('_independent_side_effects', attr_value_pb2.AttrValue(b=True)) | Marks the given op as independent.
Overrides any other rule for the op.
Independent ops are guaranteed to execute before the return values, but
are allowed to run in parallel with everything else. Use in programs which
can guarantee that an op has side effects that don't affect any other op.
Args:
op: An operation | github-repos |
def set_function_defaults(self, node: 'cfg.CFGNode', defaults_var: 'cfg.Variable') -> None:
defaults = self._extract_defaults(defaults_var)
if defaults is None:
defaults = [self.ctx.new_unsolvable(node) for _ in self.signature.param_names]
defaults = dict(zip(self.signature.param_names[-len(defaults):], defaults))
self.signature.defaults = defaults | Attempts to set default arguments of a function.
If defaults_var is not an unambiguous tuple (i.e. one that can be processed
by abstract_utils.get_atomic_python_constant), every argument is made
optional and a warning is issued. This function emulates __defaults__.
Args:
node: The node where default arguments are being set. Needed if we cannot
get a useful value from defaults_var.
defaults_var: a Variable with a single binding to a tuple of default
values. | github-repos |
def getFileKeys(self):
files = self.getFileObjects()
files_list = []
for (key, value) in files.iteritems():
if value:
files_list.append(key)
return files_list | Retrieve a list of file keys that have been read into the database.
This is a utility method that can be used to programmatically access the GsshaPy file objects. Use these keys
in conjunction with the dictionary returned by the getFileObjects method.
Returns:
list: List of keys representing file objects that have been read into the database. | codesearchnet |
def delete_by_path(self, path):
if not os.path.exists(path):
raise IOError("Unknown path '%s'!" % path)
if not path.startswith(self.path):
raise IOError(
"Path '%s' is not in the root of the storage ('%s')!" % (
path,
self.path
)
)
if os.path.isfile(path):
os.unlink(path)
return self._recursive_remove_blank_dirs(path)
shutil.rmtree(path)
self._recursive_remove_blank_dirs(path) | Delete file/directory identified by `path` argument.
Warning:
`path` have to be in :attr:`path`.
Args:
path (str): Path of the file / directory you want to remove.
Raises:
IOError: If the file / directory doesn't exists, or is not in \
:attr:`path`. | juraj-google-style |
def mean(data, n=3, **kwargs):
if (len(data[(- n):]) < n):
forecast = np.nan
else:
forecast = np.mean(data[(- n):])
return forecast | The mean forecast for the next point is the mean value of the previous ``n`` points in
the series.
Args:
data (np.array): Observed data, presumed to be ordered in time.
n (int): period over which to calculate the mean
Returns:
float: a single-valued forecast for the next value in the series. | codesearchnet |
def Add(self, path, age=None):
if not isinstance(path, string_types):
raise ValueError("Only strings should be added to a URN.")
result = rdfvalue.RDFURN(self.Copy(age))
result.Update(path=utils.JoinPath(self._string_urn, path))
return result | Add a relative stem to the current value and return a new RDFURN.
Note that this returns an RDFURN, not a ClientURN since the resulting object
would not pass validation.
Args:
path: A string containing a relative path.
age: The age of the object. If None set to current time.
Returns:
A new RDFURN that can be chained.
Raises:
ValueError: if the path component is not a string. | juraj-google-style |
def import_extension_module(ext_name):
import importlib
try:
return importlib.import_module(('.' + ext_name), 'nnabla_ext')
except ImportError as e:
from nnabla import logger
logger.error('Extension `{}` does not exist.'.format(ext_name))
raise e | Import an extension module by name.
The extension modules are installed under the `nnabla_ext` package as
namespace packages. All extension modules provide a unified set of APIs.
Args:
ext_name(str): Extension name. e.g. 'cpu', 'cuda', 'cudnn' etc.
Returns: module
An Python module of a particular NNabla extension.
Example:
.. code-block:: python
ext = import_extension_module('cudnn')
available_devices = ext.get_devices()
print(available_devices)
ext.device_synchronize(available_devices[0])
ext.clear_memory_cache() | codesearchnet |
def decode_event(abi: ABI, log_: Dict) -> Dict:
if isinstance(log_['topics'][0], str):
log_['topics'][0] = decode_hex(log_['topics'][0])
elif isinstance(log_['topics'][0], int):
log_['topics'][0] = decode_hex(hex(log_['topics'][0]))
event_id = log_['topics'][0]
events = filter_by_type('event', abi)
topic_to_event_abi = {
event_abi_to_log_topic(event_abi): event_abi
for event_abi in events
}
event_abi = topic_to_event_abi[event_id]
return get_event_data(event_abi, log_) | Helper function to unpack event data using a provided ABI
Args:
abi: The ABI of the contract, not the ABI of the event
log_: The raw event data
Returns:
The decoded event | juraj-google-style |
def _serialize_quadratic_biases(quadratic, edgelist):
quadratic_list = [(quadratic[(u, v)] if ((u, v) in quadratic) else quadratic[(v, u)]) for (u, v) in edgelist]
quadratic_bytes = struct.pack(('<' + ('d' * len(quadratic))), *quadratic_list)
return base64.b64encode(quadratic_bytes).decode('utf-8') | Serializes the quadratic biases.
Args:
quadratic (dict): a dict of the form {edge1: bias1, ...} where
each edge is of the form (node1, node2).
edgelist (list): a list of the form [(node1, node2), ...].
Returns:
str: base 64 encoded string of little endian 8 byte floats,
one for each of the edges in quadratic. Ordered by edgelist.
Example:
>>> _serialize_quadratic_biases({(0, 1): -1, (1, 2): 1, (0, 2): .4},
... [(0, 1), (1, 2), (0, 2)])
'AAAAAAAA8L8AAAAAAADwP5qZmZmZmdk/' | codesearchnet |
def __init__(self, hooks=None, scaffold=None, master='', config=None, checkpoint_dir=None, stop_grace_period_secs=120, checkpoint_filename_with_path=None):
session_creator = ChiefSessionCreator(scaffold=scaffold, master=master, config=config, checkpoint_dir=checkpoint_dir, checkpoint_filename_with_path=checkpoint_filename_with_path)
super(SingularMonitoredSession, self).__init__(session_creator, hooks, should_recover=False, stop_grace_period_secs=stop_grace_period_secs) | Creates a SingularMonitoredSession.
Args:
hooks: An iterable of `SessionRunHook' objects.
scaffold: A `Scaffold` used for gathering or building supportive ops. If
not specified a default one is created. It's used to finalize the graph.
master: `String` representation of the TensorFlow master to use.
config: `ConfigProto` proto used to configure the session.
checkpoint_dir: A string. Optional path to a directory where to restore
variables.
stop_grace_period_secs: Number of seconds given to threads to stop after
`close()` has been called.
checkpoint_filename_with_path: A string. Optional path to a checkpoint
file from which to restore variables. | github-repos |
def server(self, value):
self._server = value
self._connectionXML.set('server', value) | Set the connection's server property.
Args:
value: New server. String.
Returns:
Nothing. | juraj-google-style |
def SetServerInformation(self, server, port):
self._host = server
self._port = port | Sets the server information.
Args:
server (str): hostname or IP address of the database server.
port (int): port number of the database server. | juraj-google-style |
def _get_longest_diag_dict(input_matrix, nonzero_idx):
visited = set()
diags = {}
for idx in nonzero_idx:
start_idx = torch.clone(idx)
tuple_start_idx = tuple(start_idx.tolist())
if tuple_start_idx in visited:
continue
visited.add(tuple_start_idx)
cur_diag_len = 1
start_idx += 1
while start_idx[0] < input_matrix.shape[0] and start_idx[1] < input_matrix.shape[1]:
tuple_start_idx = tuple(start_idx.tolist())
visited.add(tuple_start_idx)
if input_matrix[start_idx[0], start_idx[1]] == 1:
cur_diag_len += 1
start_idx += 1
else:
break
diags[idx] = cur_diag_len
return diags | Calculates the length of the longest diagonal sequence in a given matrix.
Args:
input_matrix (torch.Tensor): The input matrix.
nonzero_idx (torch.Tensor): The indices of the non-zero elements in the matrix.
Returns:
dict: A dictionary where the keys are the indices of the non-zero elements and the values are the lengths of the longest diagonal sequences starting from those indices. | github-repos |
def _get_scalars_plugin(self):
if (scalars_metadata.PLUGIN_NAME in self._plugin_name_to_instance):
return self._plugin_name_to_instance[scalars_metadata.PLUGIN_NAME]
return None | Tries to get the scalars plugin.
Returns:
The scalars plugin. Or None if it is not yet registered. | codesearchnet |
def get_key_pair(self, alias_name):
uri = ((self.URI + '/keypair/') + alias_name)
return self._client.get(uri) | Retrieves the public and private key pair associated with the specified alias name.
Args:
alias_name: Key pair associated with the RabbitMQ
Returns:
dict: RabbitMQ certificate | codesearchnet |
def get_config(self, config='running-config', params=None, as_string=False):
if (config not in ['startup-config', 'running-config']):
raise TypeError('invalid config name specified')
command = ('show %s' % config)
if params:
command += (' %s' % params)
result = self.run_commands(command, 'text')
if as_string:
return str(result[0]['output']).strip()
return str(result[0]['output']).split('\n') | Retreives the config from the node
This method will retrieve the config from the node as either a string
or a list object. The config to retrieve can be specified as either
the startup-config or the running-config.
Args:
config (str): Specifies to return either the nodes startup-config
or running-config. The default value is the running-config
params (str): A string of keywords to append to the command for
retrieving the config.
as_string (boo): Flag that determines the response. If True, then
the configuration is returned as a raw string. If False, then
the configuration is returned as a list. The default value is
False
Returns:
This method will return either a string or a list depending on the
states of the as_string keyword argument.
Raises:
TypeError: If the specified config is not one of either
'running-config' or 'startup-config' | codesearchnet |
def call(self, hidden_states, attention_mask: tf.Tensor | None=None, encoder_hidden_states: tf.Tensor | None=None, encoder_attention_mask: tf.Tensor | None=None, layer_head_mask: tf.Tensor | None=None, cross_attn_layer_head_mask: tf.Tensor | None=None, past_key_value: Tuple[tf.Tensor] | None=None, training=False) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
hidden_states, self_attn_weights, present_key_value = self.self_attn(hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, training=training)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, training=training)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
present_key_value = present_key_value + cross_attn_present_key_value
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
return (hidden_states, self_attn_weights, cross_attn_weights, present_key_value) | Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`tf.Tensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
`(decoder_attention_heads,)`
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
`(decoder_attention_heads,)`
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states | github-repos |
def delete(self, resource, timeout=-1):
self._client.delete(resource=resource, timeout=timeout) | Delete all the labels for a resource.
Args:
resource (dict): Object to delete.
timeout:
Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation
in OneView, just stop waiting for its completion. | juraj-google-style |
def mutual_information(state, d0, d1=None):
if d1 is None:
d1 = int(len(state) / d0)
mi = entropy(partial_trace(state, [0], dimensions=[d0, d1]))
mi += entropy(partial_trace(state, [1], dimensions=[d0, d1]))
mi -= entropy(state)
return mi | Compute the mutual information of a bipartite state.
Args:
state (array_like): a bipartite state-vector or density-matrix.
d0 (int): dimension of the first subsystem.
d1 (int or None): dimension of the second subsystem.
Returns:
float: The mutual information S(rho_A) + S(rho_B) - S(rho_AB). | juraj-google-style |
def positional_encoding_1d(self, batch_size, sequence_length, embedding_dim, device='cpu', dtype=torch.float32):
position = torch.arange(0, sequence_length, dtype=dtype, device=device).unsqueeze(1)
index = torch.arange(0, embedding_dim, 2, dtype=dtype, device=device).unsqueeze(0)
div_term = torch.exp(index * (-torch.log(torch.tensor(10000.0, device=device)) / embedding_dim))
pos_encoding = position * div_term
pos_encoding = torch.cat([torch.sin(pos_encoding), torch.cos(pos_encoding)], dim=1)
pos_encoding = pos_encoding.unsqueeze(dim=0).repeat(batch_size, 1, 1)
return pos_encoding | Generate positional encodings
Args:
sequence_length (int): Sequence length
embedding_dim (int): Embedding dimension
Returns:
torch.Tensor: Positional encodings. | github-repos |
def clown_strike_ioc(self, ioc):
r = requests.get('http:
self._output(r.text) | Performs Clown Strike lookup on an IoC.
Args:
ioc - An IoC. | codesearchnet |
def cos(x):
if any_symbolic_tensors((x,)):
return Cos().symbolic_call(x)
return backend.numpy.cos(x) | Cosine, element-wise.
Args:
x: Input tensor.
Returns:
The corresponding cosine values. | github-repos |
def reply_code_tuple(code: int) -> Tuple[int, int, int]:
return code | Return the reply code as a tuple.
Args:
code: The reply code.
Returns:
Each item in the tuple is the digit. | juraj-google-style |
def _parse_unknown_block_line(self, instrumentation_block, line):
if line.startswith(_InstrumentationStructurePrefixes.STATUS):
return self._parse_method_block_line(self._transition_instrumentation_block(instrumentation_block, new_state=_InstrumentationBlockStates.METHOD), line)
elif line.startswith(_InstrumentationStructurePrefixes.RESULT) or _InstrumentationStructurePrefixes.FAILED in line:
return self._parse_result_block_line(self._transition_instrumentation_block(instrumentation_block, new_state=_InstrumentationBlockStates.RESULT), line)
else:
instrumentation_block.add_value(line)
return instrumentation_block | Parses a line from the instrumentation output from the UNKNOWN
parser state.
Args:
instrumentation_block: _InstrumentationBlock, the current
instrumenation block, where the correct categorization it noti
yet known.
line: string, the raw instrumenation output line to be used to
deteremine the correct categorization.
Returns:
The next instrumentation block to continue parsing with. Usually,
this is the same instrumentation block but with the state
transitioned appropriately. | github-repos |
def create(cls, session, attributes=None, relationships=None):
resource_type = cls._resource_type()
resource_path = cls._resource_path()
url = session._build_url(resource_path)
json = build_request_body(resource_type, None,
attributes=attributes,
relationships=relationships)
process = cls._mk_one(session)
return session.post(url, CB.json(201, process), json=json) | Create a resource of the resource.
This should only be called from sub-classes
Args:
session(Session): The session to create the resource in.
attributes(dict): Any attributes that are valid for the
given resource type.
relationships(dict): Any relationships that are valid for the
given resource type.
Returns:
Resource: An instance of a resource. | juraj-google-style |
def cross_product(p1, p2, o=(0, 0)):
v1 = vector(o, p1)
v2 = vector(o, p2)
return v1[0] * v2[1] - v1[1] * v2[0] | Returns cross product
Args:
p1, p2: point (x, y)
o: origin | juraj-google-style |
def interpolate(hidden_states, ratio):
batch_size, time_length, classes_num = hidden_states.shape
upsampled = hidden_states[:, :, None, :].repeat(1, 1, ratio, 1)
upsampled = upsampled.reshape(batch_size, time_length * ratio, classes_num)
return upsampled | Interpolate data in time domain. This is used to compensate the resolution reduction in downsampling of a CNN.
Args:
hidden_states (`torch.FloatTensor` of shape (batch_size, time_length, classes_num)):
Input hidden states
ratio (`int`):
The ratio of the length of the output to the length of the input. | github-repos |
def get_source_url(obj):
source_env_prefix = obj.context.config['source_env_prefix']
task = obj.task
log.debug('Getting source url for {} {}...'.format(obj.name, obj.task_id))
repo = get_repo(obj.task, source_env_prefix=source_env_prefix)
source = task['metadata']['source']
if (repo and (not verify_repo_matches_url(repo, source))):
raise CoTError("{name} {task_id}: {source_env_prefix} {repo} doesn't match source {source}!".format(name=obj.name, task_id=obj.task_id, source_env_prefix=source_env_prefix, repo=repo, source=source))
log.info('{} {}: found {}'.format(obj.name, obj.task_id, source))
return source | Get the source url for a Trust object.
Args:
obj (ChainOfTrust or LinkOfTrust): the trust object to inspect
Raises:
CoTError: if repo and source are defined and don't match
Returns:
str: the source url. | codesearchnet |
def decode(self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray]=None, decoder_attention_mask: Optional[jnp.ndarray]=None, decoder_position_ids: Optional[jnp.ndarray]=None, past_key_values: Optional[dict]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, train: bool=False, params: Optional[dict]=None, dropout_rng: PRNGKey=None):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError('Make sure to provide `decoder_position_ids` when passing `past_key_values`.')
decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
rngs = {}
if dropout_rng is not None:
rngs['dropout'] = dropout_rng
inputs = {'params': params or self.params}
if past_key_values:
inputs['cache'] = past_key_values
mutable = ['cache']
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs)
outputs = self.module.apply(inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype='i4'), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype='i4'), decoder_position_ids=jnp.array(decoder_position_ids, dtype='i4'), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype='i4'), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward)
if past_key_values is not None and return_dict:
outputs, past = outputs
outputs['past_key_values'] = unfreeze(past['cache'])
return outputs
elif past_key_values is not None and (not return_dict):
outputs, past = outputs
outputs = outputs[:1] + (unfreeze(past['cache']),) + outputs[1:]
return outputs | Returns:
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
``` | github-repos |
def _add_data_types_and_routes_to_api(self, namespace, desc):
env = self._get_or_create_env(namespace.name)
for item in desc:
if isinstance(item, AstTypeDef):
api_type = self._create_type(env, item)
namespace.add_data_type(api_type)
self._check_canonical_name_available(item, namespace.name)
elif isinstance(item, AstStructPatch) or isinstance(item, AstUnionPatch):
base_name = self._get_base_name(item.name, namespace.name)
self._patch_data_by_canonical_name[base_name] = (item, namespace)
elif isinstance(item, AstRouteDef):
route = self._create_route(env, item)
namespace.add_route(route)
self._check_canonical_name_available(item, namespace.name, allow_duplicate=True)
elif isinstance(item, AstImport):
pass
elif isinstance(item, AstAlias):
alias = self._create_alias(env, item)
namespace.add_alias(alias)
self._check_canonical_name_available(item, namespace.name)
elif isinstance(item, AstAnnotationDef):
annotation = self._create_annotation(env, item)
namespace.add_annotation(annotation)
self._check_canonical_name_available(item, namespace.name)
elif isinstance(item, AstAnnotationTypeDef):
annotation_type = self._create_annotation_type(env, item)
namespace.add_annotation_type(annotation_type)
self._check_canonical_name_available(item, namespace.name)
else:
raise AssertionError('Unknown AST node type %r' %
item.__class__.__name__) | From the raw output of the parser, create forward references for each
user-defined type (struct, union, route, and alias).
Args:
namespace (stone.api.Namespace): Namespace for definitions.
desc (List[stone.stone.parser._Element]): All AST nodes in a spec
file in the order they were defined. Should not include a
namespace declaration. | juraj-google-style |
def get_video_features(self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor]=None):
pixel_values_videos = pixel_values_videos.type(self.visual.dtype)
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
return video_embeds | Encodes videos into continuous embeddings that can be forwarded to the language model.
Args:
pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
The tensors corresponding to the input videos.
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
The temporal, height and width of feature shape of each video in LLM. | github-repos |
def _get_numeric_sort_key_fn(self, table_numeric_values, value):
if not table_numeric_values:
return None
all_values = list(table_numeric_values.values())
all_values.append(value)
try:
return get_numeric_sort_key_fn(all_values)
except ValueError:
return None | Returns the sort key function for comparing value to table values. The function returned will be a suitable
input for the key param of the sort(). See number_annotation_utils._get_numeric_sort_key_fn for details
Args:
table_numeric_values: Numeric values of a column
value: Numeric value in the question
Returns:
A function key function to compare column and question values. | github-repos |
def render(self, link_url, image_url, **kwargs):
path = '%s/render' % self.path
data = {'link_url': link_url, 'image_url': image_url}
return self.gitlab.http_get(path, data, **kwargs) | Preview link_url and image_url after interpolation.
Args:
link_url (str): URL of the badge link
image_url (str): URL of the badge image
**kwargs: Extra options to send to the server (e.g. sudo)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabRenderError: If the rendering failed
Returns:
dict: The rendering properties | juraj-google-style |
def to_json_string(self) -> str:
dictionary = self.to_dict()
return json.dumps(dictionary, indent=2, sort_keys=True) + '\n' | Serializes this instance to a JSON string.
Returns:
`str`: String containing all the attributes that make up this feature_extractor instance in JSON format. | github-repos |
def generate(self, id_or_uri):
uri = self._client.build_uri(id_or_uri) + "/generate"
return self._client.get(uri) | Generates and returns a random range.
Args:
id_or_uri:
ID or URI of range.
Returns:
dict: A dict containing a list with IDs. | juraj-google-style |
def decode(self, probs, sizes=None):
(_, max_probs) = torch.max(probs.transpose(0, 1), 2)
strings = self.convert_to_strings(max_probs.view(max_probs.size(0), max_probs.size(1)), sizes)
return self.process_strings(strings, remove_repetitions=True) | Returns the argmax decoding given the probability matrix. Removes
repeated elements in the sequence, as well as blanks.
Arguments:
probs: Tensor of character probabilities from the network. Expected shape of seq_length x batch x output_dim
sizes(optional): Size of each sequence in the mini-batch
Returns:
strings: sequences of the model's best guess for the transcription on inputs | codesearchnet |
def avro_union_type_to_beam_type(union_type: List) -> schema_pb2.FieldType:
if len(union_type) == 2 and 'null' in union_type:
for avro_type in union_type:
if avro_type in AVRO_PRIMITIVES_TO_BEAM_PRIMITIVES:
return schema_pb2.FieldType(atomic_type=AVRO_PRIMITIVES_TO_BEAM_PRIMITIVES[avro_type], nullable=True)
return schemas.typing_to_runner_api(Any)
return schemas.typing_to_runner_api(Any) | convert an avro union type to a beam type
if the union type is a nullable, and it is a nullable union of an avro
primitive with a corresponding beam primitive then create a nullable beam
field of the corresponding beam type, otherwise return an Any type.
Args:
union_type: the avro union type to convert.
Returns:
the beam type of the avro union. | github-repos |
def pre_fetch(self, feed):
if hasattr(self, '_list_name') and self._list_name and self._id_field:
print('pre fetching %s' % self._list_name)
ids = [feed_item[self._id_field] for feed_item in feed if isinstance(feed_item[self._id_field], int)]
if ids:
for i in range(0, len(ids), 500):
results = self._api(iterate=True).list(profileId=self.profile_id, ids=ids[i:i + 500]).execute()
for item in results:
store.set(self._entity, [item['id']], item) | Pre-fetches all required items to be update into the cache.
This increases performance for update operations.
Args:
feed: List of feed items to retrieve | github-repos |
def loopUntil(
self, condition=None, timeout: float = 0) -> Iterator[object]:
endTime = time.time() + timeout
while True:
test = condition and condition()
if test:
yield test
return
elif timeout and time.time() > endTime:
yield False
return
else:
yield test
self.waitOnUpdate(endTime - time.time() if timeout else 0) | Iterate until condition is met, with optional timeout in seconds.
The yielded value is that of the condition or False when timed out.
Args:
condition: Predicate function that is tested after every network
update.
timeout: Maximum time in seconds to wait.
If 0 then no timeout is used. | juraj-google-style |
def get_lonlatalts(self):
band = self.filehandle
(xpoints, ypoints), (gcp_lons, gcp_lats, gcp_alts), (gcps, crs) = self.get_gcps()
longitudes = interpolate_xarray(xpoints, ypoints, gcp_lons, band.shape)
latitudes = interpolate_xarray(xpoints, ypoints, gcp_lats, band.shape)
altitudes = interpolate_xarray(xpoints, ypoints, gcp_alts, band.shape)
longitudes.attrs['gcps'] = gcps
longitudes.attrs['crs'] = crs
latitudes.attrs['gcps'] = gcps
latitudes.attrs['crs'] = crs
altitudes.attrs['gcps'] = gcps
altitudes.attrs['crs'] = crs
return longitudes, latitudes, altitudes | Obtain GCPs and construct latitude and longitude arrays.
Args:
band (gdal band): Measurement band which comes with GCP's
array_shape (tuple) : The size of the data array
Returns:
coordinates (tuple): A tuple with longitude and latitude arrays | juraj-google-style |
def distinct_values_of(self, field, count_deleted=False):
solr_params = ('facet=true&facet.field=%s&rows=0' % field)
result = self.riak_http_search_query(self.index_name, solr_params, count_deleted)
facet_fields = result['facet_counts']['facet_fields'][field]
keys = facet_fields[0::2]
vals = facet_fields[1::2]
return dict(zip(keys, vals)) | Uses riak http search query endpoint for advanced SOLR queries.
Args:
field (str): facet field
count_deleted (bool): ignore deleted or not
Returns:
(dict): pairs of field values and number of counts | codesearchnet |
def restore_initializer(filename, name_fn=None, collection=tf.GraphKeys.GLOBAL_VARIABLES):
def _restore_initializer(getter, name, *args, **kwargs):
'Gets variable with restore initializer.'
collections = kwargs['collections']
if (collections is None):
collections = [tf.GraphKeys.GLOBAL_VARIABLES]
if (kwargs['trainable'] and (tf.GraphKeys.TRAINABLE_VARIABLES not in collections)):
collections += [tf.GraphKeys.TRAINABLE_VARIABLES]
if ((collection is None) or (collection in collections)):
if (name_fn is not None):
var_name_in_checkpoint = name_fn(name)
else:
var_name_in_checkpoint = name
tf.logging.info("Restoring '%s' from '%s' into variable '%s'", var_name_in_checkpoint, filename, name)
kwargs['initializer'] = snt.restore_initializer(filename, var_name_in_checkpoint, scope='')
return getter(name, *args, **kwargs)
return _restore_initializer | Custom getter to restore all variables with `snt.restore_initializer`.
Args:
filename: The filename of the checkpoint.
name_fn: A function which can map the name of the variable requested. This
allows restoring variables with values having different names in the
checkpoint.
collection: Only set the restore initializer for variables in this
collection. If `None`, it will attempt to restore all variables. By
default `tf.GraphKeys.GLOBAL_VARIABLES`.
Returns:
A restore_initializer custom getter, which is a function taking arguments
(getter, name, *args, **kwargs). | codesearchnet |
def cysparse_type_to_real_sum_cysparse_type(cysparse_type):
r_type = None
if cysparse_type in ['INT32_t', 'UINT32_t', 'INT64_t', 'UINT64_t']:
r_type = 'FLOAT64_t'
elif cysparse_type in ['FLOAT32_t', 'FLOAT64_t']:
r_type = 'FLOAT64_t'
elif cysparse_type in ['FLOAT128_t']:
r_type = 'FLOAT128_t'
elif cysparse_type in ['COMPLEX64_t', 'COMPLEX128_t']:
r_type = 'FLOAT64_t'
elif cysparse_type in ['COMPLEX256_t']:
r_type = 'FLOAT128_t'
else:
raise TypeError("Not a recognized type")
assert r_type in ['FLOAT64_t', 'FLOAT128_t']
return r_type | Returns the best **real** type for a **real** sum for a given type.
For instance:
INT32_t -> FLOAT64_t
Args:
cysparse_type: | juraj-google-style |
def report_delete(config, auth, report_id=None, name=None):
if config.verbose:
print('DBM DELETE:', report_id or name)
report = report_get(config, auth, report_id, name)
if report:
API_DBM(config, auth).queries().delete(queryId=report['queryId']).execute()
elif config.verbose:
print('DBM DELETE: No Report') | Deletes a DBM report based on name or ID.
Args:
* auth: (string) Either user or service.
* report_id: (int) ID of DCm report to fetch ( either or name ).
* name: (string) Name of report to fetch ( either or report_id ).
Returns:
* None | github-repos |
def save(self, filepath):
filepath = str(filepath)
if not filepath.endswith('.weights.h5'):
raise ValueError(f'Invalid `filepath` argument: expected a `.weights.h5` extension. Received: filepath={filepath}')
weights_store = H5IOStore(filepath, mode='w')
def _save(weights_dict, weights_store, inner_path):
vars_to_create = {}
for name, value in weights_dict.items():
if isinstance(value, dict):
if value:
_save(weights_dict[name], weights_store, inner_path=inner_path + '/' + name)
else:
vars_to_create[name] = value
if vars_to_create:
var_store = weights_store.make(inner_path)
for name, value in vars_to_create.items():
var_store[name] = value
_save(self.weights_dict, weights_store, inner_path='')
weights_store.close() | Save the edited weights file.
Args:
filepath: Path to save the file to.
Must be a `.weights.h5` file. | github-repos |
def get_rel_pos(q_size, k_size, rel_pos):
max_rel_dist = int(2 * max(q_size, k_size) - 1)
if rel_pos.shape[0] != max_rel_dist:
rel_pos_resized = nn.functional.interpolate(rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), size=max_rel_dist, mode='linear')
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
else:
rel_pos_resized = rel_pos
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
relative_coords = q_coords - k_coords + (k_size - 1) * max(q_size / k_size, 1.0)
return rel_pos_resized[relative_coords.long()] | Get relative positional embeddings according to the relative positions of query and key sizes.
Args:
q_size (`int`):
Size of query q.
k_size (`int`):
Size of key k.
rel_pos (`torch.Tensor`):
Relative position embeddings (num_embeddings, num_channels).
Returns:
Extracted positional embeddings according to relative positions. | github-repos |
def distances_from_parent(self, leaves=True, internal=True, unlabeled=False):
if not isinstance(leaves, bool):
raise TypeError("leaves must be a bool")
if not isinstance(internal, bool):
raise TypeError("internal must be a bool")
if not isinstance(unlabeled, bool):
raise TypeError("unlabeled must be a bool")
if leaves or internal:
for node in self.traverse_preorder():
if ((leaves and node.is_leaf()) or (internal and not node.is_leaf())) and (unlabeled or node.label is not None):
if node.edge_length is None:
yield (node,0)
else:
yield (node,node.edge_length) | Generator over the node-to-parent distances of this ``Tree``; (node,distance) tuples
Args:
``terminal`` (``bool``): ``True`` to include leaves, otherwise ``False``
``internal`` (``bool``): ``True`` to include internal nodes, otherwise ``False``
``unlabeled`` (``bool``): ``True`` to include unlabeled nodes, otherwise ``False`` | juraj-google-style |
def r_edges(step):
(rbot, rtop) = misc.get_rbounds(step)
centers = (step.rprof.loc[(:, 'r')].values + rbot)
edges = ((centers[:(- 1)] + centers[1:]) / 2)
edges = np.insert(edges, 0, rbot)
edges = np.append(edges, rtop)
return (edges, edges) | Cell border.
Args:
step (:class:`~stagpy.stagyydata._Step`): a step of a StagyyData
instance.
Returns:
tuple of :class:`numpy.array`: the position of the bottom and top walls
of the cells. The two elements of the tuple are identical. | codesearchnet |
def pybel_to_json(molecule, name=None):
atoms = [{'element': table.GetSymbol(atom.atomicnum), 'location': list(atom.coords)} for atom in molecule.atoms]
for (json_atom, pybel_atom) in zip(atoms, molecule.atoms):
if (pybel_atom.partialcharge != 0):
json_atom['charge'] = pybel_atom.partialcharge
if pybel_atom.OBAtom.HasData('_atom_site_label'):
obatom = pybel_atom.OBAtom
json_atom['label'] = obatom.GetData('_atom_site_label').GetValue()
if pybel_atom.OBAtom.HasData('color'):
obatom = pybel_atom.OBAtom
json_atom['color'] = obatom.GetData('color').GetValue()
bonds = [{'atoms': [b.GetBeginAtom().GetIndex(), b.GetEndAtom().GetIndex()], 'order': b.GetBondOrder()} for b in ob.OBMolBondIter(molecule.OBMol)]
output = {'atoms': atoms, 'bonds': bonds, 'units': {}}
if hasattr(molecule, 'unitcell'):
uc = molecule.unitcell
output['unitcell'] = [[v.GetX(), v.GetY(), v.GetZ()] for v in uc.GetCellVectors()]
density = (sum((atom.atomicmass for atom in molecule.atoms)) / (uc.GetCellVolume() * 0.6022))
output['density'] = density
output['units']['density'] = 'kg / L'
element_count = Counter((table.GetSymbol(a.atomicnum) for a in molecule))
hill_count = []
for element in ['C', 'H']:
if (element in element_count):
hill_count += [(element, element_count[element])]
del element_count[element]
hill_count += sorted(element_count.items())
div = (reduce(gcd, (c[1] for c in hill_count)) if hasattr(molecule, 'unitcell') else 1)
output['formula'] = ''.join(((n if ((c / div) == 1) else ('%s%d' % (n, (c / div)))) for (n, c) in hill_count))
output['molecular_weight'] = (molecule.molwt / div)
output['units']['molecular_weight'] = 'g / mol'
if name:
output['name'] = name
return output | Converts a pybel molecule to json.
Args:
molecule: An instance of `pybel.Molecule`
name: (Optional) If specified, will save a "name" property
Returns:
A Python dictionary containing atom and bond data | codesearchnet |
def get_region(b):
remap = {None: 'us-east-1', 'EU': 'eu-west-1'}
region = b.get('Location', {}).get('LocationConstraint')
return remap.get(region, region) | Tries to get the bucket region from Location.LocationConstraint
Special cases:
LocationConstraint EU defaults to eu-west-1
LocationConstraint null defaults to us-east-1
Args:
b (object): A bucket object
Returns:
string: an aws region string | codesearchnet |
def get_vocab(self) -> Dict[str, int]:
raise NotImplementedError() | Returns the vocabulary as a dictionary of token to index.
`tokenizer.get_vocab()[token]` is equivalent to `tokenizer.convert_tokens_to_ids(token)` when `token` is in the
vocab.
Returns:
`Dict[str, int]`: The vocabulary. | github-repos |
def _get_expiration(self, headers: dict) -> int:
expiration_str = headers.get('expires')
if (not expiration_str):
return 0
expiration = datetime.strptime(expiration_str, '%a, %d %b %Y %H:%M:%S %Z')
delta = (expiration - datetime.utcnow()).total_seconds()
return math.ceil(abs(delta)) | Gets the expiration time of the data from the response headers.
Args:
headers: dictionary of headers from ESI
Returns:
value of seconds from now the data expires | codesearchnet |
def reactions_add(self, *, name: str, **kwargs) -> SlackResponse:
kwargs.update({"name": name})
return self.api_call("reactions.add", json=kwargs) | Adds a reaction to an item.
Args:
name (str): Reaction (emoji) name. e.g. 'thumbsup'
channel (str): Channel where the message to add reaction to was posted.
e.g. 'C1234567890'
timestamp (str): Timestamp of the message to add reaction to. e.g. '1234567890.123456' | juraj-google-style |
class AriaCrossAttention(nn.Module):
def __init__(self, config: AriaConfig, dropout_rate: float=0):
super().__init__()
hidden_size = config.vision_config.hidden_size
num_heads = config.vision_config.num_attention_heads
self.num_heads = num_heads
self.q_proj = nn.Linear(hidden_size, hidden_size, bias=False)
self.k_proj = nn.Linear(hidden_size, hidden_size, bias=False)
self.v_proj = nn.Linear(hidden_size, hidden_size, bias=False)
self.multihead_attn = nn.MultiheadAttention(hidden_size, num_heads, batch_first=True)
self.linear = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(dropout_rate)
self.layer_norm = nn.LayerNorm(hidden_size)
self.layer_norm_kv = nn.LayerNorm(hidden_size)
def forward(self, key_value_states, hidden_states, attn_mask=None):
query = self.q_proj(self.layer_norm(hidden_states))
key_value_states = self.layer_norm_kv(key_value_states)
key = self.k_proj(key_value_states)
value = self.v_proj(key_value_states)
attn_output, _ = self.multihead_attn(query, key, value, attn_mask=attn_mask)
attn_output = self.dropout(self.linear(attn_output))
return attn_output | Aria Cross-Attention module.
Args:
config (`AriaConfig`):
The configuration to use. | github-repos |
def __delete__(self, obj):
if self.name in obj._property_values:
old_value = obj._property_values[self.name]
del obj._property_values[self.name]
self.trigger_if_changed(obj, old_value)
if self.name in obj._unstable_default_values:
del obj._unstable_default_values[self.name] | Implement the deleter for the Python `descriptor protocol`_.
Args:
obj (HasProps) : An instance to delete this property from | juraj-google-style |
def _validate_schema_and_ast(schema, ast):
core_graphql_errors = validate(schema, ast)
unsupported_default_directives = frozenset([frozenset(['include', frozenset(['FIELD', 'FRAGMENT_SPREAD', 'INLINE_FRAGMENT']), frozenset(['if'])]), frozenset(['skip', frozenset(['FIELD', 'FRAGMENT_SPREAD', 'INLINE_FRAGMENT']), frozenset(['if'])]), frozenset(['deprecated', frozenset(['ENUM_VALUE', 'FIELD_DEFINITION']), frozenset(['reason'])])])
expected_directives = {frozenset([directive.name, frozenset(directive.locations), frozenset(six.viewkeys(directive.args))]) for directive in DIRECTIVES}
actual_directives = {frozenset([directive.name, frozenset(directive.locations), frozenset(six.viewkeys(directive.args))]) for directive in schema.get_directives()}
missing_directives = (expected_directives - actual_directives)
if missing_directives:
missing_message = u'The following directives were missing from the provided schema: {}'.format(missing_directives)
core_graphql_errors.append(missing_message)
extra_directives = ((actual_directives - expected_directives) - unsupported_default_directives)
if extra_directives:
extra_message = u'The following directives were supplied in the given schema, but are not not supported by the GraphQL compiler: {}'.format(extra_directives)
core_graphql_errors.append(extra_message)
return core_graphql_errors | Validate the supplied graphql schema and ast.
This method wraps around graphql-core's validation to enforce a stricter requirement of the
schema -- all directives supported by the compiler must be declared by the schema, regardless of
whether each directive is used in the query or not.
Args:
schema: GraphQL schema object, created using the GraphQL library
ast: abstract syntax tree representation of a graphql query
Returns:
list containing schema and/or query validation errors | codesearchnet |
async def evaluate_model(eval_model_path, target_model_path, sgf_dir, seed):
lines = (await run('bazel-bin/cc/eval', '--flagfile={}'.format(os.path.join(FLAGS.flags_dir, 'eval.flags')), '--model={}'.format(eval_model_path), '--model_two={}'.format(target_model_path), '--sgf_dir={}'.format(sgf_dir), '--seed={}'.format(seed)))
result = '\n'.join(lines[(- 7):])
logging.info(result)
(eval_stats, target_stats) = parse_win_stats_table(result, 2)
num_games = (eval_stats.total_wins + target_stats.total_wins)
win_rate = (eval_stats.total_wins / num_games)
logging.info('Win rate %s vs %s: %.3f', eval_stats.model_name, target_stats.model_name, win_rate)
return win_rate | Evaluate one model against a target.
Args:
eval_model_path: the path to the model to evaluate.
target_model_path: the path to the model to compare to.
sgf_dif: directory path to write SGF output to.
seed: random seed to use when running eval.
Returns:
The win-rate of eval_model against target_model in the range [0, 1]. | codesearchnet |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.