code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def _ProcessFileEntry(self, mediator, file_entry):
display_name = mediator.GetDisplayName()
logger.debug(
'[ProcessFileEntry] processing file entry: {0:s}'.format(display_name))
reference_count = mediator.resolver_context.GetFileObjectReferenceCount(
file_entry.path_spec)
try:
if self._IsMetadataFile(file_entry):
self._ProcessMetadataFile(mediator, file_entry)
else:
file_entry_processed = False
for data_stream in file_entry.data_streams:
if self._abort:
break
if self._CanSkipDataStream(file_entry, data_stream):
logger.debug((
'[ProcessFileEntry] Skipping datastream {0:s} for {1:s}: '
'{2:s}').format(
data_stream.name, file_entry.type_indicator, display_name))
continue
self._ProcessFileEntryDataStream(mediator, file_entry, data_stream)
file_entry_processed = True
if not file_entry_processed:
self._ProcessFileEntryDataStream(mediator, file_entry, None)
finally:
new_reference_count = (
mediator.resolver_context.GetFileObjectReferenceCount(
file_entry.path_spec))
if reference_count != new_reference_count:
if mediator.resolver_context.ForceRemoveFileObject(
file_entry.path_spec):
logger.warning(
'File-object not explicitly closed for file: {0:s}'.format(
display_name))
logger.debug(
'[ProcessFileEntry] done processing file entry: {0:s}'.format(
display_name)) | Processes a file entry.
Args:
mediator (ParserMediator): mediates the interactions between
parsers and other components, such as storage and abort signals.
file_entry (dfvfs.FileEntry): file entry. | juraj-google-style |
def wait_for_batches(self, batch_ids, timeout=None):
self._batch_tracker.watch_statuses(self, batch_ids)
timeout = timeout or DEFAULT_TIMEOUT
start_time = time()
with self._wait_condition:
while True:
if self._statuses is not None:
return _format_batch_statuses(
self._statuses, batch_ids, self._batch_tracker)
if time() - start_time > timeout:
statuses = self._batch_tracker.get_statuses(batch_ids)
return _format_batch_statuses(
statuses, batch_ids, self._batch_tracker)
self._wait_condition.wait(timeout - (time() - start_time)) | Locks until a list of batch ids is committed to the block chain
or a timeout is exceeded. Returns the statuses of those batches.
Args:
batch_ids (list of str): The ids of the batches to wait for
timeout(int): Maximum time in seconds to wait for
Returns:
list of BatchStatus: BatchStatuses to send back to client | juraj-google-style |
def ParseCmd(self, cmd_input, attributes=None, templates=None):
self.raw = cmd_input
if not templates:
row_idx = self.index.GetRowMatch(attributes)
if row_idx:
templates = self.index.index[row_idx]["Template"]
else:
raise CliTableError(
'No template found for attributes: "%s"' % attributes
)
template_files = self._TemplateNamesToFiles(templates)
try:
self.Reset()
self._keys = set()
self.table = self._ParseCmdItem(self.raw, template_file=template_files[0])
for tmplt in template_files[1:]:
self.extend(
self._ParseCmdItem(self.raw, template_file=tmplt), set(self._keys)
)
finally:
for f in template_files:
f.close() | Creates a TextTable table of values from cmd_input string.
Parses command output with template/s. If more than one template is found
subsequent tables are merged if keys match (dropped otherwise).
Args:
cmd_input: String, Device/command response.
attributes: Dict, attribute that further refine matching template.
templates: String list of templates to parse with. If None, uses index
Raises:
CliTableError: A template was not found for the given command. | juraj-google-style |
def is_global(self):
return ((not ((self.network_address in IPv4Network('100.64.0.0/10')) and (self.broadcast_address in IPv4Network('100.64.0.0/10')))) and (not self.is_private)) | Test if this address is allocated for public networks.
Returns:
A boolean, True if the address is not reserved per
iana-ipv4-special-registry. | codesearchnet |
def _query(self, query_type, query_str, verbose=False):
cached = self.query_cache.get(query_str)
if cached:
if verbose:
print('Returning Cached VT Query Results')
return cached
if query_type == 'file':
response = requests.get('https:
params={'apikey': self.apikey, 'resource': query_str, 'allinfo': 1})
else:
response = requests.post('https:
params={'apikey': self.apikey, 'resource': query_str, 'allinfo': 1})
try:
vt_output = response.json()
except ValueError:
error_msg = 'VirusTotal no valid response, throttling and trying again...'
if self.throttle:
if verbose:
print(error_msg)
time.sleep(30)
return self._query(query_type, query_str)
return {'vt_error': error_msg}
if not vt_output or vt_output['response_code'] == 0:
output = {'query': query_str, 'not_found': True}
self.query_cache.set(query_str, output)
return output
output = {field: vt_output[field] for field in vt_output.keys() if field not in self.exclude}
output['query'] = query_str
scan_results = collections.Counter()
for scan in vt_output['scans'].values():
if 'result' in scan:
if scan['result']:
scan_results[scan['result']] += 1
output['scan_results'] = scan_results.most_common(5)
self.query_cache.set(query_str, output)
return output | Internal query method for the VirusTotal Service
Args:
query_type(str): The type of query (either 'file' or 'url')
query_str (str): The file hash or domain/url to be queried | juraj-google-style |
def zeros(shape, dtype=None, **kwargs):
data = np.zeros(shape, dtype)
return dc.array(data, **kwargs) | Create an array of given shape and type, filled with zeros.
Args:
shape (sequence of ints): 2D shape of the array.
dtype (data-type, optional): Desired data-type for the array.
kwargs (optional): Other arguments of the array (*coords, attrs, and name).
Returns:
array (decode.array): Decode array filled with zeros. | juraj-google-style |
def GetCredential(self, path_spec, identifier):
credentials = self._credentials_per_path_spec.get(path_spec.comparable, {})
return credentials.get(identifier, None) | Retrieves a specific credential from the key chain.
Args:
path_spec (PathSpec): path specification.
identifier (str): credential identifier.
Returns:
object: credential or None if the credential for the path specification
is not set. | codesearchnet |
def init_cache(self, batch_size, max_length):
input_ids = jnp.ones((batch_size, max_length), dtype='i4')
attention_mask = jnp.ones_like(input_ids, dtype='i4')
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True)
return unfreeze(init_variables['cache']) | Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache. | github-repos |
def update(self, domain, type_name, search_command, body):
return self._request(domain, type_name, search_command, 'PUT', body) | Update entry in ThreatConnect Data Store
Args:
domain (string): One of 'local', 'organization', or 'system'.
type_name (string): This is a free form index type name. The ThreatConnect API will use
this resource verbatim.
search_command (string): Search command to pass to ES.
body (str): JSON body | juraj-google-style |
def key_validation_check(tweet_keys_list, superset_keys, minset_keys):
tweet_keys = set(tweet_keys_list)
minset_overlap = (tweet_keys & minset_keys)
if (minset_overlap != minset_keys):
raise UnexpectedFormatError('keys ({}) missing from Tweet (Public API data is not supported)'.format((minset_keys - tweet_keys)))
unexpected_keys = (tweet_keys - superset_keys)
if (len(unexpected_keys) > 0):
raise UnexpectedFormatError('Unexpected keys ({}) are in this Tweet'.format(unexpected_keys))
return 0 | Validates the keys present in a Tweet.
Args:
tweet_keys_list (list): the keys present in a tweet
superset_keys (set): the set of all possible keys for a tweet
minset_keys (set): the set of minimal keys expected in a tweet.
Returns:
0 if no errors
Raises:
UnexpectedFormatError on any mismatch of keys. | codesearchnet |
def add(self, coro, *args, **kw):
if asyncio.iscoroutinefunction(coro):
coro = coro(*args, **kw)
if (not asyncio.iscoroutine(coro)):
raise TypeError('paco: coro must be a coroutine object')
index = max(len(self.pool), 0)
task = Task(index, coro)
self.pool.append(task)
return coro | Adds a new coroutine function with optional variadic argumetns.
Arguments:
coro (coroutine function): coroutine to execute.
*args (mixed): optional variadic arguments
Raises:
TypeError: if the coro object is not a valid coroutine
Returns:
future: coroutine wrapped future | codesearchnet |
def charge_balance(model):
compound_charge = {}
for compound in model.compounds:
if compound.charge is not None:
compound_charge[compound.id] = compound.charge
for reaction in model.reactions:
charge = reaction_charge(reaction.equation, compound_charge)
yield reaction, charge | Calculate the overall charge for all reactions in the model.
Yield (reaction, charge) pairs.
Args:
model: :class:`psamm.datasource.native.NativeModel`. | juraj-google-style |
def clip_range(nodes1, nodes2):
(coeff_a, coeff_b, coeff_c, d_min, d_max) = compute_fat_line(nodes1)
(_, num_nodes2) = nodes2.shape
polynomial = np.empty((2, num_nodes2), order='F')
denominator = float((num_nodes2 - 1))
for index in six.moves.xrange(num_nodes2):
polynomial[(0, index)] = (index / denominator)
polynomial[(1, index)] = (((coeff_a * nodes2[(0, index)]) + (coeff_b * nodes2[(1, index)])) + coeff_c)
start_bottom = np.asfortranarray([0.0, d_min])
end_bottom = np.asfortranarray([1.0, d_min])
start_top = np.asfortranarray([0.0, d_max])
end_top = np.asfortranarray([1.0, d_max])
s_min = DEFAULT_S_MIN
s_max = DEFAULT_S_MAX
for start_index in six.moves.xrange((num_nodes2 - 1)):
for end_index in six.moves.xrange((start_index + 1), num_nodes2):
(s_min, s_max) = _update_parameters(s_min, s_max, start_bottom, end_bottom, polynomial[(:, start_index)], polynomial[(:, end_index)])
(s_min, s_max) = _update_parameters(s_min, s_max, start_top, end_top, polynomial[(:, start_index)], polynomial[(:, end_index)])
return _check_parameter_range(s_min, s_max) | r"""Reduce the parameter range where two curves can intersect.
Does so by using the "fat line" for ``nodes1`` and computing the
distance polynomial against ``nodes2``.
.. note::
This assumes, but does not check that the curves being considered
will only have one intersection in the parameter ranges
:math:`s \in \left[0, 1\right]`, :math:`t \in \left[0, 1\right]`.
This assumption is based on the fact that B |eacute| zier clipping
is meant to be used to find tangent intersections for already
subdivided (i.e. sufficiently zoomed in) curve segments.
Args:
nodes1 (numpy.ndarray): ``2 x N1`` array of nodes in a curve which
will define the clipping region.
nodes2 (numpy.ndarray): ``2 x N2`` array of nodes in a curve which
will be clipped.
Returns:
Tuple[float, float]: The pair of
* The start parameter of the clipped range.
* The end parameter of the clipped range. | codesearchnet |
def from_file(cls, filename, *, strict=True):
config = cls()
config.load_from_file(filename, strict=strict)
return config | Create a new Config object from a configuration file.
Args:
filename (str): The location and name of the configuration file.
strict (bool): If true raises a ConfigLoadError when the configuration
cannot be found.
Returns:
An instance of the Config class.
Raises:
ConfigLoadError: If the configuration cannot be found. | codesearchnet |
def MakeSimpleProtoClass(fields, full_name=None, pool=None):
factory = message_factory.MessageFactory(pool=pool)
if full_name is not None:
try:
proto_cls = _GetMessageFromFactory(factory, full_name)
return proto_cls
except KeyError:
pass
field_items = fields.items()
if not isinstance(fields, OrderedDict):
field_items = sorted(field_items)
fields_hash = hashlib.sha1()
for f_name, f_type in field_items:
fields_hash.update(f_name.encode('utf-8'))
fields_hash.update(str(f_type).encode('utf-8'))
proto_file_name = fields_hash.hexdigest() + '.proto'
if full_name is None:
full_name = ('net.proto2.python.public.proto_builder.AnonymousProto_' +
fields_hash.hexdigest())
try:
proto_cls = _GetMessageFromFactory(factory, full_name)
return proto_cls
except KeyError:
pass
factory.pool.Add(
_MakeFileDescriptorProto(proto_file_name, full_name, field_items))
return _GetMessageFromFactory(factory, full_name) | Create a Protobuf class whose fields are basic types.
Note: this doesn't validate field names!
Args:
fields: dict of {name: field_type} mappings for each field in the proto. If
this is an OrderedDict the order will be maintained, otherwise the
fields will be sorted by name.
full_name: optional str, the fully-qualified name of the proto type.
pool: optional DescriptorPool instance.
Returns:
a class, the new protobuf class with a FileDescriptor. | juraj-google-style |
def _get_example_from_properties(self, spec):
local_spec = deepcopy(spec)
additional_property = False
if ('additionalProperties' in local_spec):
additional_property = True
if ('properties' not in local_spec):
local_spec['properties'] = {}
local_spec['properties'].update({'any_prop1': local_spec['additionalProperties'], 'any_prop2': local_spec['additionalProperties']})
del local_spec['additionalProperties']
required = local_spec.get('required', [])
required += ['any_prop1', 'any_prop2']
local_spec['required'] = required
example = {}
properties = local_spec.get('properties')
if (properties is not None):
required = local_spec.get('required', properties.keys())
for (inner_name, inner_spec) in properties.items():
if (inner_name not in required):
continue
partial = self.get_example_from_prop_spec(inner_spec)
if isinstance(partial, list):
partial = partial[0]
example[inner_name] = partial
return (example, additional_property) | Get example from the properties of an object defined inline.
Args:
prop_spec: property specification you want an example of.
Returns:
An example for the given spec
A boolean, whether we had additionalProperties in the spec, or not | codesearchnet |
def _get_suffix(path):
suffix = os.path.basename(path).split('.')[(- 1)]
if ('/' in suffix):
raise UserWarning(("Filename can't contain '/' in suffix (%s)!" % path))
return suffix | Return suffix from `path`.
``/home/xex/somefile.txt`` --> ``txt``.
Args:
path (str): Full file path.
Returns:
str: Suffix.
Raises:
UserWarning: When ``/`` is detected in suffix. | codesearchnet |
def write_string_to_file(filename, file_content):
with FileIO(filename, mode='w') as f:
f.write(file_content) | Writes a string to a given file.
Args:
filename: string, path to a file
file_content: string, contents that need to be written to the file
Raises:
errors.OpError: If there are errors during the operation. | github-repos |
def baredoc(obj):
doc = getdoc(obj)
if not doc:
return ''
doc = doc.splitlines()[0]
return doc.rstrip(' .').lstrip() | Return the first line of the docstring of an object.
Trailing periods and spaces as well as leading spaces are removed from the
output.
Args:
obj: any Python object.
Returns:
str: the first line of the docstring of obj. | juraj-google-style |
def add_field(self, fieldname, fieldspec=whoosh_module_fields.TEXT):
self._whoosh.add_field(fieldname, fieldspec)
return self._whoosh.schema | Add a field in the index of the model.
Args:
fieldname (Text): This parameters register a new field in specified model.
fieldspec (Name, optional): This option adds various options as were described before.
Returns:
TYPE: The new schema after deleted is returned. | codesearchnet |
def create_projection(self, fov: float = 75.0, near: float = 1.0, far: float = 100.0, aspect_ratio: float = None):
return matrix44.create_perspective_projection_matrix(
fov,
aspect_ratio or self.window.aspect_ratio,
near,
far,
dtype='f4',
) | Create a projection matrix with the following parameters.
When ``aspect_ratio`` is not provided the configured aspect
ratio for the window will be used.
Args:
fov (float): Field of view (float)
near (float): Camera near value
far (float): Camrea far value
Keyword Args:
aspect_ratio (float): Aspect ratio of the viewport
Returns:
The projection matrix as a float32 :py:class:`numpy.array` | juraj-google-style |
def _randomized_roundoff_to_bfloat16(x, noise, cand1, cand2):
cand1_f = tf.to_float(cand1)
cand2_f = tf.to_float(cand2)
step_size = (cand2_f - cand1_f)
fpart = ((x - cand1_f) / step_size)
ret = tf.where(tf.greater(fpart, noise), cand2, cand1)
return ret | Round-off x to cand1 or to cand2 in an unbiased way.
Cand1 and cand2 are the same shape as x.
For every element of x, the corresponding elements of cand1 and cand2 should
be the two closest bfloat16 values to x. Order does not matter.
cand1 and cand2 must differ from each other.
Args:
x: A float32 Tensor.
noise: A Tensor broadcastable to the shape of x containing
random uniform values in [0.0, 1.0].
cand1: A bfloat16 Tensor the same shape as x.
cand2: A bfloat16 Tensor the same shape as x.
Returns:
A bfloat16 Tensor. | codesearchnet |
def protorpc_to_endpoints_error(self, status, body):
try:
rpc_error = self.__PROTOJSON.decode_message(remote.RpcStatus, body)
except (ValueError, messages.ValidationError):
rpc_error = remote.RpcStatus()
if (rpc_error.state == remote.RpcStatus.State.APPLICATION_ERROR):
error_class = _ERROR_NAME_MAP.get(rpc_error.error_name)
if error_class:
(status, body) = self.__write_error(error_class.http_status, rpc_error.error_message)
return (status, body) | Convert a ProtoRPC error to the format expected by Google Endpoints.
If the body does not contain an ProtoRPC message in state APPLICATION_ERROR
the status and body will be returned unchanged.
Args:
status: HTTP status of the response from the backend
body: JSON-encoded error in format expected by Endpoints frontend.
Returns:
Tuple of (http status, body) | codesearchnet |
def optimize(objective_function, domain,
stopping_condition, parameters=None,
position_update=functions.std_position,
velocity_update=functions.std_velocity,
parameter_update=functions.std_parameter_update,
measurements=(),
measurer=dictionary_based_metrics):
params = __init_parameters__(parameters)
rng = np.random.RandomState(params['seed'])
initial_swarm = [functions.initialize_particle(rng, domain,
objective_function)
for i in range(params['swarm_size'])]
state = types.PSOState(rng, params, iterations=0, swarm=initial_swarm)
topology_function = state.params['topology']
update_fitness = functions.update_fitness
update_particle = functions.update_particle
results, measure = measurer(measurements)
while not stopping_condition(state):
n_bests = topology_function(state)
state = state._replace(swarm=[update_particle(position_update,
velocity_update,
state, n_bests, ip)
for ip in enumerate(state.swarm)])
state = state._replace(swarm=[update_fitness(objective_function,
particle)
for particle in state.swarm],
iterations=state.iterations + 1)
state = parameter_update(state, objective_function)
results = measure(results, state)
return functions.solution(state.swarm), results | Perform particle swarm optimization of the given fitness function.
Args:
objective_function: the cost function to optimize.
stopping_condition: function specifying the stopping condition.
parameters: dictionary: parameter dictionary for the PSO.
Returns:
cipy.algorithms.pso.Particle: The global best particle. | juraj-google-style |
def get_metric_by_name(self, metric_name, **kwargs):
return self._get_object_by_name(self._METRIC_ENDPOINT_SUFFIX, metric_name, **kwargs) | get a metric by name
Args:
metric_name (string): name of metric
Returns:
dictionary of response | codesearchnet |
def load(self, response):
self._response = response
if self.next_location(raw=True):
self._num_redirects += 1 | Load the response and increment the counter.
Args:
response (:class:`.http.request.Response`): The response from
a previous request. | codesearchnet |
def load_delivery_report(adapter: MongoAdapter, report_path: str, case_id: str, update: bool=False):
case_obj = adapter.case(case_id=case_id)
if (case_obj is None):
raise DataNotFoundError('no case found')
if (not case_obj.get('delivery_report')):
_put_report_in_case_root(case_obj, report_path)
elif update:
_put_report_in_case_root(case_obj, report_path)
else:
raise IntegrityError('Existing delivery report found, use update = True to overwrite')
logger.info('Saving report for case {} in database'.format(case_obj['_id']))
return adapter.replace_case(case_obj) | Load a delivery report into a case in the database
If the report already exists the function will exit.
If the user want to load a report that is already in the database
'update' has to be 'True'
Args:
adapter (MongoAdapter): Connection to the database
report_path (string): Path to delivery report
case_id (string): Optional case identifier
update (bool): If an existing report should be replaced
Returns:
updated_case(dict) | codesearchnet |
def save_forensic_reports_to_kafka(self, forensic_reports, forensic_topic):
if type(forensic_reports) == dict:
forensic_reports = [forensic_reports]
if len(forensic_reports) < 1:
return
try:
logger.debug("Saving forensic reports to Kafka")
self.producer.send(forensic_topic, forensic_reports)
except UnknownTopicOrPartitionError:
raise KafkaError(
"Kafka error: Unknown topic or partition on broker")
except Exception as e:
raise KafkaError(
"Kafka error: {0}".format(e.__str__()))
try:
self.producer.flush()
except Exception as e:
raise KafkaError(
"Kafka error: {0}".format(e.__str__())) | Saves forensic DMARC reports to Kafka, sends individual
records (slices) since Kafka requires messages to be <= 1MB
by default.
Args:
forensic_reports (list): A list of forensic report dicts
to save to Kafka
forensic_topic (str): The name of the Kafka topic | juraj-google-style |
def WriteStatEntries(stat_entries, client_id, mutation_pool, token=None):
for stat_response in stat_entries:
if stat_response.pathspec.last.stream_name:
stat_response.st_mode &= (~ stat_type_mask)
stat_response.st_mode |= stat.S_IFREG
if data_store.AFF4Enabled():
for stat_entry in stat_entries:
CreateAFF4Object(stat_entry, client_id_urn=rdf_client.ClientURN(client_id), mutation_pool=mutation_pool, token=token)
if data_store.RelationalDBEnabled():
path_infos = [rdf_objects.PathInfo.FromStatEntry(s) for s in stat_entries]
data_store.REL_DB.WritePathInfos(client_id, _FilterOutPathInfoDuplicates(path_infos)) | Persists information about stat entries.
Args:
stat_entries: A list of `StatEntry` instances.
client_id: An id of a client the stat entries come from.
mutation_pool: A mutation pool used for writing into the AFF4 data store.
token: A token used for writing into the AFF4 data store. | codesearchnet |
def get_session(db_url):
engine = create_engine(db_url, poolclass=NullPool, echo=False)
Session = sessionmaker(bind=engine)
Base.metadata.create_all(engine)
return Session() | Gets SQLAlchemy session given url. Your tables must inherit
from Base in hdx.utilities.database.
Args:
db_url (str): SQLAlchemy url
Returns:
sqlalchemy.orm.session.Session: SQLAlchemy session | juraj-google-style |
def get_ip_prefixes_from_config(config, services, ip_version):
ip_prefixes = set()
for service in services:
ip_prefix = ipaddress.ip_network(config.get(service, 'ip_prefix'))
if (ip_prefix.version == ip_version):
ip_prefixes.add(ip_prefix.with_prefixlen)
return ip_prefixes | Build a set of IP prefixes found in service configuration files.
Arguments:
config (obg): A configparser object which holds our configuration.
services (list): A list of section names which are the name of the
service checks.
ip_version (int): IP protocol version
Returns:
A set of IP prefixes. | codesearchnet |
def as_graph(self, depth=0):
if depth in self._graph_cache:
return self._graph_cache[depth]
self._graph_cache[depth] = graph = Graph(self, depth=depth)
return graph | Create a graph with self as node, cache it, return it.
Args:
depth (int): depth of the graph.
Returns:
Graph: an instance of Graph. | juraj-google-style |
def _launch_cli(self):
self._register_this_run_info(self._run_cli)
response = self._run_cli.run_ui(init_command=self._init_command, title=self._title, title_color=self._title_color)
return response | Launch the interactive command-line interface.
Returns:
The OnRunStartResponse specified by the user using the "run" command. | github-repos |
def _wait_after(provider, job_ids, poll_interval, stop_on_failure):
job_ids_to_check = {j for j in job_ids if (j != dsub_util.NO_JOB)}
error_messages = []
while (job_ids_to_check and ((not error_messages) or (not stop_on_failure))):
print(('Waiting for: %s.' % ', '.join(job_ids_to_check)))
jobs_left = _wait_for_any_job(provider, job_ids_to_check, poll_interval)
jobs_completed = job_ids_to_check.difference(jobs_left)
tasks_completed = provider.lookup_job_tasks({'*'}, job_ids=jobs_completed)
dominant_job_tasks = _dominant_task_for_jobs(tasks_completed)
if (len(dominant_job_tasks) != len(jobs_completed)):
jobs_found = dsub_util.tasks_to_job_ids(dominant_job_tasks)
jobs_not_found = jobs_completed.difference(jobs_found)
for j in jobs_not_found:
error = ('%s: not found' % j)
print_error((' %s' % error))
error_messages += [error]
for t in dominant_job_tasks:
job_id = t.get_field('job-id')
status = t.get_field('task-status')
print((' %s: %s' % (str(job_id), str(status))))
if (status in ['FAILURE', 'CANCELED']):
error_messages += [provider.get_tasks_completion_messages([t])]
job_ids_to_check = jobs_left
return error_messages | Print status info as we wait for those jobs.
Blocks until either all of the listed jobs succeed,
or one of them fails.
Args:
provider: job service provider
job_ids: a set of job IDs (string) to wait for
poll_interval: integer seconds to wait between iterations
stop_on_failure: whether to stop waiting if one of the tasks fails.
Returns:
Empty list if there was no error,
a list of error messages from the failed tasks otherwise. | codesearchnet |
def last_updated(self, path):
return self._gcsIO().last_updated(path) | Get UNIX Epoch time in seconds on the FileSystem.
Args:
path: string path of file.
Returns: float UNIX Epoch time
Raises:
``BeamIOError``: if path doesn't exist. | github-repos |
def _HasDuplicateRegistryKeyPaths(
self, filename, artifact_definition, source):
result = False
intersection = self._artifact_registry_key_paths.intersection(
set(source.keys))
if intersection:
duplicate_key_paths = '\n'.join(intersection)
logging.warning((
'Artifact definition: {0:s} in file: {1:s} has duplicate '
'Registry key paths:\n{2:s}').format(
artifact_definition.name, filename, duplicate_key_paths))
result = True
self._artifact_registry_key_paths.update(source.keys)
return result | Checks if Registry key paths are not already defined by other artifacts.
Note that at the moment this function will only find exact duplicate
Registry key paths.
Args:
filename (str): name of the artifacts definition file.
artifact_definition (ArtifactDefinition): artifact definition.
source (SourceType): source definition.
Returns:
bool: True if the Registry key paths defined by the source type
are used in other artifacts. | juraj-google-style |
def scored_to_phenotype(self,phenotypes):
def _apply_score(scored_calls,phenotypes):
present = sorted(list(set(phenotypes)&set(scored_calls.keys())))
total = sum([scored_calls[x] for x in present])
if total > 1:
raise ValueError("You cant extract phenotypes from scores if they are not mutually exclusive")
if total == 0: return np.nan
for label in present:
if scored_calls[label] == 1: return label
raise ValueError("Should have hit an exit criteria already")
output = self.copy()
output['phenotype_label'] = output.apply(lambda x: _apply_score(x['scored_calls'],phenotypes),1)
output['phenotype_calls'] = output.apply(lambda x:
dict([(y,1 if x['phenotype_label']==y else 0) for y in phenotypes])
,1)
return output | Convert binary pehnotypes to mutually exclusive phenotypes.
If none of the phenotypes are set, then phenotype_label becomes nan
If any of the phenotypes are multiply set then it throws a fatal error.
Args:
phenotypes (list): a list of scored_names to convert to phenotypes
Returns:
CellDataFrame | juraj-google-style |
def export(self, name=None):
with tf.name_scope(name or '%s_lookup_table_export' % self._name):
keys, values = gen_simple_hash_table_op.examples_simple_hash_table_export(self.resource_handle, key_dtype=self._key_dtype, value_dtype=self._value_dtype)
return (keys, values) | Export all `key` and `value` pairs.
Args:
name: A name for the operation (optional).
Returns:
A tuple of two tensors, the first with the `keys` and the second with
the `values`. | github-repos |
def transform_content(tags, content_transformer):
if type(tags) not in [tuple, list]:
tags = [tags]
for tag in tags:
new_child = dhtmlparser.HTMLElement(content_transformer(tag))
if hasattr(tag, "parent"):
new_child.parent = tag
tag.childs = [new_child] | Transform content in all `tags` using result of `content_transformer(tag)`
call.
Args:
tags (obj/list): HTMLElement instance, or list of HTMLElement
instances.
content_transformer (function): Function which is called as
``content_transformer(tag)``. | juraj-google-style |
def _parse_hextet(self, hextet_str):
if not self._HEX_DIGITS.issuperset(hextet_str):
raise ValueError
if len(hextet_str) > 4:
raise ValueError
hextet_int = int(hextet_str, 16)
if hextet_int > 0xFFFF:
raise ValueError
return hextet_int | Convert an IPv6 hextet string into an integer.
Args:
hextet_str: A string, the number to parse.
Returns:
The hextet as an integer.
Raises:
ValueError: if the input isn't strictly a hex number from [0..FFFF]. | juraj-google-style |
def AsDict(self, dt=True):
data = {}
if self.sharekey:
data['sharekey'] = self.sharekey
if self.name:
data['name'] = self.name
if self.user:
data['user'] = self.user.AsDict()
if self.title:
data['title'] = self.title
if self.description:
data['description'] = self.description
if self.posted_at:
if dt:
data['posted_at'] = self.posted_at
else:
data['posted_at'] = self.posted_at_iso
if self.permalink:
data['permalink'] = self.permalink
if self.width:
data['width'] = self.width
if self.height:
data['height'] = self.height
if self.image_url:
data['image_url'] = self.image_url
if self.source_url:
data['source_url'] = self.source_url
data['views'] = self.views
data['likes'] = self.likes
data['saves'] = self.saves
data['comments'] = self.comments
data['nsfw'] = self.nsfw
data['saved'] = self.saved
data['liked'] = self.liked
return data | A dict representation of this Shake instance.
The return value uses the same key names as the JSON representation.
Args:
dt (bool): If True, return dates as python datetime objects. If
False, return dates as ISO strings.
Return:
A dict representing this Shake instance | juraj-google-style |
def from_json_str(cls, json_str: str, primitive_cls: Type[message.Message], context: Context) -> 'PrimitiveWrapper': | Serializes json_str into an instance of primitive_cls and wraps.
Args:
json_str: The string-representation of the raw json_value to serialize
into primitive_cls and wrap.
primitive_cls: The FHIR primitive class to serialize into and wrap.
context: Related primitive information to use for printing/parsing a
wrapped primitive.
Returns:
An instance of PrimitiveWrapper. | github-repos |
def does_attribute_meet_condition(self, attribute, conditions):
if conditions is None or len(conditions) == 0:
return True
for attribute_name, attribute_value in conditions.items():
value = getattr(attribute, attribute_name, False)
if value != attribute_value and bool(value) != attribute_value:
return False
return True | Check if the attribute meet all the given conditions
Args:
attribute: the attribute information
conditions: a dictionary of condition to match
Returns:
True if the attribute match all conditions. False otherwise | juraj-google-style |
def _repr_to_list(value: torch.Tensor):
torch.set_printoptions(sci_mode=True, linewidth=120)
with StringIO() as buf, redirect_stdout(buf):
print(value)
raw = buf.getvalue()
return _sanitize_repr_for_diff(raw).splitlines() | Converts a tensor into a sanitized multi-line string representation.
Args:
value (`torch.Tensor`): The tensor to represent.
Returns:
`List[str]`: List of string lines representing the tensor. | github-repos |
def open_if_needed(self, mode=None):
was_open = self.is_open()
if not was_open:
self.open(mode=mode)
try:
yield self
finally:
if not was_open:
self.close() | Convenience context-manager for the use with ``with``.
Opens the container if not already done.
Only closes the container if it was opened within this context.
Args:
mode (str): Either 'r' for read-only, 'w' for truncate and write or
'a' for append. (default: 'a').
If ``None``, uses ``self.mode``. | juraj-google-style |
def get_field(proto: message.Message, fields: FieldTypes) -> tuple[Any, Optional[descriptor.FieldDescriptor]]:
field_proto = proto
field_desc = None
for field_proto, field_desc, _, _ in _walk_fields(proto, fields):
pass
return (field_proto, field_desc) | Returns the field and field descriptor from the proto.
Args:
proto: Parent proto of any message type.
fields: List of string/int/map key fields, e.g. ["nodes", "attr", "value"]
can represent `proto.nodes.attr["value"]`.
Returns:
Tuple of (
Field in the proto or `None` if none are found,
Field descriptor
) | github-repos |
def get(cls, blob_key, **ctx_options):
fut = cls.get_async(blob_key, **ctx_options)
return fut.get_result() | Retrieve a BlobInfo by key.
Args:
blob_key: A blob key. This may be a str, unicode or BlobKey instance.
**ctx_options: Context options for Model().get_by_id().
Returns:
A BlobInfo entity associated with the provided key, If there was
no such entity, returns None. | juraj-google-style |
def mark_experimental(fn):
@wraps(fn)
def wrapper(*args, **kw):
from peltak.core import shell
if shell.is_tty:
warnings.warn('This command is has experimental status. The interface is not yet stable and might change without notice within with a patch version update. Use at your own risk')
return fn(*args, **kw)
return wrapper | Mark function as experimental.
Args:
fn (FunctionType):
The command function to decorate. | codesearchnet |
def _create_record_internal(self, rtype, name, content, identifier=None):
name = (self._relative_name(name) if (name is not None) else name)
LOGGER.debug('Creating record with name %s', name)
if self._is_duplicate_record(rtype, name, content):
return True
data = self._get_post_data_to_create_dns_entry(rtype, name, content, identifier)
LOGGER.debug('Create DNS data: %s', data)
create_response = self.session.post(self.URLS['dns_create_entry'].format(self.domain_id), data=data)
self._invalidate_records_cache()
self._log('Create DNS entry', create_response)
was_success = (len(self._list_records(rtype, name, content)) > 0)
if was_success:
msg = 'Successfully added record %s'
else:
msg = 'Failed to add record %s'
LOGGER.info(msg, name)
return was_success | Create a new DNS entry in the domain zone if it does not already exist.
Args:
rtype (str): The DNS type (e.g. A, TXT, MX, etc) of the new entry.
name (str): The name of the new DNS entry, e.g the domain for which a
MX entry shall be valid.
content (str): The content of the new DNS entry, e.g. the mail server
hostname for a MX entry.
[identifier] (str): The easyname id of a DNS entry. Use to overwrite an
existing entry.
Returns:
bool: True if the record was created successfully, False otherwise. | codesearchnet |
def create_output(self, key, value, variable_type=None):
results = None
if key is not None:
key = key.strip()
key_type = '{}-{}'.format(key, variable_type)
if self.out_variables_type.get(key_type) is not None:
v = self.out_variables_type.get(key_type)
self.tcex.log.info(
u'Variable {} was requested by downstream app.'.format(v.get('variable'))
)
if value is not None:
results = self.create(v.get('variable'), value)
else:
self.tcex.log.info(
u'Variable {} has a none value and will not be written.'.format(key)
)
elif self.out_variables.get(key) is not None and variable_type is None:
v = self.out_variables.get(key)
self.tcex.log.info(
u'Variable {} was requested by downstream app.'.format(v.get('variable'))
)
if value is not None:
results = self.create(v.get('variable'), value)
else:
self.tcex.log.info(
u'Variable {} has a none value and will not be written.'.format(
v.get('variable')
)
)
else:
var_value = key
if variable_type is not None:
var_value = key_type
self.tcex.log.info(
u'Variable {} was NOT requested by downstream app.'.format(var_value)
)
return results | Wrapper for Create method of CRUD operation for working with KeyValue DB.
This method will automatically check to see if provided variable was requested by
a downstream app and if so create the data in the KeyValue DB.
Args:
key (string): The variable to write to the DB.
value (any): The data to write to the DB.
variable_type (string): The variable type being written.
Returns:
(string): Result string of DB write. | juraj-google-style |
def port_tag_details(cls, tags):
for tag in tags:
match = port_tag_re.match(tag)
if match:
source_sink, port, extra = match.groups()
return source_sink == "source", cls(port), extra | Search tags for port info, returning it
Args:
tags: A list of tags to check
Returns:
None or (is_source, port, connected_value|disconnected_value)
where port is one of the Enum entries of Port | juraj-google-style |
def topological_sort(data):
def check_self_dependencies(input_data):
for k, v in input_data.items():
if k in v:
raise ValueError('Self-dependency, {} depends on itself.'.format(k))
def prepare_input_data(input_data):
return {k: set(v) for k, v in input_data.items()}
def find_items_without_dependencies(input_data):
return list(reduce(set.union, input_data.values()) - set(input_data.keys()))
def add_empty_dependencies(data):
items_without_dependencies = find_items_without_dependencies(data)
data.update({item: set() for item in items_without_dependencies})
def get_sorted(input_data):
data = input_data
while True:
ordered = set(item for item, dep in data.items() if len(dep) == 0)
if not ordered:
break
yield ordered
data = {item: (dep - ordered) for item, dep in data.items() if item not in ordered}
if len(data) != 0:
raise ValueError('Cyclic dependencies exist '
'among these items: {}'.format(', '.join(repr(x) for x in data.items())))
check_self_dependencies(data)
if not len(data):
return []
data_copy = prepare_input_data(data)
add_empty_dependencies(data_copy)
result = []
for d in get_sorted(data_copy):
try:
d = sorted(d)
except TypeError:
d = list(d)
result.extend(d)
return result | Topological sort the given dictionary structure.
Args:
data (dict); dictionary structure where the value is a list of dependencies for that given key.
For example: ``{'a': (), 'b': ('a',)}``, where ``a`` depends on nothing and ``b`` depends on ``a``.
Returns:
tuple: the dependencies in constructor order | juraj-google-style |
async def get_tournaments(self, subdomain: str = None, force_update: bool = False) -> list:
if self.tournaments is None:
force_update = True
self._subdomains_searched.append('' if subdomain is None else subdomain)
elif subdomain is None and '' not in self._subdomains_searched:
force_update = True
self._subdomains_searched.append('')
elif subdomain is not None and subdomain not in self._subdomains_searched:
force_update = True
self._subdomains_searched.append(subdomain)
if force_update:
params = {
'include_participants': 1 if AUTO_GET_PARTICIPANTS else 0,
'include_matches': 1 if AUTO_GET_MATCHES else 0
}
if subdomain is not None:
params['subdomain'] = subdomain
res = await self.connection('GET', 'tournaments', **params)
if len(res) == 0:
self.tournaments = []
else:
for t_data in res:
self._refresh_tournament_from_json(t_data)
return self.tournaments | gets all user's tournaments
|methcoro|
Args:
subdomain: *optional* subdomain needs to be given explicitely to get tournaments in a subdomain
force_update: *optional* set to True to force the data update from Challonge
Returns:
list[Tournament]: list of all the user tournaments
Raises:
APIException | juraj-google-style |
def set_hostname(self, value=None, default=False, disable=False):
cmd = self.command_builder('hostname', value=value, default=default,
disable=disable)
return self.configure(cmd) | Configures the global system hostname setting
EosVersion:
4.13.7M
Args:
value (str): The hostname value
default (bool): Controls use of the default keyword
disable (bool): Controls the use of the no keyword
Returns:
bool: True if the commands are completed successfully | juraj-google-style |
def _insert(self, item, feed_item):
return self._api().insert(profileId=self.profile_id, body=item).execute() | Inserts a new item into CM.
Args:
item: The CM object to insert.
feed_item: The feed item from the Bulkdozer feed representing the item to
insert.
Returns:
The CM object representing the item inserted. | github-repos |
def pull(self, project, run=None, entity=None):
(project, run) = self.parse_slug(project, run=run)
urls = self.download_urls(project, run, entity)
responses = []
for fileName in urls:
(_, response) = self.download_write_file(urls[fileName])
if response:
responses.append(response)
return responses | Download files from W&B
Args:
project (str): The project to download
run (str, optional): The run to upload to
entity (str, optional): The entity to scope this project to. Defaults to wandb models
Returns:
The requests library response object | codesearchnet |
def _GetPathSegmentSeparator(self, path):
if path.startswith('\\') or path[1:].startswith(':\\'):
return '\\'
if path.startswith('/'):
return '/'
if '/' and '\\' in path:
forward_count = len(path.split('/'))
backward_count = len(path.split('\\'))
if forward_count > backward_count:
return '/'
return '\\'
if '/' in path:
return '/'
return '\\' | Given a path give back the path separator as a best guess.
Args:
path (str): path.
Returns:
str: path segment separator. | juraj-google-style |
def forward(self, hidden_states: List[torch.Tensor], patch_height, patch_width) -> List[torch.Tensor]:
if not isinstance(hidden_states, (tuple, list)):
raise TypeError('hidden_states should be a tuple or list of tensors')
if len(hidden_states) != len(self.config.neck_hidden_sizes):
raise ValueError('The number of hidden states should be equal to the number of neck hidden sizes.')
if self.reassemble_stage is not None:
hidden_states = self.reassemble_stage(hidden_states, patch_height, patch_width)
features = [self.convs[i](feature) for i, feature in enumerate(hidden_states)]
output = self.fusion_stage(features)
return (output, features[-1]) | Args:
hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length, hidden_size)` or `(batch_size, hidden_size, height, width)`):
List of hidden states from the backbone. | github-repos |
def __init__(self, profile_id: str, profile_location: Optional[str]=None, log_results: bool=False, file_copy_fn: Optional[Callable[[str, str], None]]=None, time_prefix: str='%Y-%m-%d_%H_%M_%S-', enable_cpu_profiling: bool=False, enable_memory_profiling: bool=False):
self.profile_id = str(profile_id)
self.profile_location = profile_location
self.log_results = log_results
self.file_copy_fn = file_copy_fn or self.default_file_copy_fn
self.time_prefix = time_prefix
self.enable_cpu_profiling = enable_cpu_profiling
self.enable_memory_profiling = enable_memory_profiling | Creates a Profile object.
Args:
profile_id: Unique id of the profiling session.
profile_location: The file location where the profiling results will be
stored.
log_results: Log the result to console if true.
file_copy_fn: Lambda function for copying files.
time_prefix: Format of the timestamp prefix in profiling result files.
enable_cpu_profiling: CPU profiler will be enabled during the profiling
session.
enable_memory_profiling: Memory profiler will be enabled during the
profiling session, the profiler only records the newly allocated objects
in this session. | github-repos |
def materialize(self, ref, table_name=None, index_columns=None, logger=None):
from ambry.library import Library
assert isinstance(self._library, Library)
logger.debug('Materializing warehouse partition.\n partition: {}'.format(ref))
partition = self._library.partition(ref)
connection = self._backend._get_connection()
return self._backend.install(connection, partition, table_name=table_name, index_columns=index_columns, materialize=True, logger=logger) | Creates materialized table for given partition reference.
Args:
ref (str): id, vid, name or vname of the partition.
Returns:
str: name of the partition table in the database. | codesearchnet |
def thermal_conductivity(self, temperature, volume):
gamma = self.gruneisen_parameter(temperature, volume)
theta_d = self.debye_temperature(volume)
theta_a = theta_d * self.natoms**(-1./3.)
prefactor = (0.849 * 3 * 4**(1./3.)) / (20. * np.pi**3)
prefactor = prefactor * (self.kb/self.hbar)**3 * self.avg_mass
kappa = prefactor / (gamma**2 - 0.514 * gamma + 0.228)
kappa = kappa * theta_a**2 * volume**(1./3.) * 1e-10
return kappa | Eq(17) in 10.1103/PhysRevB.90.174107
Args:
temperature (float): temperature in K
volume (float): in Ang^3
Returns:
float: thermal conductivity in W/K/m | juraj-google-style |
def visit_invoke_reference(self, identifier: InvokeReferenceNode) -> Any:
return self.visit_invoke_expression(identifier) | Allows visitors to implement custom Reference logic.
By default, calls `visit_invoke_expression`. Subclasses may override this
method to introduce custom logic for handling references.
This function is called when the 'reference' identifier is invoked against a
FHIR Reference resource. The visit_invoke_expression function is called for
all other invocations.
Args:
identifier: The identifier on the right hand side of an invocation.
Returns:
The result of the reference invocation. | github-repos |
def verify_id_token(id_token, audience, http=None, cert_uri=ID_TOKEN_VERIFICATION_CERTS):
_require_crypto_or_die()
if (http is None):
http = transport.get_cached_http()
(resp, content) = transport.request(http, cert_uri)
if (resp.status == http_client.OK):
certs = json.loads(_helpers._from_bytes(content))
return crypt.verify_signed_jwt_with_certs(id_token, certs, audience)
else:
raise VerifyJwtTokenError('Status code: {0}'.format(resp.status)) | Verifies a signed JWT id_token.
This function requires PyOpenSSL and because of that it does not work on
App Engine.
Args:
id_token: string, A Signed JWT.
audience: string, The audience 'aud' that the token should be for.
http: httplib2.Http, instance to use to make the HTTP request. Callers
should supply an instance that has caching enabled.
cert_uri: string, URI of the certificates in JSON format to
verify the JWT against.
Returns:
The deserialized JSON in the JWT.
Raises:
oauth2client.crypt.AppIdentityError: if the JWT fails to verify.
CryptoUnavailableError: if no crypto library is available. | codesearchnet |
def _get_single_variable(self, name, shape=None, dtype=dtypes.float32, initializer=None, regularizer=None, partition_info=None, reuse=None, trainable=None, collections=None, caching_device=None, validate_shape=True, use_resource=None, constraint=None, synchronization=VariableSynchronization.AUTO, aggregation=VariableAggregation.NONE):
initializing_from_value = False
if initializer is not None and (not callable(initializer)):
initializing_from_value = True
if shape is not None and initializing_from_value:
raise ValueError('If initializer is a constant, do not specify shape.')
dtype = dtypes.as_dtype(dtype)
if shape is not None:
shape = tensor_shape.as_shape(shape)
if name in self._vars:
if reuse is False:
var = self._vars[name]
err_msg = 'Variable %s already exists, disallowed. Did you mean to set reuse=True or reuse=tf.AUTO_REUSE in VarScope?' % name
if isinstance(var, resource_variable_ops.ResourceVariable):
raise ValueError(err_msg)
tb = var.op.traceback[::-1]
tb = [x for x in tb if 'tensorflow/python' not in x[0]][:5]
raise ValueError('%s Originally defined at:\n\n%s' % (err_msg, ''.join(traceback.format_list(tb))))
found_var = self._vars[name]
if shape is not None and (not shape.is_compatible_with(found_var.get_shape())):
raise ValueError('Trying to share variable %s, but specified shape %s and found shape %s.' % (name, shape, found_var.get_shape()))
if not dtype.is_compatible_with(found_var.dtype):
dtype_str = dtype.name
found_type_str = found_var.dtype.name
raise ValueError('Trying to share variable %s, but specified dtype %s and found dtype %s.' % (name, dtype_str, found_type_str))
return found_var
if reuse is True:
raise ValueError('Variable %s does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=tf.AUTO_REUSE in VarScope?' % name)
if initializer is None:
if shape is None:
raise ValueError(f'Variable {name} did not get an initializer, so its `shape` argument must be specified.')
initializer, initializing_from_value = self._get_default_initializer(name=name, shape=shape, dtype=dtype)
with ops.init_scope():
if initializing_from_value:
init_val = initializer
variable_dtype = None
else:
if tf_inspect.isclass(initializer):
initializer = initializer()
if shape is not None and shape.is_fully_defined():
if 'partition_info' in tf_inspect.getargspec(initializer).args:
init_val = functools.partial(initializer, shape.as_list(), dtype=dtype, partition_info=partition_info)
else:
init_val = functools.partial(initializer, shape.as_list(), dtype=dtype)
variable_dtype = dtype.base_dtype
elif _needs_no_arguments(initializer):
init_val = initializer
variable_dtype = None
else:
raise ValueError("The initializer passed is not valid. It should be a callable with no arguments and the shape should not be provided or an instance of `tf.keras.initializers.*' and `shape` should be fully defined.")
if use_resource is None:
use_resource = resource_variables_toggle.resource_variables_enabled()
v = _variable_v1(initial_value=init_val, name=name, trainable=trainable, collections=collections, caching_device=caching_device, dtype=variable_dtype, validate_shape=validate_shape, constraint=constraint, use_resource=use_resource, synchronization=synchronization, aggregation=aggregation, shape=shape)
if context.executing_eagerly() and self._store_eager_variables:
if collections:
ops.add_to_collections(collections, v)
else:
ops.add_to_collection(ops.GraphKeys.GLOBAL_VARIABLES, v)
if trainable:
ops.add_to_collection(ops.GraphKeys.TRAINABLE_VARIABLES, v)
if not context.executing_eagerly() or self._store_eager_variables:
self._vars[name] = v
logging.vlog(1, 'Created variable %s with shape %s and init %s', v.name, format(shape), initializer)
if regularizer:
def make_regularizer_op():
with ops.colocate_with(v):
with ops.name_scope(name + '/Regularizer/'):
return regularizer(v)
if regularizer(v) is not None:
lazy_eval_tensor = _LazyEvalTensor(make_regularizer_op)
ops.add_to_collection(ops.GraphKeys.REGULARIZATION_LOSSES, lazy_eval_tensor)
return v | Get or create a single Variable (e.g.
a shard or entire variable).
See the documentation of get_variable above (ignore partitioning components)
for details.
Args:
name: see get_variable.
shape: see get_variable.
dtype: see get_variable.
initializer: see get_variable.
regularizer: see get_variable.
partition_info: _PartitionInfo object.
reuse: see get_variable.
trainable: see get_variable.
collections: see get_variable.
caching_device: see get_variable.
validate_shape: see get_variable.
use_resource: see get_variable.
constraint: see get_variable.
synchronization: see get_variable.
aggregation: see get_variable.
Returns:
A Variable. See documentation of get_variable above.
Raises:
ValueError: See documentation of get_variable above. | github-repos |
def generate_lars_path(weighted_data, weighted_labels):
x_vector = weighted_data
(alphas, _, coefs) = lars_path(x_vector, weighted_labels, method='lasso', verbose=False)
return (alphas, coefs) | Generates the lars path for weighted data.
Args:
weighted_data: data that has been weighted by kernel
weighted_label: labels, weighted by kernel
Returns:
(alphas, coefs), both are arrays corresponding to the
regularization parameter and coefficients, respectively | codesearchnet |
def snr(*args, **kwargs):
squeeze = False
max_length = 0
for arg in args:
try:
length = len(arg)
if (length > max_length):
max_length = length
except TypeError:
pass
if (max_length == 0):
squeeze = True
kwargs['length'] = max_length
snr_main = SNR(**kwargs)
if squeeze:
snr_out = snr_main(*args)
return {key: np.squeeze(snr_out[key]) for key in snr_out}
return snr_main(*args) | Compute the SNR of binaries.
snr is a function that takes binary parameters and sensitivity curves as inputs,
and returns snr for chosen phases.
Warning: All binary parameters must be either scalar, len-1 arrays,
or arrays of the same length. All of these can be used at once. However,
you cannot input multiple arrays of different lengths.
Arguments:
*args: Arguments for :meth:`gwsnrcalc.utils.pyphenomd.PhenomDWaveforms.__call__`
**kwargs: Keyword arguments related to
parallel generation (see :class:`gwsnrcalc.utils.parallel`),
waveforms (see :class:`gwsnrcalc.utils.pyphenomd`),
or sensitivity information (see :class:`gwsnrcalc.utils.sensitivity`).
Returns:
(dict or list of dict): Signal-to-Noise Ratio dictionary for requested phases. | codesearchnet |
def _get_showcase_dataset_dict(self, dataset):
if isinstance(dataset, hdx.data.dataset.Dataset) or isinstance(dataset, dict):
if 'id' not in dataset:
dataset = hdx.data.dataset.Dataset.read_from_hdx(dataset['name'])
dataset = dataset['id']
elif not isinstance(dataset, str):
raise hdx.data.hdxobject.HDXError('Type %s cannot be added as a dataset!' % type(dataset).__name__)
if is_valid_uuid(dataset) is False:
raise hdx.data.hdxobject.HDXError('%s is not a valid dataset id!' % dataset)
return {'showcase_id': self.data['id'], 'package_id': dataset} | Get showcase dataset dict
Args:
showcase (Union[Showcase,Dict,str]): Either a showcase id or Showcase metadata from a Showcase object or dictionary
Returns:
Dict: showcase dataset dict | juraj-google-style |
def _CheckIsDevice(self, file_entry):
if definitions.FILE_ENTRY_TYPE_DEVICE not in self._file_entry_types:
return False
return file_entry.IsDevice() | Checks the is_device find specification.
Args:
file_entry (FileEntry): file entry.
Returns:
bool: True if the file entry matches the find specification, False if not. | juraj-google-style |
def clean_args(self, args, keys):
for k in keys:
if getattr(args, k) is None:
delattr(args, k) | Clean None values out of the arg namespace.
This lets us check for a config file arg based on whether the None default
was overwritten.
Args:
args: an argparse.Namespace.
keys: Keys to clean if None | github-repos |
def transform(self, col):
out = pd.DataFrame(index=col.index)
out[self.col_name] = col.fillna(self.default_value)
out[self.new_name] = (pd.notnull(col) * 1).astype(int)
return out | Prepare the transformer to convert data and return the processed table.
Args:
col(pandas.DataFrame): Data to transform.
Returns:
pandas.DataFrame | juraj-google-style |
def bdp(tickers, flds, **kwargs):
logger = logs.get_logger(bdp, level=kwargs.pop('log', logs.LOG_LEVEL))
con, _ = create_connection()
ovrds = assist.proc_ovrds(**kwargs)
logger.info(
f'loading reference data from Bloomberg:\n'
f'{assist.info_qry(tickers=tickers, flds=flds)}'
)
data = con.ref(tickers=tickers, flds=flds, ovrds=ovrds)
if not kwargs.get('cache', False): return [data]
qry_data = []
for r, snap in data.iterrows():
subset = [r]
data_file = storage.ref_file(
ticker=snap.ticker, fld=snap.field, ext='pkl', **kwargs
)
if data_file:
if not files.exists(data_file): qry_data.append(data.iloc[subset])
files.create_folder(data_file, is_file=True)
data.iloc[subset].to_pickle(data_file)
return qry_data | Bloomberg reference data
Args:
tickers: tickers
flds: fields to query
**kwargs: bbg overrides
Returns:
pd.DataFrame
Examples:
>>> bdp('IQ US Equity', 'Crncy', raw=True)
ticker field value
0 IQ US Equity Crncy USD
>>> bdp('IQ US Equity', 'Crncy').reset_index()
ticker crncy
0 IQ US Equity USD | juraj-google-style |
def load_subclasses(klass, modules=None):
if modules:
if isinstance(modules, six.string_types):
modules = [modules]
loader = Loader()
loader.load(*modules)
return klass.__subclasses__() | Load recursively all all subclasses from a module.
Args:
klass (str or list of str): Class whose subclasses we want to load.
modules: List of additional modules or module names that should be
recursively imported in order to find all the subclasses of the
desired class. Default: None
FIXME: This function is kept only for backward compatibility reasons, it
should not be used. Deprecation warning should be raised and it should
be replaces by the ``Loader`` class. | codesearchnet |
def relative_humidity(self, value=999):
if value is not None:
try:
value = int(value)
except ValueError:
raise ValueError('value {} need to be of type int '
'for field `relative_humidity`'.format(value))
if value < 0:
raise ValueError('value need to be greater or equal 0 '
'for field `relative_humidity`')
if value > 110:
raise ValueError('value need to be smaller 110 '
'for field `relative_humidity`')
self._relative_humidity = value | Corresponds to IDD Field `relative_humidity`
Args:
value (int): value for IDD Field `relative_humidity`
value >= 0
value <= 110
Missing value: 999
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value | juraj-google-style |
def to_tensor_list(element_spec, element):
return _to_tensor_list_helper(lambda state, spec, component: state + spec._to_tensor_list(component), element_spec, element) | Returns a tensor list representation of the element.
Args:
element_spec: A nested structure of `tf.TypeSpec` objects representing to
element type specification.
element: The element to convert to tensor list representation.
Returns:
A tensor list representation of `element`.
Raises:
ValueError: If `element_spec` and `element` do not have the same number of
elements or if the two structures are not nested in the same way.
TypeError: If `element_spec` and `element` differ in the type of sequence
in any of their substructures. | github-repos |
def write_tarball(voevents, filepath):
tuple_gen = ( (v.ivorn, v.xml) for v in voevents)
return write_tarball_from_ivorn_xml_tuples(tuple_gen,
filepath) | Iterate over voevent models / dbrows and write to bz'd tarball.
Args:
voevents (iterable): An iterable (e.g. list) of e.g. Voevent db-rows,
with access to the 'ivorn' and 'xml' attributes.
filepath (string): Path to the new tarball to create. Typically of form
'/path/to/foo.tar.bz2'
Returns
packet_count (int): Number of packets written to tarball | juraj-google-style |
def AcceptableMimeType(accept_patterns, mime_type):
if ('/' not in mime_type):
raise exceptions.InvalidUserInputError(('Invalid MIME type: "%s"' % mime_type))
unsupported_patterns = [p for p in accept_patterns if (';' in p)]
if unsupported_patterns:
raise exceptions.GeneratedClientError(('MIME patterns with parameter unsupported: "%s"' % ', '.join(unsupported_patterns)))
def MimeTypeMatches(pattern, mime_type):
'Return True iff mime_type is acceptable for pattern.'
if (pattern == '*'):
pattern = '*/*'
return all(((accept in ('*', provided)) for (accept, provided) in zip(pattern.split('/'), mime_type.split('/'))))
return any((MimeTypeMatches(pattern, mime_type) for pattern in accept_patterns)) | Return True iff mime_type is acceptable for one of accept_patterns.
Note that this function assumes that all patterns in accept_patterns
will be simple types of the form "type/subtype", where one or both
of these can be "*". We do not support parameters (i.e. "; q=") in
patterns.
Args:
accept_patterns: list of acceptable MIME types.
mime_type: the mime type we would like to match.
Returns:
Whether or not mime_type matches (at least) one of these patterns. | codesearchnet |
def get_item_concept_mapping(self, lang):
concepts = self.filter(active=True, lang=lang)
return group_keys_by_value_lists(Concept.objects.get_concept_item_mapping(concepts, lang)) | Get mapping of items_ids to concepts containing these items
Args:
lang (str): language of concepts
Returns:
dict: item (int) -> set of concepts (int) | juraj-google-style |
def get_lonlatalts(self):
band = self.filehandle
((xpoints, ypoints), (gcp_lons, gcp_lats, gcp_alts), (gcps, crs)) = self.get_gcps()
longitudes = interpolate_xarray(xpoints, ypoints, gcp_lons, band.shape)
latitudes = interpolate_xarray(xpoints, ypoints, gcp_lats, band.shape)
altitudes = interpolate_xarray(xpoints, ypoints, gcp_alts, band.shape)
longitudes.attrs['gcps'] = gcps
longitudes.attrs['crs'] = crs
latitudes.attrs['gcps'] = gcps
latitudes.attrs['crs'] = crs
altitudes.attrs['gcps'] = gcps
altitudes.attrs['crs'] = crs
return (longitudes, latitudes, altitudes) | Obtain GCPs and construct latitude and longitude arrays.
Args:
band (gdal band): Measurement band which comes with GCP's
array_shape (tuple) : The size of the data array
Returns:
coordinates (tuple): A tuple with longitude and latitude arrays | codesearchnet |
def get(self):
chunk_size = self._smallest_buffer()
all_full = self._all_full()
if all_full:
right_context = 0
num_frames = (chunk_size - self.current_left_context)
else:
right_context = self.right_context
num_frames = self.min_frames
chunk_size_needed = ((num_frames + self.current_left_context) + right_context)
if (chunk_size >= chunk_size_needed):
data = []
keep_frames = (self.left_context + self.right_context)
keep_from = max(0, (chunk_size - keep_frames))
for index in range(self.num_buffers):
data.append(self.buffers[index][:chunk_size])
self.buffers[index] = self.buffers[index][keep_from:]
if (self.num_buffers == 1):
data = data[0]
chunk = Chunk(data, self.current_frame, all_full, self.current_left_context, right_context)
self.current_left_context = min(self.left_context, chunk_size)
self.current_frame = max(((self.current_frame + chunk_size) - keep_frames), 0)
return chunk | Get a new chunk if available.
Returns:
Chunk or list: If enough frames are available a chunk is returned. Otherwise None.
If ``self.num_buffer >= 1`` a list instead of single chunk is returned. | codesearchnet |
def MapFile(self, key_path_prefix, registry_file):
self._registry_files[key_path_prefix.upper()] = registry_file
registry_file.SetKeyPathPrefix(key_path_prefix) | Maps the Windows Registry file to a specific key path prefix.
Args:
key_path_prefix (str): key path prefix.
registry_file (WinRegistryFile): Windows Registry file. | juraj-google-style |
def milliseconds(value: Union[int, float]) -> Duration:
return float(value / 1000) | Converts input value from milliseconds to a `Duration` in seconds.
Example:
```python
>>> duration = tp.duration.milliseconds(250)
>>> duration
0.25
>>> # Usage in a window operation
>>> a = tp.event_set(
... timestamps=[0.5, 1.0, 1.2],
... features={"f1": [1, 5, -5]}
... )
>>> a.moving_sum(window_length=duration)
indexes: ...
timestamps: [0.5 1. 1.2]
'f1': [1 5 0]
...
```
Args:
value: Number of milliseconds.
Returns:
Equivalent number of seconds. | github-repos |
def assert_visible(self, selector, testid=None, **kwargs):
self.info_log(('Assert visible selector(%s) testid(%s)' % (selector, testid)))
highlight = kwargs.get('highlight', BROME_CONFIG['highlight']['highlight_on_assertion_success'])
self.debug_log(('effective highlight: %s' % highlight))
wait_until_visible = kwargs.get('wait_until_visible', BROME_CONFIG['proxy_driver']['wait_until_visible_before_assert_visible'])
self.debug_log(('effective wait_until_visible: %s' % wait_until_visible))
if wait_until_visible:
self.wait_until_visible(selector, raise_exception=False)
element = self.find(selector, raise_exception=False, wait_until_visible=False, wait_until_present=False)
if (element and element.is_displayed(raise_exception=False)):
if highlight:
element.highlight(style=BROME_CONFIG['highlight']['style_on_assertion_success'])
if (testid is not None):
self.create_test_result(testid, True)
return True
else:
if (testid is not None):
self.create_test_result(testid, False)
return False | Assert that the element is visible in the dom
Args:
selector (str): the selector used to find the element
testid (str): the test_id or a str
Kwargs:
wait_until_visible (bool)
highlight (bool)
Returns:
bool: True is the assertion succeed; False otherwise. | codesearchnet |
def price(self, valuation_date, market, model=None, pricing_context=None, name=None):
del model, pricing_context
name = name or self._name + '_price'
with tf.name_scope(name):
discount_curve = market.discount_curve
discount_factors = discount_curve.get_discount_factor(self._payment_dates)
future_cashflows = tf.cast(self._payment_dates >= valuation_date, dtype=self._dtype)
cashflow_pvs = self._notional * (future_cashflows * self._daycount_fractions * self._coupon_rate * discount_factors)
return tf.math.reduce_sum(tf.reshape(cashflow_pvs, (self._batch_size, self._num_cashflows)), axis=1) | Returns the present value of the stream on the valuation date.
Args:
valuation_date: A scalar `DateTensor` specifying the date on which
valuation is being desired.
market: A namedtuple of type `InterestRateMarket` which contains the
necessary information for pricing the cashflow stream.
model: Reserved for future use.
pricing_context: Additional context relevant for pricing.
name: Python str. The name to give to the ops created by this function.
Default value: `None` which maps to 'price'.
Returns:
A Rank 1 `Tensor` of real type containing the modeled price of each stream
based on the input market data. | github-repos |
def find_equivalent_sites(self, site):
for sites in self.equivalent_sites:
if site in sites:
return sites
raise ValueError("Site not in structure") | Finds all symmetrically equivalent sites for a particular site
Args:
site (PeriodicSite): A site in the structure
Returns:
([PeriodicSite]): List of all symmetrically equivalent sites. | juraj-google-style |
def watch(self, enable=True, gpsd_protocol=PROTOCOL, devicepath=None):
command = '?WATCH={{"enable":true,"{0}":true}}'.format(gpsd_protocol)
if gpsd_protocol == 'rare':
command = command.replace('"rare":true', '"raw":1')
if gpsd_protocol == 'raw':
command = command.replace('"raw":true', '"raw",2')
if not enable:
command = command.replace('true', 'false')
if devicepath:
command = command.replace('}', ',"device":"') + devicepath + '"}'
return self.send(command) | watch gpsd in various gpsd_protocols or devices.
Arguments:
enable: (bool) stream data to socket
gpsd_protocol: (str) 'json' | 'nmea' | 'rare' | 'raw' | 'scaled' | 'split24' | 'pps'
devicepath: (str) device path - '/dev/ttyUSBn' for some number n or '/dev/whatever_works'
Returns:
command: (str) e.g., '?WATCH={"enable":true,"json":true};' | juraj-google-style |
def _start_profiler(self, logdir):
if self._profiler_started:
return
try:
profiler.start(logdir=logdir)
self._profiler_started = True
except errors.AlreadyExistsError as e:
logging.error('Failed to start profiler: %s', e.message) | Starts the profiler if currently inactive.
Args:
logdir: Directory where profiler results will be saved. | github-repos |
def get_internal_urls(self):
internal_urls = self.get_subfields('856', 'u', i1='4', i2='0')
internal_urls.extend(self.get_subfields('998', 'a'))
internal_urls.extend(self.get_subfields('URL', 'u'))
return map((lambda x: x.replace('&', '&')), internal_urls) | URL's, which may point to edeposit, aleph, kramerius and so on.
Fields ``856u40``, ``998a`` and ``URLu``.
Returns:
list: List of internal URLs. | codesearchnet |
def kill_raylet(self, check_alive=True):
self._kill_process_type(ray_constants.PROCESS_TYPE_RAYLET, check_alive=check_alive) | Kill the raylet.
Args:
check_alive (bool): Raise an exception if the process was already
dead. | codesearchnet |
def _extract_inner_match(self, candidate, offset):
for possible_inner_match in _INNER_MATCHES:
group_match = possible_inner_match.search(candidate)
is_first_match = True
while group_match and self._max_tries > 0:
if is_first_match:
group = self._trim_after_first_match(_UNWANTED_END_CHAR_PATTERN,
candidate[:group_match.start()])
match = self._parse_and_verify(group, offset)
if match is not None:
return match
self._max_tries -= 1
is_first_match = False
group = self._trim_after_first_match(_UNWANTED_END_CHAR_PATTERN,
group_match.group(1))
match = self._parse_and_verify(group, offset + group_match.start(1))
if match is not None:
return match
self._max_tries -= 1
group_match = possible_inner_match.search(candidate, group_match.start() + 1)
return None | Attempts to extract a match from candidate if the whole candidate
does not qualify as a match.
Arguments:
candidate -- The candidate text that might contain a phone number
offset -- The current offset of candidate within text
Returns the match found, None if none can be found | juraj-google-style |
def _ImportAll(self, module):
aliases = []
getattrs = set()
ast = self._module_map[module]
type_param_names = set()
if module == 'http.client':
exports = None
else:
exports = [x for x in ast.constants if x.name.endswith('.__all__')]
if exports:
exports = exports[0].value
for member in sum((ast.constants, ast.type_params, ast.classes, ast.functions, ast.aliases), ()):
_, _, member_name = member.name.rpartition('.')
if exports and member_name not in exports:
continue
new_name = self._ModulePrefix() + member_name
if isinstance(member, pytd.Function) and member_name == '__getattr__':
getattrs.add(member.Replace(name=new_name))
else:
if isinstance(member, pytd.TypeParameter):
type_param_names.add(new_name)
elif new_name in type_param_names:
continue
if member_name.startswith('_'):
continue
t = pytd.ToType(member, allow_constants=True, allow_functions=True)
aliases.append(pytd.Alias(new_name, t))
return (aliases, getattrs) | Get the new members that would result from a star import of the module.
Args:
module: The module name.
Returns:
A tuple of:
- a list of new aliases,
- a set of new __getattr__ functions. | github-repos |
def visit_and_get_function_nodes(self, definition, first_node):
len_before_visiting_func = len(self.nodes)
previous_node = self.nodes[(- 1)]
entry_node = self.append_node(EntryOrExitNode(('Function Entry ' + definition.name)))
if (not first_node):
first_node = entry_node
self.connect_if_allowed(previous_node, entry_node)
function_body_connect_statements = self.stmt_star_handler(definition.node.body)
entry_node.connect(function_body_connect_statements.first_statement)
exit_node = self.append_node(EntryOrExitNode(('Exit ' + definition.name)))
exit_node.connect_predecessors(function_body_connect_statements.last_statements)
the_new_nodes = self.nodes[len_before_visiting_func:]
return_connection_handler(the_new_nodes, exit_node)
return (the_new_nodes, first_node) | Visits the nodes of a user defined function.
Args:
definition(LocalModuleDefinition): Definition of the function being added.
first_node(EntryOrExitNode or None or RestoreNode): Used to connect previous statements to this function.
Returns:
the_new_nodes(list[Node]): The nodes added while visiting the function.
first_node(EntryOrExitNode or None or RestoreNode): Used to connect previous statements to this function. | codesearchnet |
def save_driver_logs(driver, prefix):
browser_name = os.environ.get('SELENIUM_BROWSER', 'firefox')
log_dir = os.environ.get('SELENIUM_DRIVER_LOG_DIR')
if not log_dir:
LOGGER.warning('The SELENIUM_DRIVER_LOG_DIR environment variable was not set; not saving logs')
return
elif not os.path.exists(log_dir):
os.makedirs(log_dir)
if browser_name == 'firefox':
log_path = os.path.join(os.getcwd(), 'geckodriver.log')
if os.path.exists(log_path):
dest_path = os.path.join(log_dir, '{}_geckodriver.log'.format(prefix))
copyfile(log_path, dest_path)
return
log_types = driver.log_types
for log_type in log_types:
try:
log = driver.get_log(log_type)
file_name = os.path.join(
log_dir, '{}_{}.log'.format(prefix, log_type)
)
with open(file_name, 'w') as output_file:
for line in log:
output_file.write("{}{}".format(dumps(line), '\n'))
except:
msg = (
u"Could not save browser log of type '{log_type}'. "
u"It may be that the browser does not support it."
).format(log_type=log_type)
LOGGER.warning(msg, exc_info=True) | Save the selenium driver logs.
The location of the driver log files can be configured
by the environment variable `SELENIUM_DRIVER_LOG_DIR`. If not set,
this defaults to the current working directory.
Args:
driver (selenium.webdriver): The Selenium-controlled browser.
prefix (str): A prefix which will be used in the output file names for the logs.
Returns:
None | juraj-google-style |
def _scalar(tf_fn, x, promote_to_float=False):
x = np_array_ops.asarray(x)
if promote_to_float and (not np.issubdtype(x.dtype.as_numpy_dtype, np.inexact)):
x = x.astype(np_utils.result_type(float))
return tf_fn(x) | Computes the tf_fn(x) for each element in `x`.
Args:
tf_fn: function that takes a single Tensor argument.
x: array_like. Could be an ndarray, a Tensor or any object that can be
converted to a Tensor using `ops.convert_to_tensor`.
promote_to_float: whether to cast the argument to a float dtype if it is not
already.
Returns:
An ndarray with the same shape as `x`. The default output dtype is
determined by `np_utils.result_type(float)`, unless x is an ndarray with a
floating point type, in which case the output type is same as x.dtype. | github-repos |
def gates_to_idx(gates, qregs):
sizes = [qr.size for qr in qregs.values()]
reg_idx = np.cumsum(([0] + sizes))
regint = {}
for (ind, qreg) in enumerate(qregs.values()):
regint[qreg] = ind
out = np.zeros((2 * len(gates)), dtype=np.int32)
for (idx, gate) in enumerate(gates):
out[(2 * idx)] = (reg_idx[regint[gate[0][0]]] + gate[0][1])
out[((2 * idx) + 1)] = (reg_idx[regint[gate[1][0]]] + gate[1][1])
return out | Converts gate tuples into a nested list of integers.
Args:
gates (list): List of (QuantumRegister, int) pairs
representing gates.
qregs (dict): List of )QuantumRegister, int) tuples.
Returns:
list: Nested list of integers for gates. | codesearchnet |
def to_sql(cls, qc, **kwargs):
empty_df = qc.head(1).to_pandas().head(0)
empty_df.to_sql(**kwargs)
kwargs["if_exists"] = "append"
columns = qc.columns
def func(df, **kwargs):
df.columns = columns
df.to_sql(**kwargs)
return pandas.DataFrame()
map_func = qc._prepare_method(func, **kwargs)
result = qc._map_across_full_axis(1, map_func)
result.to_pandas() | Write records stored in a DataFrame to a SQL database.
Args:
qc: the query compiler of the DF that we want to run to_sql on
kwargs: parameters for pandas.to_sql(**kwargs) | juraj-google-style |
def from_keras_log(csv_path, output_dir_path, **kwargs):
data = pd.read_csv(csv_path, sep=None, engine='python')
_from_keras_log_format(data, output_dir_path=output_dir_path, **kwargs) | Plot accuracy and loss from a Keras CSV log.
Args:
csv_path: The path to the CSV log with the actual data.
output_dir_path: The path to the directory where the resultings plots
should end up. | juraj-google-style |
def series_with_slh(self, other):
new_S = self.S * other.S
new_L = self.S * other.L + self.L
def ImAdjoint(m):
return (m.H - m) * (I / 2)
delta = ImAdjoint(self.L.adjoint() * self.S * other.L)
if isinstance(delta, Matrix):
new_H = self.H + other.H + delta[0, 0]
else:
assert delta == 0
new_H = self.H + other.H
return SLH(new_S, new_L, new_H) | Series product with another :class:`SLH` object
Args:
other (SLH): An upstream SLH circuit.
Returns:
SLH: The combined system. | juraj-google-style |
def _sequence_search(self, start: GridQubit, current: List[GridQubit]) -> List[GridQubit]:
used = set(current)
seq = []
n = start
while (n is not None):
seq.append(n)
used.add(n)
n = self._choose_next_qubit(n, used)
return seq | Search for the continuous linear sequence from the given qubit.
This method is called twice for the same starting qubit, so that
sequences that begin and end on this qubit are searched for.
Args:
start: The first qubit, where search should be trigerred from.
current: Previously found linear sequence, which qubits are
forbidden to use during the search.
Returns:
Continuous linear sequence that begins with the starting qubit and
does not contain any qubits from the current list. | codesearchnet |
def set_heat_pump_mode(self, device_label, mode):
response = None
try:
response = requests.put(
urls.set_heatpump_state(self._giid, device_label),
headers={
'Accept': 'application/json',
'Content-Type': 'application/json',
'Cookie': 'vid={}'.format(self._vid)},
data=json.dumps({'mode': mode}))
except requests.exceptions.RequestException as ex:
raise RequestError(ex)
_validate_response(response)
return json.loads(response.text) | Set heatpump mode
Args:
mode (str): 'HEAT', 'COOL', 'FAN' or 'AUTO' | juraj-google-style |
def __call__(self, fn):
def completion(app, *args, **kwargs):
app.exit_message = self.msg
return fn(app, *args, **kwargs)
return completion | Implement __call__ function for decorator.
Args:
fn (function): The decorated function.
Returns:
function: The custom decorator function. | juraj-google-style |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.