code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def _process_celeba_config_file(self, file_path): with tf.io.gfile.GFile(file_path) as f: data_raw = f.read() lines = data_raw.split('\n') keys = lines[1].strip().split() values = {} for line in lines[2:(- 1)]: row_values = line.strip().split() values[row_values[0]] = [int(v) for v in row_values[1:]] return (keys, values)
Unpack the celeba config file. The file starts with the number of lines, and a header. Afterwards, there is a configuration for each file: one per line. Args: file_path: Path to the file with the configuration. Returns: keys: names of the attributes values: map from the file name to the list of attribute values for this file.
codesearchnet
def validate_level_indexes(num_levels, v_level_indexes, h_level_indexes): if (num_levels < 1): raise ValueError('num_levels {} is less than one'.format(num_levels)) all_levels = SortedFrozenSet(range(num_levels)) if ((h_level_indexes is None) and (v_level_indexes is None)): v_level_indexes = range(0, num_levels, 2) h_level_indexes = range(1, num_levels, 2) h_level_set = SortedFrozenSet(h_level_indexes) v_level_set = SortedFrozenSet(v_level_indexes) if (h_level_indexes is None): h_level_indexes = (all_levels - v_level_set) if (v_level_indexes is None): v_level_indexes = (all_levels - h_level_set) if (len(h_level_indexes) != len(h_level_set)): raise ValueError('h_level_indexes contains duplicate values') if (h_level_set and ((h_level_set[0] < 0) or (h_level_set[(- 1)] >= num_levels))): raise ValueError('h_level_indexes contains out of range values') if (len(v_level_indexes) != len(v_level_set)): raise ValueError('v_level_indexes contains duplicate values') if (v_level_set and ((v_level_set[0] < 0) or (v_level_set[(- 1)] >= num_levels))): raise ValueError('v_level_indexes contains out of range values') unmentioned_levels = ((all_levels - v_level_set) - h_level_set) if (len(unmentioned_levels) > 0): raise ValueError('v_level_indexes and h_level_indexes do not together include levels {}'.format(', '.join(map(str, unmentioned_levels)))) if (not h_level_set.isdisjoint(v_level_set)): raise ValueError('h_level_indexes and v_level_indexes are not disjoint') v_level_indexes = list(v_level_indexes) h_level_indexes = list(h_level_indexes) return (v_level_indexes, h_level_indexes)
Ensure that v_level_indexes and h_level_indexes are consistent. Args: num_levels: The number of levels of keys in the data structure being tabulated. v_level_indexes: A sequence of level indexes between zero and num_levels for the vertical axis, or None. h_level_indexes: A sequence of level indexes between zero and num_levels for for the horizontal axis, or None. Returns: A 2-tuple containing v_level_indexes and h_level_indexes sequences. Raises: ValueError: If v_level_indexes contains duplicate values. ValueError: If h_level_indexes contains duplicate values. ValueError: If v_level_indexes contains out of range values. ValueError: If h_level_indexes contains out of range values. ValueError: If taken together v_level_indexes and h_level_indexes do not include all levels from zero to up to, but not including num_levels. ValueError: If v_level_indexes and h_level_indexes have items in common.
codesearchnet
def gradient_summaries(grad_vars, groups=None, scope='gradients'): groups = groups or {r'all': r'.*'} grouped = collections.defaultdict(list) for grad, var in grad_vars: if grad is None: continue for name, pattern in groups.items(): if re.match(pattern, var.name): name = re.sub(pattern, name, var.name) grouped[name].append(grad) for name in groups: if name not in grouped: tf.logging.warn("No variables matching '{}' group.".format(name)) summaries = [] for name, grads in grouped.items(): grads = [tf.reshape(grad, [-1]) for grad in grads] grads = tf.concat(grads, 0) summaries.append(tf.summary.histogram(scope + '/' + name, grads)) return tf.summary.merge(summaries)
Create histogram summaries of the gradient. Summaries can be grouped via regexes matching variables names. Args: grad_vars: List of (gradient, variable) tuples as returned by optimizers. groups: Mapping of name to regex for grouping summaries. scope: Name scope for this operation. Returns: Summary tensor.
juraj-google-style
def parse_hgnc_line(line, header): hgnc_gene = {} line = line.rstrip().split('\t') raw_info = dict(zip(header, line)) if 'Withdrawn' in raw_info['status']: return hgnc_gene hgnc_symbol = raw_info['symbol'] hgnc_gene['hgnc_symbol'] = hgnc_symbol hgnc_gene['hgnc_id'] = int(raw_info['hgnc_id'].split(':')[-1]) hgnc_gene['description'] = raw_info['name'] aliases = set([hgnc_symbol, hgnc_symbol.upper()]) previous_names = raw_info['prev_symbol'] if previous_names: for alias in previous_names.strip('"').split('|'): aliases.add(alias) alias_symbols = raw_info['alias_symbol'] if alias_symbols: for alias in alias_symbols.strip('"').split('|'): aliases.add(alias) hgnc_gene['previous_symbols'] = list(aliases) hgnc_gene['ensembl_gene_id'] = raw_info.get('ensembl_gene_id') omim_id = raw_info.get('omim_id') if omim_id: hgnc_gene['omim_id'] = int(omim_id.strip('"').split('|')[0]) else: hgnc_gene['omim_id'] = None entrez_id = hgnc_gene['entrez_id'] = raw_info.get('entrez_id') if entrez_id: hgnc_gene['entrez_id'] = int(entrez_id) else: hgnc_gene['entrez_id'] = None ref_seq = raw_info.get('refseq_accession') if ref_seq: hgnc_gene['ref_seq'] = ref_seq.strip('"').split('|') else: hgnc_gene['ref_seq'] = [] uniprot_ids = raw_info.get('uniprot_ids') if uniprot_ids: hgnc_gene['uniprot_ids'] = uniprot_ids.strip('""').split('|') else: hgnc_gene['uniprot_ids'] = [] ucsc_id = raw_info.get('ucsc_id') if ucsc_id: hgnc_gene['ucsc_id'] = ucsc_id else: hgnc_gene['ucsc_id'] = None vega_id = raw_info.get('vega_id') if vega_id: hgnc_gene['vega_id'] = vega_id else: hgnc_gene['vega_id'] = None return hgnc_gene
Parse an hgnc formated line Args: line(list): A list with hgnc gene info header(list): A list with the header info Returns: hgnc_info(dict): A dictionary with the relevant info
juraj-google-style
def recompute_grad(fn): @functools.wraps(fn) def wrapped(*args): return _recompute_grad(fn, args) return wrapped
Decorator that recomputes the function on the backwards pass. Args: fn: a function that takes Tensors (all as positional arguments) and returns a tuple of Tensors. Returns: A wrapped fn that is identical to fn when called, but its activations will be discarded and recomputed on the backwards pass (i.e. on a call to tf.gradients).
codesearchnet
def make_qs(n, m=None): try: import sympy except ImportError: raise ImportError("This function requires sympy. Please install it.") if m is None: syms = sympy.symbols(" ".join(f"q{i}" for i in range(n))) if isinstance(syms, tuple): return syms else: return (syms,) syms = sympy.symbols(" ".join(f"q{i}" for i in range(n, m))) if isinstance(syms, tuple): return syms else: return (syms,)
Make sympy symbols q0, q1, ... Args: n(int), m(int, optional): If specified both n and m, returns [qn, q(n+1), ..., qm], Only n is specified, returns[q0, q1, ..., qn]. Return: tuple(Symbol): Tuple of sympy symbols.
juraj-google-style
def CheckFile(self, filename): result = True artifact_reader = reader.YamlArtifactsReader() try: for artifact_definition in artifact_reader.ReadFile(filename): try: self._artifact_registry.RegisterDefinition(artifact_definition) except KeyError: logging.warning( 'Duplicate artifact definition: {0:s} in file: {1:s}'.format( artifact_definition.name, filename)) result = False artifact_definition_supports_macos = ( definitions.SUPPORTED_OS_DARWIN in ( artifact_definition.supported_os)) artifact_definition_supports_windows = ( definitions.SUPPORTED_OS_WINDOWS in ( artifact_definition.supported_os)) for source in artifact_definition.sources: if source.type_indicator in ( definitions.TYPE_INDICATOR_FILE, definitions.TYPE_INDICATOR_PATH): if (definitions.SUPPORTED_OS_DARWIN in source.supported_os or ( artifact_definition_supports_macos and not source.supported_os)): if not self._CheckMacOSPaths( filename, artifact_definition, source, source.paths): result = False elif (artifact_definition_supports_windows or definitions.SUPPORTED_OS_WINDOWS in source.supported_os): for path in source.paths: if not self._CheckWindowsPath( filename, artifact_definition, source, path): result = False elif source.type_indicator == ( definitions.TYPE_INDICATOR_WINDOWS_REGISTRY_KEY): if (filename != self.LEGACY_PATH and self._HasDuplicateRegistryKeyPaths( filename, artifact_definition, source)): result = False for key_path in source.keys: if not self._CheckWindowsRegistryKeyPath( filename, artifact_definition, key_path): result = False elif source.type_indicator == ( definitions.TYPE_INDICATOR_WINDOWS_REGISTRY_VALUE): for key_value_pair in source.key_value_pairs: if not self._CheckWindowsRegistryKeyPath( filename, artifact_definition, key_value_pair['key']): result = False except errors.FormatError as exception: logging.warning( 'Unable to validate file: {0:s} with error: {1!s}'.format( filename, exception)) result = False return result
Validates the artifacts definition in a specific file. Args: filename (str): name of the artifacts definition file. Returns: bool: True if the file contains valid artifacts definitions.
juraj-google-style
def _AddAttribute(self, attribute): if (attribute.identifier in self._attributes): raise KeyError('Volume attribute object already set for volume attribute identifier: {0:s}.'.format(attribute.identifier)) self._attributes[attribute.identifier] = attribute
Adds an attribute. Args: attribute (VolumeAttribute): a volume attribute. Raises: KeyError: if volume attribute is already set for the corresponding volume attribute identifier.
codesearchnet
def set_colourtemp(self, colourtemp): if (not (0 <= colourtemp <= 255)): raise ValueError('The colour temperature needs to be between 0 and 255.') payload = self.generate_payload(SET, {self.DPS_INDEX_COLOURTEMP: colourtemp}) data = self._send_receive(payload) return data
Set the colour temperature of an rgb bulb. Args: colourtemp(int): Value for the colour temperature (0-255).
codesearchnet
def _remove_one_redundant_stack_unstack(in_graph_def): name_to_input_name, name_to_node, name_to_seq_num = _extract_graph_summary(in_graph_def) del name_to_seq_num do_generic_pack_unpack = True out = _graph_pb2.GraphDef() out.library.CopyFrom(in_graph_def.library) out.versions.CopyFrom(in_graph_def.versions) for n in in_graph_def.node: node_name = _tensor_name_base(n.name) if not node_name.startswith('OpHintStack') and (not n.op.startswith('Pack')): continue next_to_visit = [node_name] visited = set() unpack_nodes = set() pack_node = node_name matches_pattern = True is_hint_created_stack = False while next_to_visit: current_node_name = next_to_visit[0] visited.add(current_node_name) del next_to_visit[0] node = name_to_node[current_node_name] is_op_hint_stack = node.name.startswith('OpHintStack') is_op_hint_unstack = node.name.startswith('OpHintUnstack') if node.op == 'Identity' or is_op_hint_stack or (do_generic_pack_unpack and node.op == 'Pack'): is_hint_created_stack |= is_op_hint_stack next_to_visit += [input_node for input_node in name_to_input_name[current_node_name] if input_node not in visited] elif is_op_hint_unstack or (do_generic_pack_unpack and node.op == 'Unpack'): unpack_nodes.add(node.name) is_hint_created_stack &= is_op_hint_unstack else: matches_pattern = False break visited.add(node.name) if matches_pattern and len(unpack_nodes) == 1: pack_node = node_name no_external_dependency = True for other_n in in_graph_def.node: if other_n.name in visited: continue for input_tensor in name_to_input_name[other_n.name]: input_op = _tensor_name_base(input_tensor) if input_op in visited and input_op != pack_node: no_external_dependency = False if is_hint_created_stack or no_external_dependency: end = unpack_nodes.pop() end_input = name_to_node[end].input[0] for other_n in in_graph_def.node: node_name = _tensor_name_base(other_n.name) if node_name not in visited: new_node = _copy.deepcopy(other_n) new_node.input[:] = [end_input if stripped == pack_node else non_stripped for stripped, non_stripped in zip(name_to_input_name[node_name], new_node.input[:])] out.node.extend([new_node]) return (out, True) return (in_graph_def, False)
Removes a stack->unstack pattern from in_graph_def in a returned graph. Args: in_graph_def: Graph def to use as input. Returns: Simplified tuple (graph_def, changed_something) where changed_something is true if anything was done.
github-repos
def __init__(self, value_type, value): self.value_type = value_type self.value = value_type(value)
Args: value_type: Type of the static value value: Static value
github-repos
def scatter(indices, values, shape): if any_symbolic_tensors((indices, values)): return Scatter(shape=shape).symbolic_call(indices, values) return backend.core.scatter(indices, values, shape)
Returns a tensor of shape `shape` where `indices` are set to `values`. At a high level, this operation does `zeros[indices] = updates` and returns the output. It is equivalent to: ```python zeros = keras.ops.zeros(shape) output = keras.ops.scatter_update(zeros, indices, values) ``` Args: indices: A tensor or list/tuple specifying indices for the values in `values`. values: A tensor, the values to be set at `indices`. shape: Shape of the output tensor. Example: >>> indices = [[0, 1], [1, 1]] >>> values = np.array([1., 1.]) >>> keras.ops.scatter(indices, values, shape=(2, 2)) array([[0., 1.], [0., 1.]])
github-repos
def __init__( self, processing_configuration, enable_sigsegv_handler=False, **kwargs): super(MultiProcessBaseProcess, self).__init__(**kwargs) self._debug_output = False self._enable_sigsegv_handler = enable_sigsegv_handler self._guppy_memory_profiler = None self._log_filename = None self._memory_profiler = None self._original_sigsegv_handler = None self._pid = None self._processing_configuration = processing_configuration self._process_information = None self._processing_profiler = None self._quiet_mode = False self._rpc_server = None self._serializers_profiler = None self._status_is_running = False self._storage_profiler = None self._tasks_profiler = None if self._processing_configuration: self._debug_output = self._processing_configuration.debug_output if processing_configuration.log_filename: log_path = os.path.dirname(self._processing_configuration.log_filename) log_filename = os.path.basename( self._processing_configuration.log_filename) log_filename = '{0:s}_{1:s}'.format(self._name, log_filename) self._log_filename = os.path.join(log_path, log_filename) self.rpc_port = multiprocessing.Value('I', 0)
Initializes a process. Args: processing_configuration (ProcessingConfiguration): processing configuration. enable_sigsegv_handler (Optional[bool]): True if the SIGSEGV handler should be enabled. kwargs (dict[str,object]): keyword arguments to pass to multiprocessing.Process.
juraj-google-style
def learn(self, state_arr, limit=1000): while self.t <= limit: next_action_arr = self.extract_possible_actions(state_arr) predicted_q_arr = self.__function_approximator.inference_q(next_action_arr) reward_value_arr = np.empty((next_action_arr.shape[0], 1)) next_max_q_arr = np.empty((next_action_arr.shape[0], 1)) for i in range(reward_value_arr.shape[0]): reward_value_arr[i] = self.observe_reward_value(state_arr, next_action_arr[i]) next_next_action_arr = self.extract_possible_actions(next_action_arr[i]) next_max_q_arr[i] = self.__function_approximator.inference_q(next_next_action_arr).max() action_arr, predicted_q = self.select_action(next_action_arr, predicted_q_arr) real_q_arr = self.update_q( predicted_q_arr, reward_value_arr, next_max_q_arr ) real_q = real_q_arr[np.where(predicted_q_arr == predicted_q)[0][0]] if self.__q_logs_arr.shape[0] > 0: self.__q_logs_arr = np.r_[ self.__q_logs_arr, np.array([predicted_q, real_q]).reshape(1, 2) ] else: self.__q_logs_arr = np.array([predicted_q, real_q]).reshape(1, 2) self.learn_q(predicted_q_arr, real_q_arr) state_arr = self.update_state(state_arr, action_arr) self.t += 1 end_flag = self.check_the_end_flag(state_arr) if end_flag is True: break
Learning and searching the optimal solution. Args: state_arr: `np.ndarray` of initial state. limit: The maximum number of iterative updates based on value iteration algorithms.
juraj-google-style
def __init__(self, group_key_start=1): self._group_key = group_key_start self._instance_key_table = {} self._lock = threading.Lock() self._known_groups = {}
Initializes the object. Args: group_key_start: the starting integer of group key.
github-repos
def _serialize_tensor_like_io(value, debug_path: Optional[str]=None, use_repr: bool=True, path_to_value: Optional[str]=None): torch.set_printoptions(sci_mode=True) if use_repr: value_out = _repr_to_list(value) elif path_to_value: if not path_to_value.endswith('.safetensors'): path_to_value += '.safetensors' filepath = os.path.join(debug_path, path_to_value) if debug_path else path_to_value save_file({'data': value.contiguous().detach().cpu()}, filepath) value_out = f'./{path_to_value}' else: raise ValueError(f'use_repr={use_repr!r} and path_to_value={path_to_value!r} cannot both be falsy.') out = {'shape': repr(value.shape), 'dtype': repr(value.dtype), 'value': value_out} if value.dtype in {torch.float16, torch.float32, torch.bfloat16}: out.update({'mean': _sanitize_repr_for_diff(repr(value.mean())), 'std': _sanitize_repr_for_diff(repr(value.std())), 'min': _sanitize_repr_for_diff(repr(value.min())), 'max': _sanitize_repr_for_diff(repr(value.max()))}) return out
Converts Tensors and DTensors to a JSON-serializable dictionary representation. Args: value: Any Python object, often including torch Tensors, lists, dicts, etc. debug_path (`str`, *optional*, defaults to `None`): Directory to dump debug JSON and SafeTensors files. use_repr (bool, *optional*, defaults to `True`): Whether to save a `repr()`-ized version of the tensor as the `value` property in the asscoiated FULL_TENSORS.json file, or to store the full tensors in separate SafeTensors file and store the relative path to that file in the `value` property in the dictionary. path_to_value (`str`, *optional*, defaults to `None`): The file name for the SafeTensors file holding the full tensor value if `use_repr=False`. Returns: A nested Python structure (list, dict, or sanitized string) that is safe to json.dump.
github-repos
def _QueryHash(self, nsrl_socket, digest): try: query = 'QUERY {0:s}\n'.format(digest).encode('ascii') except UnicodeDecodeError: logger.error('Unable to encode digest: {0!s} to ASCII.'.format(digest)) return False response = None try: nsrl_socket.sendall(query) response = nsrl_socket.recv(self._RECEIVE_BUFFER_SIZE) except socket.error as exception: logger.error('Unable to query nsrlsvr with error: {0!s}.'.format( exception)) if not response: return False response = response.strip() return response == b'OK 1'
Queries nsrlsvr for a specific hash. Args: nsrl_socket (socket._socketobject): socket of connection to nsrlsvr. digest (str): hash to look up. Returns: bool: True if the hash was found, False if not or None on error.
juraj-google-style
def __init__(self, *args, **kwargs): super(JLinkDeviceInfo, self).__init__(*args, **kwargs) self.SizeofStruct = ctypes.sizeof(self)
Initializes the instance. Populates the ``.SizeofStruct`` parameter to the size of the instance. Args: self (JLinkDeviceInfo): the ``JLinkDeviceInfo`` instance args: list of arguments kwargs: key-word arguments dictionary Returns: ``None``
juraj-google-style
def open_channel_url(channel, staging=False): return OPEN_CHANNEL_URL.format(domain=DOMAIN, channel_id=channel, access='staging' if staging or STAGE else 'edit')
open_channel_url: returns url to uploaded channel Args: channel (str): channel id of uploaded channel Returns: string url to open channel
juraj-google-style
def condition_details_has_owner(condition_details, owner): if 'subconditions' in condition_details: result = condition_details_has_owner(condition_details['subconditions'], owner) if result: return True elif isinstance(condition_details, list): for subcondition in condition_details: result = condition_details_has_owner(subcondition, owner) if result: return True else: if 'public_key' in condition_details \ and owner == condition_details['public_key']: return True return False
Check if the public_key of owner is in the condition details as an Ed25519Fulfillment.public_key Args: condition_details (dict): dict with condition details owner (str): base58 public key of owner Returns: bool: True if the public key is found in the condition details, False otherwise
juraj-google-style
def random( self ): j = np.searchsorted( self.cumulative_probabilities(), random.random() ) return self.jumps[ j ]
Select a jump at random with appropriate relative probabilities. Args: None Returns: (Jump): The randomly selected Jump.
juraj-google-style
def get_functions_overridden_by(self, function): candidates = [c.functions_not_inherited for c in self.inheritance] candidates = [candidate for sublist in candidates for candidate in sublist] return [f for f in candidates if f.full_name == function.full_name]
Return the list of functions overriden by the function Args: (core.Function) Returns: list(core.Function)
juraj-google-style
def pipe(engine, format, data, renderer=None, formatter=None, quiet=False): (cmd, _) = command(engine, format, None, renderer, formatter) (out, _) = run(cmd, input=data, capture_output=True, check=True, quiet=quiet) return out
Return ``data`` piped through Graphviz ``engine`` into ``format``. Args: engine: The layout commmand used for rendering (``'dot'``, ``'neato'``, ...). format: The output format used for rendering (``'pdf'``, ``'png'``, ...). data: The binary (encoded) DOT source string to render. renderer: The output renderer used for rendering (``'cairo'``, ``'gd'``, ...). formatter: The output formatter used for rendering (``'cairo'``, ``'gd'``, ...). quiet (bool): Suppress ``stderr`` output. Returns: Binary (encoded) stdout of the layout command. Raises: ValueError: If ``engine``, ``format``, ``renderer``, or ``formatter`` are not known. graphviz.RequiredArgumentError: If ``formatter`` is given but ``renderer`` is None. graphviz.ExecutableNotFound: If the Graphviz executable is not found. subprocess.CalledProcessError: If the exit status is non-zero.
codesearchnet
def create_position_ids_from_input_ids(input_ids, padding_idx): mask = input_ids.ne(padding_idx).int() incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask return incremental_indices.long() + padding_idx
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor
github-repos
def get_layer_vis_square(data, allow_heatmap=True, normalize=True, min_img_dim=100, max_width=1200, channel_order='RGB', colormap='jet', ): if channel_order not in ['RGB', 'BGR']: raise ValueError('Unsupported channel_order %s' % channel_order) if data.ndim == 1: data = data[:, np.newaxis, np.newaxis] elif data.ndim == 2: data = data.reshape((data.shape[0] * data.shape[1], 1, 1)) elif data.ndim == 3: if data.shape[0] == 3: if channel_order == 'BGR': data = data[[2, 1, 0], ...] data = data.transpose(1, 2, 0) data = data[np.newaxis, ...] else: pass elif data.ndim == 4: if data.shape[0] == 3: data = data.transpose(1, 2, 3, 0) if channel_order == 'BGR': data = data[:, :, :, [2, 1, 0]] elif data.shape[1] == 3: data = data.transpose(0, 2, 3, 1) if channel_order == 'BGR': data = data[:, :, :, [2, 1, 0]] else: data = data.reshape((data.shape[0] * data.shape[1], data.shape[2], data.shape[3])) else: raise RuntimeError('unrecognized data shape: %s' % (data.shape,)) return get_layer_vis_square_raw(data, allow_heatmap, normalize, min_img_dim, max_width, colormap, )
Returns a vis_square for the given layer data Arguments: data -- a np.ndarray Keyword arguments: allow_heatmap -- if True, convert single channel images to heatmaps normalize -- whether to normalize the data when visualizing max_width -- maximum width for the vis_square
juraj-google-style
def MakeHistFromList(t, name=''): hist = Hist(name=name) [hist.Incr(x) for x in t] return hist
Makes a histogram from an unsorted sequence of values. Args: t: sequence of numbers name: string name for this histogram Returns: Hist object
codesearchnet
async def get_ticket(self, request): session = await get_session(request) return session.get(self.cookie_name)
Called to return the ticket for a request. Args: request: aiohttp Request object. Returns: A ticket (string like) object, or None if no ticket is available for the passed request.
juraj-google-style
def system_repertoire_distance(r1, r2): if (config.MEASURE in measures.asymmetric()): raise ValueError('{} is asymmetric and cannot be used as a system-level irreducibility measure.'.format(config.MEASURE)) return measures[config.MEASURE](r1, r2)
Compute the distance between two repertoires of a system. Args: r1 (np.ndarray): The first repertoire. r2 (np.ndarray): The second repertoire. Returns: float: The distance between ``r1`` and ``r2``.
codesearchnet
def VerifyStructure(self, parser_mediator, line): return max([parser.matches(line) for (_, parser) in self.LINE_STRUCTURES])
Verifies that this is an apache access log file. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. line (str): line from the text file. Returns: bool: True if this is the correct parser, False otherwise.
codesearchnet
def __init__(self, napp_path, tpl_path): self._napp_path = napp_path self._template = tpl_path / 'openapi.yml.template' self._api_file = napp_path / 'openapi.yml' metadata = napp_path / 'kytos.json' self._napp = NApp.create_from_json(metadata) self._summary = None self._description = None self._paths = {}
Instantiate an OpenAPI object. Args: napp_path (string): Napp directory tlp_path (string): File name from template
juraj-google-style
def build(self, text, matrix, skim_depth=10, d_weights=False): for anchor in bar(matrix.keys): n1 = text.unstem(anchor) pairs = matrix.anchored_pairs(anchor).items() for term, weight in list(pairs)[:skim_depth]: if d_weights: weight = 1-weight n2 = text.unstem(term) self.graph.add_edge(n1, n2, weight=float(weight))
1. For each term in the passed matrix, score its KDE similarity with all other indexed terms. 2. With the ordered stack of similarities in hand, skim off the top X pairs and add them as edges. Args: text (Text): The source text instance. matrix (Matrix): An indexed term matrix. skim_depth (int): The number of siblings for each term. d_weights (bool): If true, give "close" words low edge weights.
juraj-google-style
def __response_message_descriptor(self, message_type, method_id): descriptor = {'200': {'description': 'A successful response'}} if message_type != message_types.VoidMessage(): self.__parser.add_message(message_type.__class__) self.__response_schema[method_id] = self.__parser.ref_for_message_type( message_type.__class__) descriptor['200']['schema'] = {'$ref': ' self.__response_schema[method_id])} return dict(descriptor)
Describes the response. Args: message_type: messages.Message class, The message to describe. method_id: string, Unique method identifier (e.g. 'myapi.items.method') Returns: Dictionary describing the response.
juraj-google-style
def MakeSuiteFromList(t, name=''): hist = MakeHistFromList(t) d = hist.GetDict() return MakeSuiteFromDict(d)
Makes a suite from an unsorted sequence of values. Args: t: sequence of numbers name: string name for this suite Returns: Suite object
juraj-google-style
def get_course_duration(self, obj): duration = obj.end - obj.start if obj.start and obj.end else None if duration: return strfdelta(duration, '{W} weeks {D} days.') return ''
Get course's duration as a timedelta. Arguments: obj (CourseOverview): CourseOverview object Returns: (timedelta): Duration of a course.
juraj-google-style
def next_trials(self): trials = [] for trial in self._trial_generator: if (trial is None): return trials trials += [trial] self._finished = True return trials
Provides a batch of Trial objects to be queued into the TrialRunner. A batch ends when self._trial_generator returns None. Returns: trials (list): Returns a list of trials.
codesearchnet
def remove(self, *l): for a in flatten(l): self._remove([self.Inner(a)], self.l)
remove inner from outer Args: *l element that is passes into Inner init
juraj-google-style
def random_data(line_count=1, chars_per_line=80): divide_lines = chars_per_line * line_count return '\n'.join(random_line_data(chars_per_line) for x in range(int(divide_lines / chars_per_line)))
Function to creates lines of random string data Args: line_count: An integer that says how many lines to return chars_per_line: An integer that says how many characters per line to return Returns: A String
juraj-google-style
def get_response(response: Dict[str, Any]) -> JSONRPCResponse: if "error" in response: return ErrorResponse(**response) return SuccessResponse(**response)
Converts a deserialized response into a JSONRPCResponse object. The dictionary be either an error or success response, never a notification. Args: response: Deserialized response dictionary. We can assume the response is valid JSON-RPC here, since it passed the jsonschema validation.
juraj-google-style
def check_list_type(objects, allowed_type, name, allow_none=True): if objects is None: if not allow_none: raise TypeError('%s is None, which is not allowed.' % name) return objects if not isinstance(objects, (tuple, list)): raise TypeError('%s is not a list.' % name) if not all(isinstance(i, allowed_type) for i in objects): type_list = sorted(list(set(type(obj) for obj in objects))) raise TypeError('%s contains types that don\'t match %s: %s' % (name, allowed_type.__name__, type_list)) return objects
Verify that objects in list are of the allowed type or raise TypeError. Args: objects: The list of objects to check. allowed_type: The allowed type of items in 'settings'. name: Name of the list of objects, added to the exception. allow_none: If set, None is also allowed. Raises: TypeError: if object is not of the allowed type. Returns: The list of objects, for convenient use in assignment.
juraj-google-style
def __ne__(self, other): if isinstance(other, DocumentReference): return self._client != other._client or self._path != other._path else: return NotImplemented
Inequality check against another instance. Args: other (Any): A value to compare against. Returns: Union[bool, NotImplementedType]: Indicating if the values are not equal.
juraj-google-style
def _g(self, z): return (np.exp(np.multiply((- self.theta), z)) - 1)
Helper function to solve Frank copula. This functions encapsulates :math:`g_z = e^{-\\theta z} - 1` used on Frank copulas. Argument: z: np.ndarray Returns: np.ndarray
codesearchnet
def plots_html_page(query_module): template = jenv.get_template('analysis.html') context = dict(extended=config.EXTENDED) cl = client.get_client() session = cl.create_session() seaborn.set_style('whitegrid') decade_df = query_module.decade_query() pix_size = pixels_to_inches((600, 400)) ax = seaborn.lmplot(x='decade', y='area', data=decade_df, size=pix_size[1], aspect=(pix_size[0] / pix_size[1]), scatter_kws={'s': 30, 'alpha': 0.3}) ax.set(xlabel='Decade', ylabel='Area, m^2') context['area_by_decade_svg'] = fig_to_svg(plt.gcf()) plt.close('all') if config.EXTENDED: gender_df = query_module.gender_query() pix_size = pixels_to_inches((600, 400)) g = seaborn.FacetGrid(gender_df, hue='gender', margin_titles=True, size=pix_size[1], aspect=(pix_size[0] / pix_size[1])) bins = np.linspace(0, 5, 30) g.map(plt.hist, 'area', bins=bins, lw=0, alpha=0.5, normed=True) g.axes[(0, 0)].set_xlabel('Area, m^2') g.axes[(0, 0)].set_ylabel('Percentage of paintings') context['area_by_gender_svg'] = fig_to_svg(plt.gcf()) plt.close('all') out_file = path.join(out_dir, 'analysis.html') html_content = template.render(**context) with open(out_file, 'w') as f: f.write(html_content) plt.close('all') session.close()
Generate analysis output as html page Args: query_module (module): module to use for querying data for the desired model/pipeline variant, e.g. leonardo.standard.queries
codesearchnet
def as_objective(obj): if isinstance(obj, Objective): return obj elif callable(obj): return obj elif isinstance(obj, str): layer, n = obj.split(":") layer, n = layer.strip(), int(n) return channel(layer, n)
Convert obj into Objective class. Strings of the form "layer:n" become the Objective channel(layer, n). Objectives are returned unchanged. Args: obj: string or Objective. Returns: Objective
juraj-google-style
def add_token(self, token): token = self.process_token(token) self._token_count.update([token])
Add token to vocabulary. Args: token (str): token to add.
juraj-google-style
def _parse_services(self, service_config: dict, service_name: str, service_list: dict) -> dict: for (key, value) in service_list['services'][service_name].items(): service_config[key] = value if ('command' in key): key = 'args' service_config['args'] = value service_config.pop('command') if ('ports' in key): endpoint_spec = self._parse_ports(value) service_config['endpoint_spec'] = endpoint_spec service_config.pop('ports') if ('volumes' in key): volume_spec = self._parse_volumes(value) service_config['mounts'] = volume_spec service_config.pop('volumes') if ('deploy' in key): self._parse_deploy(value, service_config) service_config.pop('deploy') if ('networks' in key): network_spec = self._parse_networks(service_list) service_config['networks'] = network_spec if ('logging' in key): self._parse_logging(value, service_config) service_config.pop('logging') if ('environment' in key): service_config['env'] = value service_config.pop('environment') return service_config
Parse the docker compose file. Args: service_config (dict): Service configurations from the compose file service_name (string): Name of the services service_list (dict): Service configuration list Returns: dict, service specifications extracted from the compose file
codesearchnet
def track_storms(storm_objects, times, distance_components, distance_maxima, distance_weights, tracked_objects=None): obj_matcher = ObjectMatcher(distance_components, distance_weights, distance_maxima) if (tracked_objects is None): tracked_objects = [] for (t, time) in enumerate(times): past_time_objects = [] for obj in tracked_objects: if (obj.end_time == (time - obj.step)): past_time_objects.append(obj) if (len(past_time_objects) == 0): tracked_objects.extend(storm_objects[t]) elif ((len(past_time_objects) > 0) and (len(storm_objects[t]) > 0)): assignments = obj_matcher.match_objects(past_time_objects, storm_objects[t], times[(t - 1)], times[t]) unpaired = list(range(len(storm_objects[t]))) for pair in assignments: past_time_objects[pair[0]].extend(storm_objects[t][pair[1]]) unpaired.remove(pair[1]) if (len(unpaired) > 0): for up in unpaired: tracked_objects.append(storm_objects[t][up]) return tracked_objects
Given the output of extract_storm_objects, this method tracks storms through time and merges individual STObjects into a set of tracks. Args: storm_objects: list of list of STObjects that have not been tracked. times: List of times associated with each set of STObjects distance_components: list of function objects that make up components of distance function distance_maxima: array of maximum values for each distance for normalization purposes distance_weights: weight given to each component of the distance function. Should add to 1. tracked_objects: List of STObjects that have already been tracked. Returns: tracked_objects:
codesearchnet
def select_action(self, next_action_arr, next_q_arr): key_arr = self.select_action_key(next_action_arr, next_q_arr) return next_action_arr[key_arr], next_q_arr[key_arr]
Select action by Q(state, action). Args: next_action_arr: `np.ndarray` of actions. next_q_arr: `np.ndarray` of Q-Values. Retruns: Tuple(`np.ndarray` of action., Q-Value)
juraj-google-style
def template_string(task: Task, template: str, jinja_filters: FiltersDict=None, **kwargs: Any) -> Result: jinja_filters = (jinja_filters or {} or task.nornir.config.jinja2.filters) text = jinja_helper.render_from_string(template=template, host=task.host, jinja_filters=jinja_filters, **kwargs) return Result(host=task.host, result=text)
Renders a string with jinja2. All the host data is available in the template Arguments: template (string): template string jinja_filters (dict): jinja filters to enable. Defaults to nornir.config.jinja2.filters **kwargs: additional data to pass to the template Returns: Result object with the following attributes set: * result (``string``): rendered string
codesearchnet
def locate_module(module_id: str, module_type: str = None): entry_point = None if module_type: entry_point = 'ehforwarderbot.%s' % module_type module_id = module_id.split(' if entry_point: for i in pkg_resources.iter_entry_points(entry_point): if i.name == module_id: return i.load() return pydoc.locate(module_id)
Locate module by module ID Args: module_id: Module ID module_type: Type of module, one of ``'master'``, ``'slave'`` and ``'middleware'``
juraj-google-style
def verify_account(self, email_address): request = self._get_request() resp = request.post(self.ACCOUNT_VERIFY_URL, { 'email_address': email_address }) return ('account' in resp)
Verify whether a HelloSign Account exists Args: email_address (str): Email address for the account to verify Returns: True or False
juraj-google-style
def install_package(self, name, index=None, force=False, update=False): cmd = 'install' if force: cmd = '{0} {1}'.format(cmd, '--force-reinstall') if update: cmd = '{0} {1}'.format(cmd, '--update') if index: cmd = '{0} {1}'.format(cmd, '--index-url {0}'.format(index)) self.pip('{0} {1}'.format(cmd, name))
Install a given package. Args: name (str): The package name to install. This can be any valid pip package specification. index (str): The URL for a pypi index to use. force (bool): For the reinstall of packages during updates. update (bool): Update the package if it is out of date.
juraj-google-style
def receive(self, event_type, signature, data_str): if (not self.validate_signature(signature, data_str)): raise HelpScoutSecurityException('The signature provided by this request was invalid.') return HelpScoutWebHookEvent(event_type=event_type, record=json.loads(data_str))
Receive a web hook for the event and signature. Args: event_type (str): Name of the event that was received (from the request ``X-HelpScout-Event`` header). signature (str): The signature that was received, which serves as authentication (from the request ``X-HelpScout-Signature`` header). data_str (str): The raw data that was posted by HelpScout to the web hook. This must be the raw string, because if it is parsed with JSON it will lose its ordering and not pass signature validation. Raises: helpscout.exceptions.HelpScoutSecurityException: If an invalid signature is provided, and ``raise_if_invalid`` is ``True``. Returns: helpscout.web_hook.WebHookEvent: The authenticated web hook request.
codesearchnet
def get_energy_relax_structure_buckingham(structure, gulp_cmd='gulp', keywords=('optimise', 'conp'), valence_dict=None): gio = GulpIO() gc = GulpCaller(gulp_cmd) gin = gio.buckingham_input(structure, keywords, valence_dict=valence_dict) gout = gc.run(gin) energy = gio.get_energy(gout) relax_structure = gio.get_relaxed_structure(gout) return (energy, relax_structure)
Relax a structure and compute the energy using Buckingham potential. Args: structure: pymatgen.core.structure.Structure gulp_cmd: GULP command if not in standard place keywords: GULP first line keywords valence_dict: {El: valence}. Needed if the structure is not charge neutral.
codesearchnet
def read(self, length, timeout=None): data = b'' while True: if (timeout is not None): (rlist, _, _) = select.select([self._fd], [], [], timeout) if (self._fd not in rlist): break try: data += os.read(self._fd, (length - len(data))) except OSError as e: raise SerialError(e.errno, ('Reading serial port: ' + e.strerror)) if (len(data) == length): break return data
Read up to `length` number of bytes from the serial port with an optional timeout. `timeout` can be positive for a timeout in seconds, 0 for a non-blocking read, or negative or None for a blocking read that will block until `length` number of bytes are read. Default is a blocking read. For a non-blocking or timeout-bound read, read() may return data whose length is less than or equal to the requested length. Args: length (int): length in bytes. timeout (int, float, None): timeout duration in seconds. Returns: bytes: data read. Raises: SerialError: if an I/O or OS error occurs.
codesearchnet
def CreateTaskStorage(self, task): if self._storage_type != definitions.STORAGE_TYPE_SESSION: raise IOError('Unsupported storage type.') storage_file_path = self._GetTaskStorageFilePath(task) return self._CreateTaskStorageWriter(storage_file_path, task)
Creates a task storage. The task storage is used to store attributes created by the task. Args: task(Task): task. Returns: StorageWriter: storage writer. Raises: IOError: if the storage type is not supported. OSError: if the storage type is not supported.
juraj-google-style
def __init__(self, host: str, port: int, time_to_live: Union[int, timedelta], *, request_coder: Optional[coders.Coder], response_coder: Optional[coders.Coder], kwargs: Optional[Dict[str, Any]]=None, source_caller: Optional[Caller]=None, mode: _RedisMode): self.host, self.port = (host, port) self.time_to_live = time_to_live self.request_coder = request_coder self.response_coder = response_coder self.kwargs = kwargs self.source_caller = source_caller self.mode = mode
Args: host (str): The hostname or IP address of the Redis server. port (int): The port number of the Redis server. time_to_live: `(Union[int, timedelta])` The time-to-live (TTL) for records stored in Redis. Provide an integer (in seconds) or a `datetime.timedelta` object. request_coder: (Optional[`coders.Coder`]) coder for requests stored in Redis. response_coder: (Optional[`coders.Coder`]) coder for decoding responses received from Redis. kwargs: Optional(Dict[str, Any]) additional keyword arguments that are required to connect to your redis server. Same as `redis.Redis()`. source_caller: (Optional[`Caller`]): The source caller using this Redis cache in case of fetching the cache request to store in Redis. mode: `_RedisMode` An enum type specifying the operational mode of the `_RedisCaller`.
github-repos
def get_section_by_name(self, section_name): sections = self.unravel_sections(self.get_sections()) for section in sections: if (section['name'] == section_name): return (section['groupId'], section) return (None, None)
Get a section by its name. Get a list of sections for a given gradebook, specified by a gradebookid. Args: section_name (str): The section's name. Raises: requests.RequestException: Exception connection error ValueError: Unable to decode response content Returns: tuple: tuple of group id, and section dictionary An example return value is: .. code-block:: python ( 1327565, { u'editable': True, u'groupId': 1327565, u'groupingScheme': u'Recitation', u'members': None, u'name': u'r01', u'shortName': u'r01', u'staffs': None } )
codesearchnet
def generate_message_doc(message_descriptor, locations, path, name_prefix=''): prefixed_name = name_prefix + message_descriptor.name print(make_subsection(prefixed_name)) location = locations[path] if location.HasField('leading_comments'): print(textwrap.dedent(location.leading_comments)) row_tuples = [] for field_index, field in enumerate(message_descriptor.field): field_location = locations[path + (2, field_index)] if field.type not in [11, 14]: type_str = TYPE_TO_STR[field.type] else: type_str = make_link(field.type_name.lstrip('.')) row_tuples.append(( make_code(field.name), field.number, type_str, LABEL_TO_STR[field.label], textwrap.fill(get_comment_from_location(field_location), INFINITY), )) print_table(('Field', 'Number', 'Type', 'Label', 'Description'), row_tuples) nested_types = enumerate(message_descriptor.nested_type) for index, nested_message_desc in nested_types: generate_message_doc(nested_message_desc, locations, path + (3, index), name_prefix=prefixed_name + '.') for index, nested_enum_desc in enumerate(message_descriptor.enum_type): generate_enum_doc(nested_enum_desc, locations, path + (4, index), name_prefix=prefixed_name + '.')
Generate docs for message and nested messages and enums. Args: message_descriptor: descriptor_pb2.DescriptorProto instance for message to generate docs for. locations: Dictionary of location paths tuples to descriptor_pb2.SourceCodeInfo.Location instances. path: Path tuple to the message definition. name_prefix: Optional prefix for this message's name.
juraj-google-style
def cancel(self, job_ids): statuses = [] for job_id in job_ids: try: self.delete_instance(job_id) statuses.append(True) self.provisioned_blocks -= 1 except Exception: statuses.append(False) return statuses
Cancels the resources identified by the job_ids provided by the user. Args: - job_ids (list): A list of job identifiers Returns: - A list of status from cancelling the job which can be True, False Raises: - ExecutionProviderException or its subclasses
codesearchnet
def get_losses_for(self, inputs): warnings.warn('`layer.get_losses_for` is deprecated and will be removed in a future version. Please use `layer.losses` instead.') return self.losses
Deprecated, do NOT use! Retrieves losses relevant to a specific set of inputs. Args: inputs: Input tensor or list/tuple of input tensors. Returns: List of loss tensors of the layer that depend on `inputs`.
github-repos
def _verify_output(self, submission_type): result = True if (submission_type == 'defense'): try: image_classification = load_defense_output(os.path.join(self._sample_output_dir, 'result.csv')) expected_keys = [IMAGE_NAME_PATTERN.format(i) for i in range(BATCH_SIZE)] if (set(image_classification.keys()) != set(expected_keys)): logging.error('Classification results are not saved for all images') result = False except IOError as e: logging.error('Failed to read defense output file: %s', e) result = False else: for i in range(BATCH_SIZE): image_filename = os.path.join(self._sample_output_dir, IMAGE_NAME_PATTERN.format(i)) try: img = np.array(Image.open(image_filename).convert('RGB')) if (list(img.shape) != [299, 299, 3]): logging.error('Invalid image size %s for image %s', str(img.shape), image_filename) result = False except IOError as e: result = False return result
Verifies correctness of the submission output. Args: submission_type: type of the submission Returns: True if output looks valid
codesearchnet
def dumpfile(item, path): with io.open(path, 'wb') as fd: fd.write(en(item))
Dump an object to a file by path. Args: item (object): The object to serialize. path (str): The file path to save. Returns: None
juraj-google-style
def squared_hinge(y_true, y_pred): y_pred = ops.convert_to_tensor(y_pred) y_true = ops.cast(y_true, y_pred.dtype) y_true = convert_binary_labels_to_hinge(y_true) return ops.mean(ops.square(ops.maximum(1.0 - y_true * y_pred, 0.0)), axis=-1)
Computes the squared hinge loss between `y_true` & `y_pred`. Formula: ```python loss = mean(square(maximum(1 - y_true * y_pred, 0)), axis=-1) ``` Args: y_true: The ground truth values. `y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1 with shape = `[batch_size, d0, .. dN]`. y_pred: The predicted values with shape = `[batch_size, d0, .. dN]`. Returns: Squared hinge loss values with shape = `[batch_size, d0, .. dN-1]`. Example: >>> y_true = np.random.choice([-1, 1], size=(2, 3)) >>> y_pred = np.random.random(size=(2, 3)) >>> loss = keras.losses.squared_hinge(y_true, y_pred)
github-repos
def install(name, dst, capture_error=False): if dst not in sys.path: sys.path.insert(0, dst) entrypoint_type = _entry_point_type.get(dst, name) if entrypoint_type is _entry_point_type.PYTHON_PACKAGE: _modules.install(dst, capture_error) if entrypoint_type is _entry_point_type.COMMAND: os.chmod(os.path.join(dst, name), 511)
Install the user provided entry point to be executed as follow: - add the path to sys path - if the user entry point is a command, gives exec permissions to the script Args: name (str): name of the script or module. dst (str): path to directory with the script or module. capture_error (bool): Default false. If True, the running process captures the stderr, and appends it to the returned Exception message in case of errors.
juraj-google-style
def _confirm_overwrite(filename): message = '{}Would you like to overwrite the contents of {} (y/[n])? '.format(c.Fore.MAGENTA, filename) response = raw_input(message) response = response.lower() if (response in ['y', 'yes']): return True return False
Confirm overwrite of template files. Make sure the user would like to continue downloading a file which will overwrite a file in the current directory. Args: filename (str): The name of the file to overwrite. Returns: bool: True if the user specifies a "yes" response.
codesearchnet
def log_error(self, msg): if self.__logger: self.__logger.error(msg) raise RuntimeError(msg)
Log an error and raise an exception. Args: msg: Error message to log. Raises: RuntimeError: With the message.
codesearchnet
def Process(self, parser_mediator, root_item=None, **kwargs): super(DefaultOLECFPlugin, self).Process(parser_mediator, **kwargs) if not root_item: raise ValueError('Root item not set.') if not self._ParseItem(parser_mediator, root_item): event_data = OLECFItemEventData() event_data.name = root_item.name event_data.offset = 0 event_data.size = root_item.size date_time = dfdatetime_semantic_time.SemanticTime('Not set') event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_CREATION) parser_mediator.ProduceEventWithEventData(event, event_data)
Parses an OLECF file. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. root_item (Optional[pyolecf.item]): root item of the OLECF file. Raises: ValueError: If the root item is not set.
juraj-google-style
def sample_from_discretized_mix_logistic(pred, seed=None): logits, locs, log_scales, coeffs = split_to_discretized_mix_logistic_params( pred) num_mixtures = shape_list(logits)[-1] gumbel_noise = -tf.log(-tf.log( tf.random_uniform( tf.shape(logits), minval=1e-5, maxval=1. - 1e-5, seed=seed))) sel = tf.one_hot( tf.argmax(logits + gumbel_noise, -1), depth=num_mixtures, dtype=tf.float32) sel = tf.expand_dims(sel, -1) locs = tf.reduce_sum(locs * sel, 3) log_scales = tf.reduce_sum(log_scales * sel, 3) coeffs = tf.reduce_sum(coeffs * sel, 3) uniform_noise = tf.random_uniform( tf.shape(locs), minval=1e-5, maxval=1. - 1e-5, seed=seed) logistic_noise = tf.log(uniform_noise) - tf.log1p(-uniform_noise) x = locs + tf.exp(log_scales) * logistic_noise x0 = x[..., 0] x1 = x[..., 1] + coeffs[..., 0] * x0 x2 = x[..., 2] + coeffs[..., 1] * x0 + coeffs[..., 2] * x1 x = tf.stack([x0, x1, x2], axis=-1) x = tf.clip_by_value(x, -1., 1.) return x
Sampling from a discretized mixture of logistics. Args: pred: A [batch, height, width, num_mixtures*10] tensor of floats comprising one unconstrained mixture probability, three means (one per channel), three standard deviations (one per channel), and three coefficients which linearly parameterize dependence across channels. seed: Random seed. Returns: A tensor of shape [batch, height, width, 3] with real intensities scaled between -1 and 1.
juraj-google-style
def _read_protocol_line(self): while True: line = self._proc.stdout.readline().decode('utf-8') if (not line): raise jsonrpc_client_base.AppStartError(self._ad, 'Unexpected EOF waiting for app to start') line = line.strip() if (line.startswith('INSTRUMENTATION_RESULT:') or line.startswith('SNIPPET ')): self.log.debug('Accepted line from instrumentation output: "%s"', line) return line self.log.debug('Discarded line from instrumentation output: "%s"', line)
Reads the next line of instrumentation output relevant to snippets. This method will skip over lines that don't start with 'SNIPPET' or 'INSTRUMENTATION_RESULT'. Returns: (str) Next line of snippet-related instrumentation output, stripped. Raises: jsonrpc_client_base.AppStartError: If EOF is reached without any protocol lines being read.
codesearchnet
def profile(self, profile): self._staging_data = None lang = profile.get('install_json', {}).get('programLanguage', 'PYTHON') profile_args = ArgBuilder(lang, self.profile_args(profile.get('args'))) self._profile = profile self._profile['profile_args'] = profile_args self.load_tcex() self.reports.profile(profile.get('profile_name')) self._create_tc_dirs()
Set the current profile. Args: profile (dict): The profile data.
juraj-google-style
def sg_int(tensor, opt): r return tf.cast(tensor, tf.sg_intx, name=opt.name)
r"""Casts a tensor to intx. See `tf.cast()` in tensorflow. Args: tensor: A `Tensor` or `SparseTensor` (automatically given by chain). opt: name: If provided, it replaces current tensor's name. Returns: A `Tensor` or `SparseTensor` with same shape as `tensor`.
juraj-google-style
def __init__(self, _max_size, _random=None, always_keep_last=True): if _max_size < 0 or _max_size != round(_max_size): raise ValueError('_max_size must be nonnegative int, was %s' % _max_size) self.items = [] self._mutex = threading.Lock() self._max_size = _max_size self._num_items_seen = 0 if _random is not None: self._random = _random else: self._random = random.Random(0) self.always_keep_last = always_keep_last
Create the _ReservoirBucket. Args: _max_size: The maximum size the reservoir bucket may grow to. If size is zero, the bucket has unbounded size. _random: The random number generator to use. If not specified, defaults to random.Random(0). always_keep_last: Whether the latest seen item should always be included in the end of the bucket. Raises: ValueError: if the size is not a nonnegative integer.
juraj-google-style
def set_all_tiers(key, value, django_cache_timeout=DEFAULT_TIMEOUT): DEFAULT_REQUEST_CACHE.set(key, value) django_cache.set(key, value, django_cache_timeout)
Caches the value for the provided key in both the request cache and the django cache. Args: key (string) value (object) django_cache_timeout (int): (Optional) Timeout used to determine if and for how long to cache in the django cache. A timeout of 0 will skip the django cache. If timeout is provided, use that timeout for the key; otherwise use the default cache timeout.
juraj-google-style
def random_uniform(mesh, shape, **kwargs): shape = convert_to_shape(shape) return RandomOperation(mesh, shape, tf.random.uniform, **kwargs).outputs[0]
Random uniform. Args: mesh: a Mesh shape: a Shape **kwargs: keyword args for tf.random.uniform, except seed Returns: a Tensor
juraj-google-style
def unicode(self, b, encoding=None): if (encoding is None): encoding = self.string_encoding return unicode(b, encoding, self.decode_errors)
Convert a byte string to unicode, using string_encoding and decode_errors. Arguments: b: a byte string. encoding: the name of an encoding. Defaults to the string_encoding attribute for this instance. Raises: TypeError: Because this method calls Python's built-in unicode() function, this method raises the following exception if the given string is already unicode: TypeError: decoding Unicode is not supported
codesearchnet
def run(self, *args, **kwargs): accounts = list(AWSAccount.get_all(include_disabled=False).values()) self.manage_policies(accounts)
Iterate through all AWS accounts and apply roles and policies from Github Args: *args: Optional list of arguments **kwargs: Optional list of keyword arguments Returns: `None`
codesearchnet
def convert_elementwise_div( params, w_name, scope_name, inputs, layers, weights, names ): print('Converting elementwise_div ...') if names == 'short': tf_name = 'D' + random_string(7) elif names == 'keep': tf_name = w_name else: tf_name = w_name + str(random.random()) def target_layer(x): layer = tf.div( x[0], x[1] ) return layer lambda_layer = keras.layers.Lambda(target_layer, name=tf_name) layers[scope_name] = lambda_layer([layers[inputs[0]], layers[inputs[1]]])
Convert elementwise multiplication. Args: params: dictionary with layer parameters w_name: name prefix in state_dict scope_name: pytorch scope name inputs: pytorch node inputs layers: dictionary with keras tensors weights: pytorch state_dict names: use short names for keras layers
juraj-google-style
def box_predictor(self, image_feats: torch.FloatTensor, feature_map: torch.FloatTensor, interpolate_pos_encoding: bool=False) -> torch.FloatTensor: pred_boxes = self.box_head(image_feats) if interpolate_pos_encoding: _, num_patches_height, num_patches_width, _ = feature_map.shape box_bias = self.compute_box_bias(num_patches_height, num_patches_width) else: box_bias = self.box_bias box_bias = box_bias.to(feature_map.device) pred_boxes += box_bias pred_boxes = self.sigmoid(pred_boxes) return pred_boxes
Args: image_feats: Features extracted from the image, returned by the `image_text_embedder` method. feature_map: A spatial re-arrangement of image_features, also returned by the `image_text_embedder` method. interpolate_pos_encoding: Whether to interpolate the pre-trained position encodings. Returns: pred_boxes: List of predicted boxes (cxcywh normalized to 0, 1) nested within a dictionary.
github-repos
def make_class(node, props, ctx): name = abstract_utils.get_atomic_python_constant(props.name_var) log.info('Declaring class %s', name) try: class_dict = abstract_utils.get_atomic_value(props.class_dict_var) except abstract_utils.ConversionError: log.error('Error initializing class %r', name) return ctx.convert.create_new_unknown(node) metacls, bases = _filter_out_metaclasses(props.bases, ctx) cls_var = metacls if metacls else props.metaclass_var bases = [_process_base_class(node, base, ctx) for base in bases] bases = _expand_generic_protocols(node, bases, ctx) if not bases: base = ctx.convert.object_type bases = [base.to_variable(ctx.root_node)] if isinstance(class_dict, abstract.Unsolvable) or not isinstance(class_dict, abstract.PythonConstant): var = ctx.new_unsolvable(node) else: if cls_var is None: cls_var = class_dict.members.get('__metaclass__') if cls_var: ctx.errorlog.ignored_metaclass(ctx.vm.frames, name, cls_var.data[0].full_name if cls_var.bindings else 'Any') if cls_var and all((v.data.full_name == 'builtins.type' for v in cls_var.bindings)): cls_var = None cls = abstract_utils.get_atomic_value(cls_var, default=ctx.convert.unsolvable) if cls_var else None if '__annotations__' not in class_dict.members and name in ctx.vm.annotated_locals: annotations_dict = ctx.vm.annotated_locals[name] if any((local.typ for local in annotations_dict.values())): annotations_member = abstract.AnnotationsDict(annotations_dict, ctx).to_variable(node) class_dict.members['__annotations__'] = annotations_member class_dict.pyval['__annotations__'] = annotations_member if '__init_subclass__' in class_dict.members: underlying = class_dict.pyval['__init_subclass__'] _, method = ctx.vm.load_special_builtin('classmethod').call(node, func=None, args=function.Args(posargs=(underlying,))) class_dict.pyval['__init_subclass__'] = method try: class_type = props.class_type or abstract.InterpreterClass assert issubclass(class_type, abstract.InterpreterClass) val = class_type(name, bases, class_dict.pyval, cls, ctx.vm.current_opcode, props.undecorated_methods, ctx) _check_final_members(val, class_dict.pyval, ctx) overriding_checks.check_overriding_members(val, bases, class_dict.pyval, ctx.matcher(node), ctx) val.decorators = props.decorators or [] except mro.MROError as e: ctx.errorlog.mro_error(ctx.vm.frames, name, e.mro_seqs) var = ctx.new_unsolvable(node) except abstract_utils.GenericTypeError as e: ctx.errorlog.invalid_annotation(ctx.vm.frames, e.annot, e.error) var = ctx.new_unsolvable(node) else: var = props.new_class_var or ctx.program.NewVariable() var.AddBinding(val, props.class_dict_var.bindings, node) node = val.call_metaclass_init(node) node = val.call_init_subclass(node) ctx.vm.trace_opcode(None, name, var) return (node, var)
Create a class with the name, bases and methods given. Args: node: The current CFG node. props: class_mixin.ClassBuilderProperties required to build the class ctx: The current context. Returns: A node and an instance of class_type.
github-repos
def _AbortJoin(self, timeout=None): for pid, process in iter(self._processes_per_pid.items()): logger.debug('Waiting for process: {0:s} (PID: {1:d}).'.format( process.name, pid)) process.join(timeout=timeout) if not process.is_alive(): logger.debug('Process {0:s} (PID: {1:d}) stopped.'.format( process.name, pid))
Aborts all registered processes by joining with the parent process. Args: timeout (int): number of seconds to wait for processes to join, where None represents no timeout.
juraj-google-style
def handle_error(err, halt=True): print('{}{}{}'.format(c.Style.BRIGHT, c.Fore.RED, err)) if halt: sys.exit(1)
Print errors message and optionally exit. Args: err (str): The error message to print. halt (bool, optional): Defaults to True. If True the script will exit.
juraj-google-style
def _decode_helper(obj, deserialize=False, module_objects=None, custom_objects=None): if isinstance(obj, dict) and 'class_name' in obj: if tf.available: if obj['class_name'] == 'TensorShape': return tf.TensorShape(obj['items']) elif obj['class_name'] == 'TypeSpec': from tensorflow.python.framework import type_spec_registry return type_spec_registry.lookup(obj['type_spec'])._deserialize(_decode_helper(obj['serialized'])) elif obj['class_name'] == 'CompositeTensor': spec = obj['spec'] tensors = [] for dtype, tensor in obj['tensors']: tensors.append(tf.constant(tensor, dtype=tf.dtypes.as_dtype(dtype))) return tf.nest.pack_sequence_as(_decode_helper(spec), tensors, expand_composites=True) if obj['class_name'] == '__tuple__': return tuple((_decode_helper(i) for i in obj['items'])) elif obj['class_name'] == '__ellipsis__': return Ellipsis elif deserialize and '__passive_serialization__' in obj: try: if 'module' not in obj: return serialization.deserialize_keras_object(obj, module_objects=module_objects, custom_objects=custom_objects) else: return serialization_lib.deserialize_keras_object(obj, module_objects=module_objects, custom_objects=custom_objects) except ValueError: pass elif obj['class_name'] == '__bytes__': return obj['value'].encode('utf-8') return obj
A decoding helper that is TF-object aware. Args: obj: A decoded dictionary that may represent an object. deserialize: Boolean. When True, deserializes any Keras objects found in `obj`. Defaults to `False`. module_objects: A dictionary of built-in objects to look the name up in. Generally, `module_objects` is provided by midlevel library implementers. custom_objects: A dictionary of custom objects to look the name up in. Generally, `custom_objects` is provided by the end user. Returns: The decoded object.
github-repos
def get_vnet(access_token, subscription_id, resource_group, vnet_name): endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/resourceGroups/', resource_group, '/providers/Microsoft.Network/virtualNetworks/', vnet_name, '?api-version=', NETWORK_API]) return do_get(endpoint, access_token)
Get details about the named virtual network. Args: access_token (str): A valid Azure authentication token. subscription_id (str): Azure subscription id. resource_group (str): Azure resource group name. vnet_name (str): Name of the VNet. Returns: HTTP response. VNet JSON body.
codesearchnet
def register_rpc(self, address, rpc_id, func): if ((rpc_id < 0) or (rpc_id > 65535)): raise RPCInvalidIDError('Invalid RPC ID: {}'.format(rpc_id)) if (address not in self._rpc_overlays): self._rpc_overlays[address] = RPCDispatcher() self._rpc_overlays[address].add_rpc(rpc_id, func)
Register a single RPC handler with the given info. This function can be used to directly register individual RPCs, rather than delegating all RPCs at a given address to a virtual Tile. If calls to this function are mixed with calls to add_tile for the same address, these RPCs will take precedence over what is defined in the tiles. Args: address (int): The address of the mock tile this RPC is for rpc_id (int): The number of the RPC func (callable): The function that should be called to handle the RPC. func is called as func(payload) and must return a single string object of up to 20 bytes with its response
codesearchnet
def image_section(image, title): img = yield marv.pull(image) if img is None: return widget = {'title': image.title, 'image': {'src': img.relpath}} section = {'title': title, 'widgets': [widget]} yield marv.push(section)
Create detail section with one image. Args: title (str): Title to be displayed for detail section. image: marv image file. Returns One detail section.
juraj-google-style
def _minimize_peak_memory_list(graph): schedule = [] bytes_freed = {} users_of = collections.defaultdict(set) in_degree = collections.defaultdict(int) operation_id = {} priority_queue = [] for i, operation_name in enumerate(graph.get_all_operation_names()): operation_id[operation_name] = i for input_name in graph.get_operation_input_names(operation_name): if operation_name in users_of[input_name]: continue users_of[input_name].add(operation_name) in_degree[operation_name] += 1 for operation_name in graph.get_all_operation_names(): bytes_freed[operation_name] = 0 for input_name in graph.get_operation_input_names(operation_name): if len(users_of[input_name]) == 1 and not graph.is_tensor_final( input_name): bytes_freed[operation_name] += graph.get_tensor_size(input_name) for output_name in graph.get_operation_output_names(operation_name): if users_of[output_name] or graph.is_tensor_final(output_name): bytes_freed[operation_name] -= graph.get_tensor_size(output_name) for operation_name in graph.get_all_operation_names(): if in_degree[operation_name] == 0: heapq.heappush(priority_queue, (-bytes_freed[operation_name], operation_name)) while priority_queue: neg_bytes_freed, operation_name = heapq.heappop(priority_queue) if bytes_freed[operation_name] != -neg_bytes_freed: continue schedule.append(operation_id[operation_name]) bytes_freed[operation_name] = None for output_name in graph.get_operation_output_names(operation_name): for other_operation_name in users_of[output_name]: in_degree[other_operation_name] -= 1 if in_degree[other_operation_name] == 0: heapq.heappush(priority_queue, (-bytes_freed[other_operation_name], other_operation_name)) for input_name in graph.get_operation_input_names(operation_name): if operation_name not in users_of[input_name]: continue users_of[input_name].remove(operation_name) if len(users_of[input_name]) != 1 or graph.is_tensor_final(output_name): continue (other_operation_name,) = users_of[input_name] bytes_freed[other_operation_name] += graph.get_tensor_size( input_name) if in_degree[other_operation_name] > 0: continue heapq.heappush(priority_queue, (-bytes_freed[other_operation_name], other_operation_name)) return schedule
Computes schedule according to the greedy list heuristic. Greedy list heuristic: schedule the operation which results in the most bytes of memory being (immediately) freed. TODO(joshuawang): Experiment with tiebreaking by preferring more successors. Args: graph: an mtf.auto_mtf.graph_interface.GraphInterface. Returns: an iterable of integers representing the schedule.
juraj-google-style
def deepcopy(original_obj): if isinstance(original_obj, list): return list(deepcopy(item) for item in original_obj) elif isinstance(original_obj, dict): return dict((key, deepcopy(val)) for key, val in original_obj.items()) else: return original_obj
Creates a deep copy of an object with no crossed referenced lists or dicts, useful when loading from yaml as anchors generate those cross-referenced dicts and lists Args: original_obj(object): Object to deep copy Return: object: deep copy of the object
juraj-google-style
def db990(self, value=None): if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `db990`'.format(value)) self._db990 = value
Corresponds to IDD Field `db990` Dry-bulb temperature corresponding to 90.0% annual cumulative frequency of occurrence (cold conditions) Args: value (float): value for IDD Field `db990` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
juraj-google-style
def add_mutually_exclusive_groups(self, groups): all_params = set.union(*groups) for group in groups: mutually_exclusive = all_params - group for name in group: self._mutually_exclusive[name].update(mutually_exclusive)
Adds groups of mutually exclusive type parameters. For example, [{"T1", "T2"}, {"T3", "T4"}] would mean that the following pairs are mutually exclusive: (T1, T3), (T1, T4), (T2, T3), (T2, T4). Args: groups: The mutually exclusive groups.
github-repos
def listdir(self, target_directory): target_directory = self.resolve_path(target_directory, allow_fd=True) directory = self.confirmdir(target_directory) directory_contents = directory.contents return list(directory_contents.keys())
Return a list of file names in target_directory. Args: target_directory: Path to the target directory within the fake filesystem. Returns: A list of file names within the target directory in arbitrary order. Raises: OSError: if the target is not a directory.
codesearchnet
def add_history(self, filename, color_scheme, font, wrap): filename = encoding.to_unicode_from_fs(filename) if (filename in self.filenames): return editor = codeeditor.CodeEditor(self) if (osp.splitext(filename)[1] == '.py'): language = 'py' else: language = 'bat' editor.setup_editor(linenumbers=False, language=language, scrollflagarea=False, show_class_func_dropdown=False) editor.focus_changed.connect((lambda : self.focus_changed.emit())) editor.setReadOnly(True) editor.set_font(font, color_scheme) editor.toggle_wrap_mode(wrap) (text, _) = encoding.read(filename) editor.set_text(text) editor.set_cursor_position('eof') self.editors.append(editor) self.filenames.append(filename) index = self.tabwidget.addTab(editor, osp.basename(filename)) self.find_widget.set_editor(editor) self.tabwidget.setTabToolTip(index, filename) self.tabwidget.setCurrentIndex(index)
Add new history tab. Args: filename (str): file to be loaded in a new tab.
codesearchnet
def resolve(self, context, provider): resolve_variables(self.variables, context, provider) self.blueprint.resolve_variables(self.variables)
Resolve the Stack variables. This resolves the Stack variables and then prepares the Blueprint for rendering by passing the resolved variables to the Blueprint. Args: context (:class:`stacker.context.Context`): stacker context provider (:class:`stacker.provider.base.BaseProvider`): subclass of the base provider
codesearchnet
def layer_norm(x, dim, epsilon=1e-6, name="layer_prepostprocess"): with tf.variable_scope(name + "/layer_norm"): scale = mtf.get_variable( x.mesh, "layer_norm_scale", mtf.Shape([dim]), initializer=tf.ones_initializer(), activation_dtype=x.dtype) bias = mtf.get_variable( x.mesh, "layer_norm_bias", mtf.Shape([dim]), initializer=tf.zeros_initializer(), activation_dtype=x.dtype) reduced_shape = x.shape - dim mean = mtf.reduce_mean(x, output_shape=reduced_shape) variance = mtf.reduce_mean(mtf.square(x - mean), output_shape=reduced_shape) norm_x = (x - mean) * mtf.rsqrt(variance + epsilon) return norm_x * scale + bias
Layer normalization over dimension dim. Args: x: a mtf.Tensor whose shape contains dim. dim: a mtf.Dimension epsilon: a floating point number name: a string. variable scope. Returns: a mtf.Tensor with same shape as x.
juraj-google-style
def __init__(self, key: Key, exclude_from_indexes: Iterable[str]=()): self.key = key self.exclude_from_indexes = set(exclude_from_indexes) self.properties = {}
Represents a Datastore entity. Does not support the property value "meaning" field. Args: key: (Key) A complete Key representing this Entity. exclude_from_indexes: (iterable of str) List of property keys whose values should not be indexed for this entity.
github-repos
def stop_threadsafe(self): if self.stopped: return try: self._loop.run_coroutine(self.stop()) except asyncio.TimeoutError: raise TimeoutExpiredError('Timeout stopping task {} with {} subtasks'.format(self.name, len(self.subtasks)))
Stop this task from another thread and wait for it to finish. This method must not be called from within the BackgroundEventLoop but will inject self.stop() into the event loop and block until it returns. Raises: TimeoutExpiredError: If the task does not stop in the given timeout specified in __init__()
codesearchnet
def lu_solve(LU, b): from scipy.linalg import lu_solve as sp_lu_solve LU = (asarray(LU[0], float), asarray(LU[1], float)) b = asarray(b, float) return sp_lu_solve(LU, b, check_finite=False)
r"""Solve for LU decomposition. Solve the linear equations :math:`\mathrm A \mathbf x = \mathbf b`, given the LU factorization of :math:`\mathrm A`. Args: LU (array_like): LU decomposition. b (array_like): Right-hand side. Returns: :class:`numpy.ndarray`: The solution to the system :math:`\mathrm A \mathbf x = \mathbf b`. See Also -------- scipy.linalg.lu_factor : LU decomposition. scipy.linalg.lu_solve : Solve linear equations given LU factorization.
codesearchnet
def set_site_energies(self, energies): self.site_energies = energies for site_label in energies: for site in self.sites: if (site.label == site_label): site.energy = energies[site_label]
Set the energies for every site in the lattice according to the site labels. Args: energies (Dict(Str:Float): Dictionary of energies for each site label, e.g.:: { 'A' : 1.0, 'B', 0.0 } Returns: None
codesearchnet
def write(self, output_buffer, kmip_version=enums.KMIPVersion.KMIP_2_0): if (kmip_version < enums.KMIPVersion.KMIP_2_0): raise exceptions.VersionNotSupported('KMIP {} does not support the ObjectDefaults object.'.format(kmip_version.value)) local_buffer = BytearrayStream() if self._object_type: self._object_type.write(local_buffer, kmip_version=kmip_version) else: raise exceptions.InvalidField('The ObjectDefaults structure is missing the object type field.') if self._attributes: self._attributes.write(local_buffer, kmip_version=kmip_version) else: raise exceptions.InvalidField('The ObjectDefaults structure is missing the attributes field.') self.length = local_buffer.length() super(ObjectDefaults, self).write(output_buffer, kmip_version=kmip_version) output_buffer.write(local_buffer.buffer)
Write the ObjectDefaults structure encoding to the data stream. Args: output_buffer (stream): A data stream in which to encode Attributes structure data, supporting a write method. kmip_version (enum): A KMIPVersion enumeration defining the KMIP version with which the object will be encoded. Optional, defaults to KMIP 2.0. Raises: InvalidField: Raised if the object type or attributes fields are not defined. VersionNotSupported: Raised when a KMIP version is provided that does not support the ObjectDefaults structure.
codesearchnet
def subCell2DSlices(arr, shape, d01=None, p01=None): if p01 is not None: yinit, xinit = p01 else: xinit, yinit = 0, 0 x, y = xinit, yinit g0, g1 = shape s0, s1 = arr.shape[:2] if d01 is not None: d0, d1 = d01 else: d0, d1 = s0 / g0, s1 / g1 y1 = d0 + yinit for i in range(g0): for j in range(g1): x1 = x + d1 yield (i, j, slice(max(0, _rint(y)), max(0, _rint(y1))), slice(max(0, _rint(x)), max(0, _rint(x1)))) x = x1 y = y1 y1 = y + d0 x = xinit
Generator to access evenly sized sub-cells in a 2d array Args: shape (tuple): number of sub-cells in y,x e.g. (10,15) d01 (tuple, optional): cell size in y and x p01 (tuple, optional): position of top left edge Returns: int: 1st index int: 2nd index slice: first dimension slice: 1st dimension
juraj-google-style
def create_secret(self, name, data, labels=None, driver=None): if (not isinstance(data, bytes)): data = data.encode('utf-8') data = base64.b64encode(data) if six.PY3: data = data.decode('ascii') body = {'Data': data, 'Name': name, 'Labels': labels} if (driver is not None): if utils.version_lt(self._version, '1.31'): raise errors.InvalidVersion('Secret driver is only available for API version > 1.31') body['Driver'] = driver url = self._url('/secrets/create') return self._result(self._post_json(url, data=body), True)
Create a secret Args: name (string): Name of the secret data (bytes): Secret data to be stored labels (dict): A mapping of labels to assign to the secret driver (DriverConfig): A custom driver configuration. If unspecified, the default ``internal`` driver will be used Returns (dict): ID of the newly created secret
codesearchnet