code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def call(self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, causal_attention_mask: tf.Tensor, output_attentions: bool, training: bool=False) -> Tuple[tf.Tensor]:
residual = hidden_states
hidden_states = self.layer_norm1(inputs=hidden_states)
attention_outputs = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, training=training)
hidden_states = attention_outputs[0]
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(inputs=hidden_states)
hidden_states = self.mlp(hidden_states=hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,) + attention_outputs[1:]
return outputs
|
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
causal_attention_mask (`tf.Tensor`): causal attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`):
Whether or not to return the attentions tensors of all attention layers. See `outputs` under returned
tensors for more detail.
|
github-repos
|
def __init__(self, input_energy: energy.BitstringEnergy, initial_seed: Union[None, tf.Tensor]=None, name: Union[None, str]=None):
super().__init__(name=name)
self._energy = input_energy
self._energy.build([None, self._energy.num_bits])
self._tracked_variables = input_energy.variables
if len(self._tracked_variables) == 0:
self._checkpoint = False
else:
self._tracked_variables_checkpoint = [tf.Variable(v.read_value(), trainable=False) for v in self._tracked_variables]
self._checkpoint = True
if initial_seed is None:
self._update_seed = tf.Variable(True, trainable=False)
else:
self._update_seed = tf.Variable(False, trainable=False)
self._seed = tf.Variable(tfp.random.sanitize_seed(initial_seed), trainable=False)
self._first_inference = tf.Variable(True, trainable=False)
|
Initializes an EnergyInferenceBase.
Args:
input_energy: The parameterized energy function which defines this
distribution via the equations of an energy based model. This class
assumes that all parameters of `energy` are `tf.Variable`s and that
they are all returned by `energy.variables`.
initial_seed: PRNG seed; see tfp.random.sanitize_seed for details. This
seed will be used in the `sample` method. If None, the seed is updated
after every inference call. Otherwise, the seed is fixed.
name: Optional name for the model.
|
github-repos
|
async def set_typing(self, typing=hangouts_pb2.TYPING_TYPE_STARTED):
try:
(await self._client.set_typing(hangouts_pb2.SetTypingRequest(request_header=self._client.get_request_header(), conversation_id=hangouts_pb2.ConversationId(id=self.id_), type=typing)))
except exceptions.NetworkError as e:
logger.warning('Failed to set typing status: {}'.format(e))
raise
|
Set your typing status in this conversation.
Args:
typing: (optional) ``TYPING_TYPE_STARTED``, ``TYPING_TYPE_PAUSED``,
or ``TYPING_TYPE_STOPPED`` to start, pause, or stop typing,
respectively. Defaults to ``TYPING_TYPE_STARTED``.
Raises:
.NetworkError: If typing status cannot be set.
|
codesearchnet
|
def show_qouts(self, nids=None, stream=sys.stdout):
lines = []
for task in self.iflat_tasks(status=self.S_QCRITICAL, nids=nids):
header = "=== " + task.qout_file.path + "==="
lines.append(header)
if task.qout_file.exists:
with open(task.qout_file.path, "rt") as fh:
lines += fh.readlines()
else:
lines.append("File does not exist!")
lines.append("=" * len(header) + 2*"\n")
return stream.writelines(lines)
|
Write to the given stream the content of the queue output file for all tasks whose status is S_QCRITICAL.
Args:
nids: optional list of node identifiers used to filter the tasks.
stream: File-like object. Default: sys.stdout
|
juraj-google-style
|
def add_backdoor(self, backdoor_name, source, reference, method='', aliases=[], version='', campaign='', confidence='', description='', bucket_list=[]):
data = {'api_key': self.api_key, 'username': self.username, 'source': source, 'reference': reference, 'method': method, 'name': backdoor_name, 'aliases': ','.join(aliases), 'version': version, 'campaign': campaign, 'confidence': confidence, 'bucket_list': bucket_list, 'description': description}
r = requests.post('{0}/backdoors/'.format(self.url), data=data, verify=self.verify, proxies=self.proxies)
if (r.status_code == 200):
result_data = json.loads(r.text)
return result_data
else:
log.error('Error with status code {0} and message {1}'.format(r.status_code, r.text))
return None
|
Add a backdoor object to CRITs.
Args:
backdoor_name: The primary name of the backdoor
source: Source of the information
reference: A reference where more information can be found
method: The method for obtaining the backdoor information.
aliases: List of aliases for the backdoor.
version: Version
campaign: An associated campaign
confidence: The campaign confidence
description: A description of the email
bucket_list: A list of bucket list items to add
|
codesearchnet
|
class Wav2Vec2CTCTokenizerOutput(ModelOutput):
text: Union[List[str], str]
char_offsets: Union[List[ListOfDict], ListOfDict] = None
word_offsets: Union[List[ListOfDict], ListOfDict] = None
|
Output type of [` Wav2Vec2CTCTokenizer`], with transcription.
Args:
text (list of `str` or `str`):
Decoded logits in text from. Usually the speech transcription.
char_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`):
Offsets of the decoded characters. In combination with sampling rate and model downsampling rate char
offsets can be used to compute time stamps for each character. Total logit score of the beam associated with
produced text.
word_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`):
Offsets of the decoded words. In combination with sampling rate and model downsampling rate word offsets
can be used to compute time stamps for each word.
|
github-repos
|
def _is_trivial_angle(rad: float, atol: float) -> bool:
return abs(rad) < atol or abs(abs(rad) - np.pi / 4) < atol
|
Tests if a circuit for an operator exp(i*rad*XX) (or YY, or ZZ) can
be performed with a whole CZ.
Args:
rad: The angle in radians, assumed to be in the range [-pi/4, pi/4]
|
juraj-google-style
|
def airborne_position_with_ref(msg, lat_ref, lon_ref):
mb = common.hex2bin(msg)[32:]
cprlat = common.bin2int(mb[22:39]) / 131072.0
cprlon = common.bin2int(mb[39:56]) / 131072.0
i = int(mb[21])
d_lat = 360.0/59 if i else 360.0/60
j = common.floor(lat_ref / d_lat) \
+ common.floor(0.5 + ((lat_ref % d_lat) / d_lat) - cprlat)
lat = d_lat * (j + cprlat)
ni = common.cprNL(lat) - i
if ni > 0:
d_lon = 360.0 / ni
else:
d_lon = 360.0
m = common.floor(lon_ref / d_lon) \
+ common.floor(0.5 + ((lon_ref % d_lon) / d_lon) - cprlon)
lon = d_lon * (m + cprlon)
return round(lat, 5), round(lon, 5)
|
Decode airborne position with only one message,
knowing reference nearby location, such as previously calculated location,
ground station, or airport location, etc. The reference position shall
be with in 180NM of the true position.
Args:
msg (string): even message (28 bytes hexadecimal string)
lat_ref: previous known latitude
lon_ref: previous known longitude
Returns:
(float, float): (latitude, longitude) of the aircraft
|
juraj-google-style
|
def schedule(time: Union[(datetime.time, datetime.datetime)], callback: Callable, *args):
dt = _fillDate(time)
now = datetime.datetime.now(dt.tzinfo)
delay = (dt - now).total_seconds()
loop = asyncio.get_event_loop()
loop.call_later(delay, callback, *args)
|
Schedule the callback to be run at the given time with
the given arguments.
Args:
time: Time to run callback. If given as :py:class:`datetime.time`
then use today as date.
callback: Callable scheduled to run.
args: Arguments for to call callback with.
|
codesearchnet
|
def absolute_distance(cls, q0, q1):
q0_minus_q1 = (q0 - q1)
q0_plus_q1 = (q0 + q1)
d_minus = q0_minus_q1.norm
d_plus = q0_plus_q1.norm
if (d_minus < d_plus):
return d_minus
else:
return d_plus
|
Quaternion absolute distance.
Find the distance between two quaternions accounting for the sign ambiguity.
Params:
q0: the first quaternion
q1: the second quaternion
Returns:
A positive scalar corresponding to the chord of the shortest path/arc that
connects q0 to q1.
Note:
This function does not measure the distance on the hypersphere, but
it takes into account the fact that q and -q encode the same rotation.
It is thus a good indicator for rotation similarities.
|
codesearchnet
|
def create_string(self, key, value):
data = None
if ((key is not None) and (value is not None)):
if isinstance(value, (bool, list, int, dict)):
value = u'{}'.format(value)
data = self.db.create(key.strip(), u'{}'.format(json.dumps(value)))
else:
self.tcex.log.warning(u'The key or value field was None.')
return data
|
Create method of CRUD operation for string data.
Args:
key (string): The variable to write to the DB.
value (any): The data to write to the DB.
Returns:
(string): Result of DB write.
|
codesearchnet
|
def get(self, report_id):
return Report(self._app, self._swimlane.request('get', 'reports/{0}'.format(report_id)).json())
|
Retrieve report by ID
Args:
report_id (str): Full report ID
Returns:
Report: Corresponding Report instance
|
codesearchnet
|
def reset_logger(name, level=None, handler=None):
if (level is None):
level = logging.INFO
logger = logging.getLogger(name)
logger.setLevel(level)
handler = (handler or logging.StreamHandler())
handler.setFormatter(logging.Formatter(_DEFAULT_LOG_FORMAT))
logger.handlers = [handler]
return logger
|
Make a standard python logger object with default formatter, handler, etc.
Defaults are:
- level == logging.INFO
- handler == logging.StreamHandler()
Args:
name: a logger name.
level: an optional initial log level for this logger.
handler: an optional initial handler for this logger.
Returns: a standard python logger with a single handler.
|
codesearchnet
|
def add_lambda_permissions(function='', statement_id='', action='lambda:InvokeFunction', principal='', source_arn='', env='', region='us-east-1'):
session = boto3.Session(profile_name=env, region_name=region)
lambda_client = session.client('lambda')
response_action = None
prefixed_sid = (FOREMAST_PREFIX + statement_id)
add_permissions_kwargs = {'FunctionName': function, 'StatementId': prefixed_sid, 'Action': action, 'Principal': principal}
if source_arn:
add_permissions_kwargs['SourceArn'] = source_arn
try:
lambda_client.add_permission(**add_permissions_kwargs)
response_action = 'Add permission with Sid: {}'.format(prefixed_sid)
except boto3.exceptions.botocore.exceptions.ClientError as error:
LOG.debug('Add permission error: %s', error)
response_action = 'Did not add permissions'
LOG.debug('Related StatementId (SID): %s', prefixed_sid)
LOG.info(response_action)
|
Add permission to Lambda for the event trigger.
Args:
function (str): Lambda function name
statement_id (str): IAM policy statement (principal) id
action (str): Lambda action to allow
principal (str): AWS principal to add permissions
source_arn (str): ARN of the source of the event. Only needed for S3
env (str): Environment/account of function
region (str): AWS region of function
|
codesearchnet
|
def Serialize(self, writer):
try:
writer.WriteByte(self.Type)
writer.WriteHashes(self.Hashes)
except Exception as e:
logger.error(f"COULD NOT WRITE INVENTORY HASHES ({self.Type} {self.Hashes}) {e}")
|
Serialize object.
Raises:
Exception: if hash writing fails.
Args:
writer (neo.IO.BinaryWriter):
|
juraj-google-style
|
def ParseAccountInformation(self, parser_mediator, query, row, **unused_kwargs):
query_hash = hash(query)
display_name = self._GetRowValue(query_hash, row, 'given_displayname')
fullname = self._GetRowValue(query_hash, row, 'fullname')
username = '{0!s} <{1!s}>'.format(fullname, display_name)
event_data = SkypeAccountEventData()
event_data.country = self._GetRowValue(query_hash, row, 'country')
event_data.display_name = display_name
event_data.email = self._GetRowValue(query_hash, row, 'emails')
event_data.offset = self._GetRowValue(query_hash, row, 'id')
event_data.query = query
event_data.username = username
timestamp = self._GetRowValue(query_hash, row, 'profile_timestamp')
if timestamp:
date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(date_time, 'Profile Changed')
parser_mediator.ProduceEventWithEventData(event, event_data)
timestamp = self._GetRowValue(query_hash, row, 'authreq_timestamp')
if timestamp:
date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(date_time, 'Authenticate Request')
parser_mediator.ProduceEventWithEventData(event, event_data)
timestamp = self._GetRowValue(query_hash, row, 'lastonline_timestamp')
if timestamp:
date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(date_time, 'Last Online')
parser_mediator.ProduceEventWithEventData(event, event_data)
timestamp = self._GetRowValue(query_hash, row, 'mood_timestamp')
if timestamp:
date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(date_time, 'Mood Event')
parser_mediator.ProduceEventWithEventData(event, event_data)
timestamp = self._GetRowValue(query_hash, row, 'sent_authrequest_time')
if timestamp:
date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(date_time, 'Auth Request Sent')
parser_mediator.ProduceEventWithEventData(event, event_data)
timestamp = self._GetRowValue(query_hash, row, 'lastused_timestamp')
if timestamp:
date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(date_time, 'Last Used')
parser_mediator.ProduceEventWithEventData(event, event_data)
|
Parses account information.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
query (str): query that created the row.
row (sqlite3.Row): row with account information.
|
codesearchnet
|
def index_impute2(fn):
logger.info('Indexing {} (IMPUTE2)'.format(fn))
impute2_index(fn, cols=[0, 1, 2], names=['chrom', 'name', 'pos'], sep=' ')
logger.info('Index generated')
|
Indexes an IMPUTE2 file.
Args:
fn (str): The name of the IMPUTE2 file.
|
codesearchnet
|
def display(self, *amplExpressions):
exprs = list(map(str, amplExpressions))
lock_and_call(
lambda: self._impl.displayLst(exprs, len(exprs)),
self._lock
)
|
Writes on the current OutputHandler the outcome of the AMPL statement.
.. code-block:: ampl
display e1, e2, .., en;
where e1, ..., en are the strings passed to the procedure.
Args:
amplExpressions: Expressions to be evaluated.
|
juraj-google-style
|
def delete_box_comment(self, box_key, comment_key):
self._raise_unimplemented_error()
uri = '/'.join([self.api_uri,
self.boxes_suffix,
box_key,
self.comments_suffix,
comment_key
])
return self._req('delete', uri)
|
Deletes comment in a box with the comment_key
Args:
box_key key for box
return (status code, list of comment dicts)
|
juraj-google-style
|
def _set_xml_from_keys(self, root, item, **kwargs):
(key, val) = item
target_key = root.find(key)
if (target_key is None):
target_key = ElementTree.SubElement(root, key)
if isinstance(val, dict):
for dict_item in val.items():
self._set_xml_from_keys(target_key, dict_item, **kwargs)
return
if (key in kwargs):
kwarg = kwargs[key]
if isinstance(kwarg, bool):
kwargs[key] = str(kwargs[key]).lower()
elif (kwarg is None):
kwargs[key] = ''
elif isinstance(kwarg, int):
kwargs[key] = str(kwargs[key])
elif isinstance(kwarg, JSSObject):
kwargs[key] = kwargs[key].name
target_key.text = kwargs.get(key, val)
|
Create SubElements of root with kwargs.
Args:
root: Element to add SubElements to.
item: Tuple key/value pair from self.data_keys to add.
kwargs:
For each item in self.data_keys, if it has a
corresponding kwarg, create a SubElement at root with
the kwarg's value.
Int and bool values will be cast to string. (Int 10,
bool False become string values "10" and "false").
Dicts will be recursively added to their key's Element.
|
codesearchnet
|
def from_vision_text_configs(cls, vision_config: PretrainedConfig, text_config: PretrainedConfig, **kwargs):
return cls(vision_config=vision_config.to_dict(), text_config=text_config.to_dict(), **kwargs)
|
Instantiate a [`VisionTextDualEncoderConfig`] (or a derived class) from text model configuration and vision
model configuration.
Returns:
[`VisionTextDualEncoderConfig`]: An instance of a configuration object
|
github-repos
|
def RetrieveAsset(logdir, plugin_name, asset_name):
asset_path = os.path.join(PluginDirectory(logdir, plugin_name), asset_name)
try:
with tf.io.gfile.GFile(asset_path, 'r') as f:
return f.read()
except tf.errors.NotFoundError:
raise KeyError(('Asset path %s not found' % asset_path))
except tf.errors.OpError as e:
raise KeyError(("Couldn't read asset path: %s, OpError %s" % (asset_path, e)))
|
Retrieve a particular plugin asset from a logdir.
Args:
logdir: A directory that was created by a TensorFlow summary.FileWriter.
plugin_name: The plugin we want an asset from.
asset_name: The name of the requested asset.
Returns:
string contents of the plugin asset.
Raises:
KeyError: if the asset does not exist.
|
codesearchnet
|
def __init__(self, data=''):
super(Lexer, self).__init__()
self.buffer = data
self.error = 0
self.flags = 0
self.processed = 0
self.processed_buffer = ''
self.state = self._INITIAL_STATE
self.state_stack = []
self.verbose = 0
|
Initializes the lexer object.
Args:
data: optional initial data to be processed by the lexer.
|
juraj-google-style
|
def look_up(self, **keys: Dict[(InstanceName, ScalarValue)]) -> 'ArrayEntry':
if (not isinstance(self.schema_node, ListNode)):
raise InstanceValueError(self.json_pointer(), 'lookup on non-list')
try:
for i in range(len(self.value)):
en = self.value[i]
flag = True
for k in keys:
if (en[k] != keys[k]):
flag = False
break
if flag:
return self._entry(i)
raise NonexistentInstance(self.json_pointer(), 'entry lookup failed')
except KeyError:
raise NonexistentInstance(self.json_pointer(), 'entry lookup failed') from None
except TypeError:
raise InstanceValueError(self.json_pointer(), 'lookup on non-list') from None
|
Return the entry with matching keys.
Args:
keys: Keys and values specified as keyword arguments.
Raises:
InstanceValueError: If the receiver's value is not a YANG list.
NonexistentInstance: If no entry with matching keys exists.
|
codesearchnet
|
def update_current_state(self, value: str, force: bool=False) -> datetime:
value = value.lower()
if (not force):
current_state = self.current_state
if (current_state == 'unknown'):
allowed_transitions = self._allowed_states
else:
allowed_transitions = self._allowed_transitions[current_state]
allowed_transitions.append(current_state)
LOG.debug('Updating current state of %s to %s', self._id, value)
if (value not in allowed_transitions):
raise ValueError("Invalid current state update: '{}'. '{}' can be transitioned to states: {}".format(value, current_state, allowed_transitions))
return self._update_state('current', value)
|
Update the current state.
Args:
value (str): New value for sdp state
force (bool): If true, ignore allowed transitions
Returns:
datetime, update timestamp
Raises:
ValueError: If the specified current state is not allowed.
|
codesearchnet
|
def is_compatible_with(self, spec_or_tensor):
return (self._dtype.is_compatible_with(spec_or_tensor.dtype) and self._shape.is_compatible_with(spec_or_tensor.shape))
|
Returns True if spec_or_tensor is compatible with this TensorSpec.
Two tensors are considered compatible if they have the same dtype
and their shapes are compatible (see `tf.TensorShape.is_compatible_with`).
Args:
spec_or_tensor: A tf.TensorSpec or a tf.Tensor
Returns:
True if spec_or_tensor is compatible with self.
|
codesearchnet
|
def datasets_update(self, dataset_name, dataset_info):
url = (Api._ENDPOINT + (Api._DATASETS_PATH % dataset_name))
return datalab.utils.Http.request(url, method='PUT', data=dataset_info, credentials=self._credentials)
|
Updates the Dataset info.
Args:
dataset_name: the name of the dataset to update as a tuple of components.
dataset_info: the Dataset resource with updated fields.
|
codesearchnet
|
def from_ase_atoms(cls, atoms):
return cls(atoms=atoms.get_chemical_symbols(), coords=atoms.positions)
|
Create an instance of the own class from an ase molecule
Args:
molecule (:class:`ase.atoms.Atoms`):
Returns:
Cartesian:
|
juraj-google-style
|
def _flush(self, buffer, start, end):
buffer_size = len(buffer)
if not buffer_size:
return
with self._size_lock:
if end > self._size:
with _handle_azure_exception():
self._resize(content_length=end, **self._client_kwargs)
self._reset_head()
if buffer_size > self.MAX_FLUSH_SIZE:
futures = []
for part_start in range(0, buffer_size, self.MAX_FLUSH_SIZE):
buffer_part = buffer[
part_start:part_start + self.MAX_FLUSH_SIZE]
if not len(buffer_part):
break
start_range = start + part_start
futures.append(self._workers.submit(
self._update_range, data=buffer_part.tobytes(),
start_range=start_range,
end_range=start_range + len(buffer_part) - 1,
**self._client_kwargs))
with _handle_azure_exception():
for future in _as_completed(futures):
future.result()
else:
with _handle_azure_exception():
self._update_range(
data=buffer.tobytes(), start_range=start,
end_range=end - 1, **self._client_kwargs)
|
Flush the write buffer of the stream if applicable.
Args:
buffer (memoryview): Buffer content.
start (int): Start of buffer position to flush.
Supported only with page blobs.
end (int): End of buffer position to flush.
Supported only with page blobs.
|
juraj-google-style
|
def _step(time, output_ta_t, prev_output, *states):
current_input = tuple((ta.read(time) for ta in input_ta))
current_input = nest.pack_sequence_as(inputs, current_input)
mask_t = masking_fn(time)
output, new_states = step_function(current_input, tuple(states) + tuple(constants))
flat_output = nest.flatten(output)
flat_mask_output = flat_zero_output if zero_output_for_mask else nest.flatten(prev_output)
flat_new_output = compute_masked_output(mask_t, flat_output, flat_mask_output)
flat_state = nest.flatten(states)
flat_new_state = nest.flatten(new_states)
for state, new_state in zip(flat_state, flat_new_state):
if isinstance(new_state, tensor_lib.Tensor):
new_state.set_shape(state.shape)
flat_final_state = compute_masked_output(mask_t, flat_new_state, flat_state)
new_states = nest.pack_sequence_as(new_states, flat_final_state)
output_ta_t = tuple((ta.write(time, out) for ta, out in zip(output_ta_t, flat_new_output)))
return (time + 1, output_ta_t, tuple(flat_new_output)) + tuple(new_states)
|
RNN step function.
Args:
time: Current timestep value.
output_ta_t: TensorArray.
prev_output: tuple of outputs from time - 1.
*states: List of states.
Returns:
Tuple: `(time + 1, output_ta_t, output) + tuple(new_states)`
|
github-repos
|
def __field_to_parameter_type_and_format(self, field):
variant = field.variant
if variant == messages.Variant.MESSAGE:
raise TypeError('A message variant cannot be used in a parameter.')
return CUSTOM_VARIANT_MAP.get(variant) or (variant.name.lower(), None)
|
Converts the field variant type into a tuple describing the parameter.
Args:
field: An instance of a subclass of messages.Field.
Returns:
A tuple with the type and format of the field, respectively.
Raises:
TypeError: if the field variant is a message variant.
|
juraj-google-style
|
def try_claim(self, position):
raise NotImplementedError
|
Attempts to claim the block of work in the current restriction
identified by the given position. Each claimed position MUST be a valid
split point.
If this succeeds, the DoFn MUST execute the entire block of work. If it
fails, the ``DoFn.process()`` MUST return ``None`` without performing any
additional work or emitting output (note that emitting output or performing
work from ``DoFn.process()`` is also not allowed before the first call of
this method).
The API is required to be implemented.
Args:
position: current position that wants to be claimed.
Returns: ``True`` if the position can be claimed as current_position.
Otherwise, returns ``False``.
|
github-repos
|
def unnest_collection(collection, df_list):
for item in collection['link']['item']:
if (item['class'] == 'dataset'):
df_list.append(Dataset.read(item['href']).write('dataframe'))
elif (item['class'] == 'collection'):
nested_collection = request(item['href'])
unnest_collection(nested_collection, df_list)
|
Unnest collection structure extracting all its datasets and converting \
them to Pandas Dataframes.
Args:
collection (OrderedDict): data in JSON-stat format, previously \
deserialized to a python object by \
json.load() or json.loads(),
df_list (list): list variable which will contain the converted \
datasets.
Returns:
Nothing.
|
codesearchnet
|
def _get_model_reference(self, model_id):
return ModelReference.from_api_repr({'projectId': self.project, 'datasetId': self.dataset_id, 'modelId': model_id})
|
Constructs a ModelReference.
Args:
model_id (str): the ID of the model.
Returns:
google.cloud.bigquery.model.ModelReference:
A ModelReference for a model in this dataset.
|
codesearchnet
|
def from_string(contents):
lines = contents.split('\n')
num_sites = int(lines[0])
coords = []
sp = []
prop = []
coord_patt = re.compile(('(\\w+)\\s+([0-9\\-\\.]+)\\s+([0-9\\-\\.]+)\\s+([0-9\\-\\.]+)\\s+' + '([0-9\\-\\.]+)'))
for i in range(2, (2 + num_sites)):
m = coord_patt.search(lines[i])
if m:
sp.append(m.group(1))
coords.append([float(j) for j in [m.group(i) for i in [3, 4, 2]]])
prop.append(float(m.group(5)))
return ZeoVoronoiXYZ(Molecule(sp, coords, site_properties={'voronoi_radius': prop}))
|
Creates Zeo++ Voronoi XYZ object from a string.
from_string method of XYZ class is being redefined.
Args:
contents: String representing Zeo++ Voronoi XYZ file.
Returns:
ZeoVoronoiXYZ object
|
codesearchnet
|
def _step(time, output_ta_t, *states):
current_input = tuple((ta.read(time) for ta in input_ta))
current_input = nest.pack_sequence_as(inputs, current_input)
output, new_states = step_function(current_input, tuple(states) + tuple(constants))
flat_state = nest.flatten(states)
flat_new_state = nest.flatten(new_states)
for state, new_state in zip(flat_state, flat_new_state):
if isinstance(new_state, tensor_lib.Tensor):
new_state.set_shape(state.shape)
flat_output = nest.flatten(output)
output_ta_t = tuple((ta.write(time, out) for ta, out in zip(output_ta_t, flat_output)))
new_states = nest.pack_sequence_as(initial_states, flat_new_state)
return (time + 1, output_ta_t) + tuple(new_states)
|
RNN step function.
Args:
time: Current timestep value.
output_ta_t: TensorArray.
*states: List of states.
Returns:
Tuple: `(time + 1,output_ta_t) + tuple(new_states)`
|
github-repos
|
def annotate_source(source, ast_module, pytype_options):
source_code = infer_types(source, pytype_options)
module = ast_module.parse(source, pytype_options.input)
visitor = AnnotateAstVisitor(source_code, ast_module)
visitor.visit(module)
return module
|
Infer types for `source`, and return an AST of it with types added.
Args:
source: Text, the source code to type-infer and parse to an AST.
ast_module: An ast-module like object used to parse the source to an AST
and traverse the created ast.Module object.
pytype_options: pytype.config.Options, the options to pass onto Pytype.
Returns:
The created Module object from what `ast_factory` returned.
|
github-repos
|
def broadcast_weights(weights, values):
with ops.name_scope(None, 'broadcast_weights', (weights, values)) as scope:
values = ops.convert_to_tensor(values, name='values')
weights = ops.convert_to_tensor(weights, dtype=values.dtype.base_dtype, name='weights')
weights_shape = weights.get_shape()
values_shape = values.get_shape()
if weights_shape.is_fully_defined() and values_shape.is_fully_defined() and weights_shape.is_compatible_with(values_shape):
return weights
if control_flow_ops.get_enclosing_xla_context() is not None:
return math_ops.multiply(weights, array_ops.ones_like(values), name=scope)
with ops.control_dependencies((assert_broadcastable(weights, values),)):
return math_ops.multiply(weights, array_ops.ones_like(values), name=scope)
|
Broadcast `weights` to the same shape as `values`.
This returns a version of `weights` following the same broadcast rules as
`mul(weights, values)`, but limited to the weights shapes allowed by
`assert_broadcastable`. When computing a weighted average, use this function
to broadcast `weights` before summing them; e.g.,
`reduce_sum(w * v) / reduce_sum(_broadcast_weights(w, v))`.
Args:
weights: `Tensor` whose shape is broadcastable to `values` according to the
rules of `assert_broadcastable`.
values: `Tensor` of any shape.
Returns:
`weights` broadcast to `values` shape according to the rules of
`assert_broadcastable`.
|
github-repos
|
def to_dense_one_hot(labels, class_count):
if not isinstance(class_count, tf.compat.integral_types):
raise TypeError('class_count must be an integer type.')
if labels.dtype.base_dtype not in (tf.int32, tf.int64):
raise TypeError('Labels must be an integer: %s' % labels.dtype)
if labels.get_shape().ndims != 1:
raise ValueError('Labels must be a rank 1 tensor: %s' % labels.get_shape())
dtype = labels.dtype.base_dtype
class_tensor = tf.convert_to_tensor(
class_count, dtype=dtype, name='class_count')
batch = tf.gather(tf.shape(labels), 0)
count = tf.expand_dims(tf.range(0, limit=batch), 1)
labels = tf.expand_dims(labels, 1)
batch = tf.gather(tf.shape(labels), 0)
if dtype != tf.int32:
count = tf.cast(count, dtype)
batch = tf.cast(batch, dtype)
result = tf.sparse_to_dense(
tf.concat([count, labels], 1),
tf.concat([tf.expand_dims(batch, 0), tf.expand_dims(class_tensor, 0)], 0),
1.0, 0.0)
result.set_shape([labels.get_shape().dims[0], class_count])
return result
|
Converts a vector that specified one-hot per batch into a dense version.
Args:
labels: The labels input.
class_count: The number of classes as an int.
Returns:
One dense vector for each item in the batch.
Raises:
ValueError: If labels is not rank 1.
TypeError: If class_count is not an integer or labels is not an integer
Tensor.
|
juraj-google-style
|
def pretty_printer_for_analytics(cls, primitive_handler_: primitive_handler.PrimitiveHandler, indent_size: int) -> 'JsonPrinter':
return cls(primitive_handler_, _PrettyJsonTextGenerator(indent_size), _FhirJsonFormat.ANALYTIC)
|
Returns a printer for Analytic FHIR JSON with spaces and newlines.
Args:
primitive_handler_: Responsible for returning PrimitiveWrappers.
indent_size: The size of space indentation for lexical scoping.
|
github-repos
|
def seek_to_beginning(self, *partitions):
if (not all([isinstance(p, TopicPartition) for p in partitions])):
raise TypeError('partitions must be TopicPartition namedtuples')
if (not partitions):
partitions = self._subscription.assigned_partitions()
assert partitions, 'No partitions are currently assigned'
else:
for p in partitions:
assert (p in self._subscription.assigned_partitions()), 'Unassigned partition'
for tp in partitions:
log.debug('Seeking to beginning of partition %s', tp)
self._subscription.need_offset_reset(tp, OffsetResetStrategy.EARLIEST)
|
Seek to the oldest available offset for partitions.
Arguments:
*partitions: Optionally provide specific TopicPartitions, otherwise
default to all assigned partitions.
Raises:
AssertionError: If any partition is not currently assigned, or if
no partitions are assigned.
|
codesearchnet
|
def find_contour_yaml(config_file=__file__, names=None):
checked = set()
contour_yaml = _find_countour_yaml(os.path.dirname(config_file), checked,
names=names)
if not contour_yaml:
contour_yaml = _find_countour_yaml(os.getcwd(), checked, names=names)
return contour_yaml
|
Traverse directory trees to find a contour.yaml file
Begins with the location of this file then checks the
working directory if not found
Args:
config_file: location of this file, override for
testing
Returns:
the path of contour.yaml or None if not found
|
juraj-google-style
|
def sg_prod(tensor, opt):
return tf.reduce_prod(tensor, axis=opt.axis, keep_dims=opt.keep_dims, name=opt.name)
|
r"""Computes the product of elements across axis of a tensor.
See `tf.reduce_prod()` in tensorflow.
Args:
tensor: A `Tensor` (automatically given by chain).
opt:
axis : A tuple/list of integers or an integer. The axis to reduce.
keep_dims: If true, retains reduced dimensions with length 1.
name: If provided, replace current tensor's name.
Returns:
A `Tensor`.
|
codesearchnet
|
def __init__(self, filenames, compression_type=None, buffer_size=None, name=None):
self._filenames = filenames
self._compression_type = convert.optional_param_to_tensor('compression_type', compression_type, argument_default='', argument_dtype=dtypes.string)
self._buffer_size = convert.optional_param_to_tensor('buffer_size', buffer_size, argument_default=_DEFAULT_READER_BUFFER_SIZE_BYTES)
self._name = name
variant_tensor = gen_dataset_ops.text_line_dataset(self._filenames, self._compression_type, self._buffer_size, metadata=self._metadata.SerializeToString())
super(_TextLineDataset, self).__init__(variant_tensor)
|
Creates a `TextLineDataset`.
Args:
filenames: A `tf.string` tensor containing one or more filenames.
compression_type: (Optional.) A `tf.string` scalar evaluating to one of
`""` (no compression), `"ZLIB"`, or `"GZIP"`.
buffer_size: (Optional.) A `tf.int64` scalar denoting the number of bytes
to buffer. A value of 0 results in the default buffering values chosen
based on the compression type.
name: (Optional.) A name for the tf.data operation.
|
github-repos
|
def moves_from_last_n_games(self, n, moves, shuffle, column_family, column):
self.wait_for_fresh_games()
latest_game = self.latest_game_number
utils.dbg(('Latest game in %s: %s' % (self.btspec.table, latest_game)))
if (latest_game == 0):
raise ValueError('Cannot find a latest game in the table')
start = int(max(0, (latest_game - n)))
ds = self.moves_from_games(start, latest_game, moves, shuffle, column_family, column)
return ds
|
Randomly choose a given number of moves from the last n games.
Args:
n: number of games at the end of this GameQueue to source.
moves: number of moves to be sampled from `n` games.
shuffle: if True, shuffle the selected moves.
column_family: name of the column family containing move examples.
column: name of the column containing move examples.
Returns:
a dataset containing the selected moves.
|
codesearchnet
|
def get_value_set(self, value_set_url: str) -> Optional[_ValueSetT]:
|
Returns the ValueSet identified by the given URL.
Args:
value_set_url: The URL for the FHIR ValueSet to be returned.
Returns:
The corresponding value set, or None if no such value set exists.
|
github-repos
|
def mirror_pull(self, **kwargs):
path = ('/projects/%s/mirror/pull' % self.get_id())
self.manager.gitlab.http_post(path, **kwargs)
|
Start the pull mirroring process for the project.
Args:
**kwargs: Extra options to send to the server (e.g. sudo)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabCreateError: If the server failed to perform the request
|
codesearchnet
|
def get_package_from_string(txt, paths=None):
o = VersionedObject(txt)
return get_package(o.name, o.version, paths=paths)
|
Get a package given a string.
Args:
txt (str): String such as 'foo', 'bah-1.3'.
paths (list of str, optional): paths to search for package, defaults
to `config.packages_path`.
Returns:
`Package` instance, or None if no package was found.
|
juraj-google-style
|
def fail_api(channel):
gui = ui_embed.UI(channel, "Couldn't get stats off RLTrackerNetwork.", 'Maybe the API changed, please tell Infraxion.', modulename=modulename, colour=35071)
return gui
|
Creates an embed UI for when the API call didn't work
Args:
channel (discord.Channel): The Discord channel to bind the embed to
Returns:
ui (ui_embed.UI): The embed UI object
|
codesearchnet
|
def require_meta_and_content(self, content_handler, params, **kwargs):
meta = {'params': params}
content = content_handler(params, meta, **kwargs)
meta['params'] = params
return (meta, content)
|
Require 'meta' and 'content' dictionaries using proper hander.
Args:
content_handler (callable): function that accepts
``params, meta, **kwargs`` argument and returns dictionary
for ``content`` response section
params (dict): dictionary of parsed resource parameters
kwargs (dict): dictionary of values created from resource url
template
Returns:
tuple (meta, content): two-tuple with dictionaries of ``meta`` and
``content`` response sections
|
codesearchnet
|
def CheckVersion(problems, latest_version=None):
if (not latest_version):
timeout = 20
socket.setdefaulttimeout(timeout)
request = urllib2.Request(LATEST_RELEASE_VERSION_URL)
try:
response = urllib2.urlopen(request)
content = response.read()
m = re.search('version=(\\d+\\.\\d+\\.\\d+)', content)
if m:
latest_version = m.group(1)
except urllib2.HTTPError as e:
description = ('During the new-version check, we failed to reach transitfeed server: Reason: %s [%s].' % (e.reason, e.code))
problems.OtherProblem(description=description, type=errors.TYPE_NOTICE)
return
except urllib2.URLError as e:
description = ('During the new-version check, we failed to reach transitfeed server. Reason: %s.' % e.reason)
problems.OtherProblem(description=description, type=errors.TYPE_NOTICE)
return
if (not latest_version):
description = ('During the new-version check, we had trouble parsing the contents of %s.' % LATEST_RELEASE_VERSION_URL)
problems.OtherProblem(description=description, type=errors.TYPE_NOTICE)
return
newest_version = _MaxVersion([latest_version, __version__])
if (__version__ != newest_version):
problems.NewVersionAvailable(newest_version)
|
Check if there is a newer version of transitfeed available.
Args:
problems: if a new version is available, a NewVersionAvailable problem will
be added
latest_version: if specified, override the latest version read from the
project page
|
codesearchnet
|
def run_defense_work(self, work_id):
class_batch_id = self.defense_work.work[work_id]['output_classification_batch_id']
class_batch = self.class_batches.read_batch_from_datastore(class_batch_id)
adversarial_batch_id = class_batch['adversarial_batch_id']
submission_id = class_batch['submission_id']
cloud_result_path = class_batch['result_path']
logging.info('Defense work piece: adversarial_batch_id="%s" submission_id="%s"', adversarial_batch_id, submission_id)
if (submission_id in self.blacklisted_submissions):
raise WorkerError('Blacklisted submission')
defense = DefenseSubmission(submission_id, self.submissions, self.storage_bucket)
defense.download()
input_dir = os.path.join(LOCAL_INPUT_DIR, adversarial_batch_id)
if os.path.exists(input_dir):
sudo_remove_dirtree(input_dir)
os.makedirs(input_dir)
try:
shell_call(['gsutil', '-m', 'cp', os.path.join('gs:
adv_images_files = os.listdir(input_dir)
if ((len(adv_images_files) == 1) and adv_images_files[0].endswith('.zip')):
logging.info('Adversarial batch is in zip archive %s', adv_images_files[0])
shell_call(['unzip', os.path.join(input_dir, adv_images_files[0]), '-d', input_dir])
os.remove(os.path.join(input_dir, adv_images_files[0]))
adv_images_files = os.listdir(input_dir)
logging.info('%d adversarial images copied', len(adv_images_files))
except (subprocess.CalledProcessError, IOError) as e:
raise WorkerError('Cant copy adversarial batch locally', e)
if os.path.exists(LOCAL_OUTPUT_DIR):
sudo_remove_dirtree(LOCAL_OUTPUT_DIR)
os.mkdir(LOCAL_OUTPUT_DIR)
output_filname = os.path.join(LOCAL_OUTPUT_DIR, 'result.csv')
elapsed_time_sec = defense.run(input_dir, output_filname)
batch_result = eval_lib.analyze_one_classification_result(storage_client=None, file_path=output_filname, adv_batch=self.adv_batches.data[adversarial_batch_id], dataset_batches=self.dataset_batches, dataset_meta=self.dataset_meta)
try:
shell_call(['gsutil', 'cp', output_filname, os.path.join('gs:
except subprocess.CalledProcessError as e:
raise WorkerError('Cant result to Cloud Storage', e)
return (elapsed_time_sec, submission_id, batch_result)
|
Runs one defense work.
Args:
work_id: ID of the piece of work to run
Returns:
elapsed_time_sec, submission_id - elapsed time and id of the submission
Raises:
WorkerError: if error occurred during execution.
|
codesearchnet
|
def verify_key_in_shelve(file_name, save_key, file_location):
file = __os.path.join(file_location, file_name)
shelve_store = __shelve.open(file)
exists = shelve_store.get(save_key)
shelve_store.close()
if exists:
return True
elif not exists:
return False
|
Function to check for a key in a shelve
Args:
file_name: Shelve storage file name
save_key: The name of the key the item is stored in
file_location: The location of the file, derive from the os module
Returns: returns true or false
|
juraj-google-style
|
def __init__(self, config: Dict) -> None:
self.fields_dict = dict()
try:
for field in config["fields"]:
if config["fields"][field]["type"] == "kg_id":
self.fields_dict[field] = FieldType.KG_ID
elif config["fields"][field]["type"] == "number":
self.fields_dict[field] = FieldType.NUMBER
elif config["fields"][field]["type"] == "date":
self.fields_dict[field] = FieldType.DATE
elif config["fields"][field]["type"] == "location":
self.fields_dict[field] = FieldType.LOCATION
else:
self.fields_dict[field] = FieldType.STRING
except KeyError as key:
print(str(key) + " not in config")
|
Record a mapping about each fields and its type from config file
Args:
config: Dict
|
juraj-google-style
|
def dependency_of_targets(targets, op):
if isinstance(op, tf.Tensor):
op = op.op
assert isinstance(op, tf.Operation), op
from tensorflow.contrib.graph_editor import get_backward_walk_ops
dependent_ops = get_backward_walk_ops(targets, control_inputs=True)
return (op in dependent_ops)
|
Check that op is in the subgraph induced by the dependencies of targets.
The result is memoized.
This is useful if some SessionRunHooks should be run only together with certain ops.
Args:
targets: a tuple of ops or tensors. The targets to find dependencies of.
op (tf.Operation or tf.Tensor):
Returns:
bool: True if any one of `targets` depend on `op`.
|
codesearchnet
|
def get_model_indexes(model):
indexes = []
for index in get_index_names():
for app_model in get_index_models(index):
if app_model == model:
indexes.append(index)
return indexes
|
Return list of all indexes in which a model is configured.
A model may be configured to appear in multiple indexes. This function
will return the names of the indexes as a list of strings. This is
useful if you want to know which indexes need updating when a model
is saved.
Args:
model: a Django model class.
|
juraj-google-style
|
def get(self, container_id):
resp = self.client.api.inspect_container(container_id)
return self.prepare_model(resp)
|
Get a container by name or ID.
Args:
container_id (str): Container name or ID.
Returns:
A :py:class:`Container` object.
Raises:
:py:class:`docker.errors.NotFound`
If the container does not exist.
:py:class:`docker.errors.APIError`
If the server returns an error.
|
juraj-google-style
|
def _kl_half_normal_half_normal(a, b, name=None):
with tf.name_scope(name or "kl_half_normal_half_normal"):
return (tf.math.log(b.scale) - tf.math.log(a.scale) +
(a.scale**2 - b.scale**2) / (2 * b.scale**2))
|
Calculate the batched KL divergence KL(a || b) with a and b `HalfNormal`.
Args:
a: Instance of a `HalfNormal` distribution object.
b: Instance of a `HalfNormal` distribution object.
name: (optional) Name to use for created operations.
default is "kl_half_normal_half_normal".
Returns:
Batchwise KL(a || b)
|
juraj-google-style
|
async def do_upload(context, files):
status = 0
try:
await upload_artifacts(context, files)
except ScriptWorkerException as e:
status = worst_level(status, e.exit_code)
log.error("Hit ScriptWorkerException: {}".format(e))
except aiohttp.ClientError as e:
status = worst_level(status, STATUSES['intermittent-task'])
log.error("Hit aiohttp error: {}".format(e))
except Exception as e:
log.exception("SCRIPTWORKER_UNEXPECTED_EXCEPTION upload {}".format(e))
raise
return status
|
Upload artifacts and return status.
Returns the integer status of the upload.
args:
context (scriptworker.context.Context): the scriptworker context.
files (list of str): list of files to be uploaded as artifacts
Raises:
Exception: on unexpected exception.
Returns:
int: exit status
|
juraj-google-style
|
def export_ply(filename, cutout, level=0):
if ".ply" not in filename:
filename = filename + ".ply"
vs, fs = mcubes.marching_cubes(cutout, level)
with open(filename, 'w') as fh:
lines = [
"ply"
"format ascii 1.0",
"comment generated by ndio",
"element vertex " + str(len(vs)),
"property float32 x",
"property float32 y",
"property float32 z",
"element face " + str(len(fs)),
"property list uint8 int32 vertex_index",
"end_header"
]
fh.writelines(lines)
for v in vs:
fh.write("{} {} {}".format(v[0], v[1], v[2]))
for f in fs:
fh.write("3 {} {} {}".format(f[0], f[1], f[2]))
|
Converts a dense annotation to a .PLY, using Marching Cubes (PyMCubes).
Arguments:
filename (str): The filename to write out to
cutout (numpy.ndarray): The dense annotation
level (int): The level at which to run mcubes
Returns:
boolean success
|
juraj-google-style
|
def send(self, content_type='HTML'):
payload = self.api_representation(content_type)
endpoint = 'https:
self._make_api_call('post', endpoint=endpoint, data=json.dumps(payload))
|
Takes the recipients, body, and attachments of the Message and sends.
Args:
content_type: Can either be 'HTML' or 'Text', defaults to HTML.
|
codesearchnet
|
def assert_array_lines_close(test, expected_array, array_lines):
elements = []
for line in array_lines:
line = re.sub(_ARRAY_VALUE_SEPARATOR_REGEX, ' ', line)
elements.extend((float(s) for s in line.split()))
test.assertAllClose(np.array(expected_array).flatten(), elements)
|
Assert that the array value represented by lines is close to expected.
Note that the shape of the array represented by the `array_lines` is ignored.
Args:
test: An instance of TensorFlowTestCase.
expected_array: Expected value of the array.
array_lines: A list of strings representing the array.
E.g., "array([[ 1.0, 2.0 ], [ 3.0, 4.0 ]])"
Assumes that values are separated by commas, parentheses, brackets, "|"
characters and whitespace.
|
github-repos
|
def extract(self, destdir, decompress='auto'):
for e in self.mardata.index.entries:
name = e.name
entry_path = safejoin(destdir, name)
entry_dir = os.path.dirname(entry_path)
mkdir(entry_dir)
with open(entry_path, 'wb') as f:
write_to_file(self.extract_entry(e, decompress), f)
os.chmod(entry_path, e.flags)
|
Extract the entire MAR file into a directory.
Args:
destdir (str): A local directory on disk into which the contents of
this MAR file will be extracted. Required parent directories
will be created as necessary.
decompress (obj, optional): Controls whether files are decompressed
when extracted. Must be one of 'auto' or None. Defaults to
'auto'.
|
juraj-google-style
|
def fabrics(self):
if (not self.__fabrics):
self.__fabrics = Fabrics(self.__connection)
return self.__fabrics
|
Gets the Fabrics API client.
Returns:
Fabrics:
|
codesearchnet
|
def is_line_in_file(filename: str, line: str) -> bool:
assert ('\n' not in line)
with open(filename, 'r') as file:
for fileline in file:
if (fileline == line):
return True
return False
|
Detects whether a line is present within a file.
Args:
filename: file to check
line: line to search for (as an exact match)
|
codesearchnet
|
def _seconds_have_elapsed(token, num_seconds):
now = timeit.default_timer()
then = _log_timer_per_token.get(token, None)
if then is None or (now - then) >= num_seconds:
_log_timer_per_token[token] = now
return True
else:
return False
|
Tests if 'num_seconds' have passed since 'token' was requested.
Not strictly thread-safe - may log with the wrong frequency if called
concurrently from multiple threads. Accuracy depends on resolution of
'timeit.default_timer()'.
Always returns True on the first call for a given 'token'.
Args:
token: The token for which to look up the count.
num_seconds: The number of seconds to test for.
Returns:
Whether it has been >= 'num_seconds' since 'token' was last requested.
|
juraj-google-style
|
def master_key_from_entropy(passphrase='', strength=128):
if strength % 32 != 0:
raise ValueError("strength must be a multiple of 32")
if strength < 128 or strength > 256:
raise ValueError("strength should be >= 128 and <= 256")
entropy = rand_bytes(strength
m = Mnemonic(language='english')
n = m.to_mnemonic(entropy)
return HDPrivateKey.master_key_from_seed(
Mnemonic.to_seed(n, passphrase)), n
|
Generates a master key from system entropy.
Args:
strength (int): Amount of entropy desired. This should be
a multiple of 32 between 128 and 256.
passphrase (str): An optional passphrase for the generated
mnemonic string.
Returns:
HDPrivateKey, str:
a tuple consisting of the master
private key and a mnemonic string from which the seed
can be recovered.
|
juraj-google-style
|
def __init__(self, sharding_specs: List[str], mesh: Mesh):
if not isinstance(mesh, Mesh):
raise ValueError('mesh is not a valid Mesh object.')
for _, dim_sharding in enumerate(sharding_specs):
if dim_sharding == UNSHARDED or dim_sharding == MATCH:
continue
if sharding_specs.count(dim_sharding) > 1:
raise ValueError(('Mesh dimension {mesh_dim} was repeated in sharding ' + 'specification {sharding_specs}. Mesh dimensions must be unique ' + 'in a layout.').format(mesh_dim=dim_sharding, sharding_specs=sharding_specs))
if dim_sharding not in mesh:
raise ValueError(('{dim_sharding}: A dimension sharding must either be a ' + 'valid mesh dimension or UNSHARDED.').format(dim_sharding=dim_sharding))
super().__init__(type=LayoutType.STATIC, sharding_specs=sharding_specs, mesh=mesh)
|
Builds a Layout from a list of dimension names and a Mesh.
Args:
sharding_specs: List of sharding specifications, each corresponding to a
tensor axis. Each specification (dim_sharding) can either be a mesh
dimension or the special value UNSHARDED.
mesh: A mesh configuration for the Tensor.
Returns:
A valid Layout built with given layout & mesh.
|
github-repos
|
def load_examples(tmp_dir, prop_train=0.09, prop_val=0.01):
infile = generator_utils.maybe_download(tmp_dir, _TAR, _URL)
tf.logging.info('Loading examples')
all_examples = []
for (i, d) in enumerate(csv.DictReader(gzip.open(infile), delimiter='\t')):
if ((i % 100000) == 0):
tf.logging.info(('%d examples have been loaded....' % i))
ex = {x: (int(y) if y.isdigit() else y) for (x, y) in d.items()}
all_examples.append(ex)
random.seed(1)
random.shuffle(all_examples)
n_train = int((len(all_examples) * prop_train))
n_val = (n_train + int((len(all_examples) * prop_val)))
train = all_examples[:n_train]
val = all_examples[n_train:n_val]
test = []
for e in all_examples[n_val:]:
if (e['n_intervening'] == e['n_diff_intervening']):
test.append(e)
return (all_examples, train, val, test)
|
Loads exampls from the tsv file.
Args:
tmp_dir: temp directory.
prop_train: proportion of the train data
prop_val: proportion of the validation data
Returns:
All examples in the dataset pluse train, test, and development splits.
|
codesearchnet
|
def start(self, device):
super(NativeBLEVirtualInterface, self).start(device)
self.set_advertising(True)
|
Start serving access to this VirtualIOTileDevice
Args:
device (VirtualIOTileDevice): The device we will be providing access to
|
codesearchnet
|
def add_densities(density1, density2):
return {spin: np.array(density1[spin]) + np.array(density2[spin])
for spin in density1.keys()}
|
Method to sum two densities.
Args:
density1: First density.
density2: Second density.
Returns:
Dict of {spin: density}.
|
juraj-google-style
|
def min(self):
if (len(self._data) == 0):
return 10
return next(iter(sorted(self._data.keys())))
|
Return the minimum value in this histogram.
If there are no values in the histogram at all, return 10.
Returns:
int: The minimum value in the histogram.
|
codesearchnet
|
def begin_abort(self, root_pipeline_key, abort_message):
def txn():
pipeline_record = db.get(root_pipeline_key)
if (pipeline_record is None):
logging.warning('Tried to abort root pipeline ID "%s" but it does not exist.', root_pipeline_key.name())
raise db.Rollback()
if (pipeline_record.status == _PipelineRecord.ABORTED):
logging.warning('Tried to abort root pipeline ID "%s"; already in state: %s', root_pipeline_key.name(), pipeline_record.status)
raise db.Rollback()
if pipeline_record.abort_requested:
logging.warning('Tried to abort root pipeline ID "%s"; abort signal already sent.', root_pipeline_key.name())
raise db.Rollback()
pipeline_record.abort_requested = True
pipeline_record.abort_message = abort_message
pipeline_record.put()
task = taskqueue.Task(url=self.fanout_abort_handler_path, params=dict(root_pipeline_key=root_pipeline_key))
task.add(queue_name=self.queue_name, transactional=True)
return True
return db.run_in_transaction(txn)
|
Kicks off the abort process for a root pipeline and all its children.
Args:
root_pipeline_key: db.Key of the root pipeline to abort.
abort_message: Message explaining why the abort happened, only saved
into the root pipeline.
Returns:
True if the abort signal was sent successfully; False otherwise.
|
codesearchnet
|
def search(self, searchAreaWkt=None, filters=None, startDate=None, endDate=None, types=None):
if (not types):
types = ['Acquisition']
if startDate:
startDateTime = datetime.datetime.strptime(startDate, '%Y-%m-%dT%H:%M:%S.%fZ')
if endDate:
endDateTime = datetime.datetime.strptime(endDate, '%Y-%m-%dT%H:%M:%S.%fZ')
if (startDate and endDate):
diff = (endDateTime - startDateTime)
if (diff.days < 0):
raise Exception('startDate must come before endDate.')
postdata = {'searchAreaWkt': searchAreaWkt, 'types': types, 'startDate': startDate, 'endDate': endDate}
if filters:
postdata['filters'] = filters
if searchAreaWkt:
postdata['searchAreaWkt'] = searchAreaWkt
url = ('%(base_url)s/search' % {'base_url': self.base_url})
headers = {'Content-Type': 'application/json'}
r = self.gbdx_connection.post(url, headers=headers, data=json.dumps(postdata))
r.raise_for_status()
results = r.json()['results']
return results
|
Perform a catalog search
Args:
searchAreaWkt: WKT Polygon of area to search. Optional.
filters: Array of filters. Optional. Example:
[
"(sensorPlatformName = 'WORLDVIEW01' OR sensorPlatformName ='QUICKBIRD02')",
"cloudCover < 10",
"offNadirAngle < 10"
]
startDate: string. Optional. Example: "2004-01-01T00:00:00.000Z"
endDate: string. Optional. Example: "2004-01-01T00:00:00.000Z"
types: Array of types to search for. Optional. Example (and default): ["Acquisition"]
Returns:
catalog search resultset
|
codesearchnet
|
def lookup_symbol(self, name, namespace_stack):
symbol = Symbol(name, name.split('::'), namespace_stack)
assert symbol.parts
if symbol.parts[0] == '':
symbol.parts = symbol.parts[1:]
elif namespace_stack is not None:
result = self._lookup_in_all_namespaces(symbol)
if result:
return result
return self._lookup_global(symbol)
|
Returns AST node and module for symbol if found.
Args:
name: 'name of the symbol to lookup'
namespace_stack: None or ['namespaces', 'in', 'current', 'scope']
Returns:
(ast.Node, module (ie, any object stored with symbol)) if found
Raises:
Error if the symbol cannot be found.
|
juraj-google-style
|
def _get_ngrams(ngram_size: int, prev_input_ids: torch.Tensor, num_hypos: int):
generated_ngrams = [{} for _ in range(num_hypos)]
for idx in range(num_hypos):
gen_tokens = prev_input_ids[idx].tolist()
generated_ngram = generated_ngrams[idx]
for ngram in zip(*[gen_tokens[i:] for i in range(ngram_size)]):
prev_ngram_tuple = tuple(ngram[:-1])
generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]]
return generated_ngrams
|
Assume ngram_size=2 and prev_input_ids=tensor([[40, 2883, 2712, 4346]]). The output of generated ngrams look like
this {(40,): [2883], (2883,): [2712], (2712,): [4346]}.
Args:
ngram_size (`int`):
The number sequential tokens taken as a group which may only occur once before being banned.
prev_input_ids (`torch.Tensor`):
Generated token ids for the current hypothesis.
num_hypos (`int`):
The number of hypotheses for which n-grams need to be generated.
Returns:
generated_ngrams (`dict`):
Dictionary of generated ngrams.
|
github-repos
|
def _rmsprop(self, grads, cache=None, decay_rate=0.95):
if (cache is None):
cache = np.zeros_like(grads)
cache = ((decay_rate * cache) + ((1 - decay_rate) * (grads ** 2)))
step = ((- grads) / np.sqrt((cache + K.epsilon())))
return (step, cache)
|
Uses RMSProp to compute step from gradients.
Args:
grads: numpy array of gradients.
cache: numpy array of same shape as `grads` as RMSProp cache
decay_rate: How fast to decay cache
Returns:
A tuple of
step: numpy array of the same shape as `grads` giving the step.
Note that this does not yet take the learning rate into account.
cache: Updated RMSProp cache.
|
codesearchnet
|
def _create_and_save_file_init_hash_table_qat_model_tf1(self, output_path: str, tags: Collection[str], signature_def_key: str) -> Tuple[Mapping[str, core.Tensor], Mapping[str, core.Tensor]]:
with session.Session(graph=ops.Graph()) as sess:
input_vocabs_placeholder, lookup_tensor, output_tensor = self._create_table_init_from_file_qat_model_tf1(sess)
inputs = {'input_vocabs': input_vocabs_placeholder}
outputs = {'lookup': lookup_tensor, 'output': output_tensor}
self._save_tf1_model(sess, output_path, signature_def_key, tags, inputs=inputs, outputs=outputs, init_op=lookup_ops.tables_initializer(), assets_collection=ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS))
return (inputs, outputs)
|
Creates and saves a QAT model that uses a file-initialized table.
The asset file "vocab_file.txt" is used to initialize a hash table.
Args:
output_path: Path to the directory to save the created model.
tags: Set of strings that identifies the saved meta graph.
signature_def_key: Name of the SignatureDef. Used to identify the
SignatureDef within the meta graph.
Returns:
inputs: A mapping of input_key -> input_tensor (placeholder). The input
key is "input_vocabs".
outputs: A mapping of output_key -> output_tensor. The output keys are
"lookup" and "output".
|
github-repos
|
def get_string(self):
return_string = None
if not self.mmc:
return ""
method = 'PDASTRING'
if method == 'PDASTRING':
stringgen = PdaString()
print '* Reduce PDA using DFA BFS (remove unreachable states):'
newpda = self.mmc.s
handle = IntersectionHandling()
newpda = handle.get(newpda, self.mmc.accepted)
reduce_b = ReducePDA()
newpda = reduce_b.get(newpda)
print "- Total PDA states after reduction are " + repr(len(newpda))
return_string = stringgen.init(newpda, self.mmc.accepted)
if return_string is not None:
return_string = return_string[0]
elif method == 'PDACFGSTRING':
optimized = 1
dt1 = datetime.datetime.fromtimestamp(time.time())
print '* Initiating PDA simplification'
print ' - Total PDA states are ' + repr(len(self.mmc.s))
handle = IntersectionHandling()
newpda = handle.get(self.mmc.s, self.mmc.accepted)
newpda = self.mmc.s
simply = SimplifyStateIDs()
newpda, biggestid, newaccepted = simply.get(
newpda, self.mmc.accepted)
print ' - Total PDA states after id clearence are ' + repr(len(newpda))
replace = ReadReplace(newpda, biggestid)
newpda = replace.replace_read()
print ' - Total PDA states after read elimination are ' + repr(len(newpda))
maxstate = replace.nextstate() - 1
print '* Reduce PDA using DFA BFS (remove unreachable states):'
reduce_b = ReducePDA()
newpda = reduce_b.get(newpda)
print "- Total PDA states after reduction are " + repr(len(newpda))
dt2 = datetime.datetime.fromtimestamp(time.time())
rdelta = dateutil.relativedelta.relativedelta(dt2, dt1)
print "* PDA was simplyfied in %d days, %d hours, %d minutes and %d seconds" % (
rdelta.days, rdelta.hours, rdelta.minutes, rdelta.seconds)
dt1 = datetime.datetime.fromtimestamp(time.time())
print '* Initiating CNF from PDA generation'
cnfgenerator = PdaCnf(newpda, newaccepted)
dt2 = datetime.datetime.fromtimestamp(time.time())
rdelta = dateutil.relativedelta.relativedelta(dt2, dt1)
print "* CNF was generated in %d days, %d hours, %d minutes and %d seconds" % (
rdelta.days, rdelta.hours, rdelta.minutes, rdelta.seconds)
dt1 = datetime.datetime.fromtimestamp(time.time())
print '* Initiating string from CFG generation'
grammar = cnfgenerator.get_rules(optimized)
print ' - Total grammar rules are ' + repr(len(grammar))
gen = CFGGenerator(CNFGenerator(grammar),
optimized=optimized,
splitstring=0,
maxstate=maxstate)
return_string = gen.generate()
dt2 = datetime.datetime.fromtimestamp(time.time())
rdelta = dateutil.relativedelta.relativedelta(dt2, dt1)
print "* A string was generated in %d days, %d hours, %d minutes and %d seconds" % (
rdelta.days, rdelta.hours, rdelta.minutes, rdelta.seconds)
print return_string
else:
return_string = None
return return_string
|
Returns a string from the Diff resutl.
Depending on the method, either the string will
be generated directly from the PDA using the state
removal method, or the PDA will be first translated to
a CFG and then a string will be generated from the CFG
Args:
None
Returns:
A string from the Diff
|
juraj-google-style
|
def load(cls, fh):
dat = fh.read()
try:
ret = cls.from_json(dat)
except:
ret = cls.from_yaml(dat)
return ret
|
Load json or yaml data from file handle.
Args:
fh (file): File handle to load from.
Examlple:
>>> with open('data.json', 'r') as json:
>>> jsdata = composite.load(json)
>>>
>>> with open('data.yml', 'r') as yml:
>>> ymldata = composite.load(yml)
|
codesearchnet
|
def check(self, dsm, **kwargs):
layered_architecture = True
messages = []
categories = dsm.categories
dsm_size = dsm.size[0]
if (not categories):
categories = (['appmodule'] * dsm_size)
for i in range(0, (dsm_size - 1)):
for j in range((i + 1), dsm_size):
if ((categories[i] != 'broker') and (categories[j] != 'broker') and (dsm.entities[i].split('.')[0] != dsm.entities[j].split('.')[0])):
if (dsm.data[i][j] > 0):
layered_architecture = False
messages.append(('Dependency from %s to %s breaks the layered architecture.' % (dsm.entities[i], dsm.entities[j])))
return (layered_architecture, '\n'.join(messages))
|
Check layered architecture.
Args:
dsm (:class:`DesignStructureMatrix`): the DSM to check.
Returns:
bool, str: True if layered architecture else False, messages
|
codesearchnet
|
def _process_output_source_directive(schema, current_schema_type, ast, location, context, local_unique_directives):
output_source_directive = local_unique_directives.get('output_source', None)
if output_source_directive:
if has_encountered_output_source(context):
raise GraphQLCompilationError(u'Cannot have more than one output source!')
if is_in_optional_scope(context):
raise GraphQLCompilationError(u'Cannot have the output source in an optional block!')
set_output_source_data(context, location)
return blocks.OutputSource()
else:
return None
|
Process the output_source directive, modifying the context as appropriate.
Args:
schema: GraphQL schema object, obtained from the graphql library
current_schema_type: GraphQLType, the schema type at the current location
ast: GraphQL AST node, obtained from the graphql library
location: Location object representing the current location in the query
context: dict, various per-compilation data (e.g. declared tags, whether the current block
is optional, etc.). May be mutated in-place in this function!
local_unique_directives: dict, directive name string -> directive object, containing
unique directives present on the current AST node *only*
Returns:
an OutputSource block, if one should be emitted, or None otherwise
|
codesearchnet
|
def facade(projectmainfn, **kwargs):
site_url = Configuration._create(**kwargs)
logger.info('--------------------------------------------------')
logger.info('> Using HDX Python API Library %s' % Configuration.apiversion)
logger.info('> HDX Site: %s' % site_url)
UserAgent.user_agent = Configuration.read().user_agent
projectmainfn()
|
Facade to simplify project setup that calls project main function
Args:
projectmainfn ((None) -> None): main function of project
**kwargs: configuration parameters to pass to HDX Configuration class
Returns:
None
|
juraj-google-style
|
def hub_retry(max_attempts: int=5, wait_before_retry: Optional[float]=2):
def decorator(test_func_ref):
@functools.wraps(test_func_ref)
def wrapper(*args, **kwargs):
retry_count = 1
while retry_count < max_attempts:
try:
return test_func_ref(*args, **kwargs)
except (requests.exceptions.ConnectionError, requests.exceptions.Timeout, requests.exceptions.ReadTimeout, requests.exceptions.HTTPError, requests.exceptions.RequestException) as err:
logger.error(f"Test failed with {err} at try {retry_count}/{max_attempts} as it couldn't connect to the specified Hub repository.")
if wait_before_retry is not None:
time.sleep(wait_before_retry)
retry_count += 1
return test_func_ref(*args, **kwargs)
return wrapper
return decorator
|
To decorate tests that download from the Hub. They can fail due to a
variety of network issues such as timeouts, connection resets, etc.
Args:
max_attempts (`int`, *optional*, defaults to 5):
The maximum number of attempts to retry the flaky test.
wait_before_retry (`float`, *optional*, defaults to 2):
If provided, will wait that number of seconds before retrying the test.
|
github-repos
|
def Feed(self, size=512):
data = self.file_object.read(size)
Lexer.Feed(self, data)
return len(data)
|
Feed data into the buffer.
Args:
size: optional data size to read form the file-like object.
|
juraj-google-style
|
def _create_security_group(self, ingress):
template_kwargs = {'app': self.app_name, 'env': self.env, 'region': self.region, 'vpc': get_vpc_id(self.env, self.region), 'description': self.properties['security_group']['description'], 'ingress': ingress}
secgroup_json = get_template(template_file='infrastructure/securitygroup_data.json.j2', formats=self.generated, **template_kwargs)
wait_for_task(secgroup_json)
return True
|
Send a POST to spinnaker to create a new security group.
Returns:
boolean: True if created successfully
|
codesearchnet
|
def get_measurements(region, core_info, data, extra_offset=0):
measurements = []
clean_core_info = [x for x in core_info if x]
cores = len(clean_core_info)
for k in data:
if k not in ["1", "Region Info", "Event", "Metric", "CPU clock"]:
slot = data[k]
for i in range(cores):
core = core_info[i]
idx = extra_offset + i
if core and slot[idx]:
measurements.append((region, k, core, slot[idx]))
return measurements
|
Get the complete measurement info from likwid's region info.
Args:
region: The region we took a measurement in.
core_info: The core information.
data: The raw data.
extra_offset (int): default = 0
Returns (list((region, metric, core, value))):
A list of measurement tuples, a tuple contains the information about
the region, the metric, the core and the actual value.
|
juraj-google-style
|
def _GetValueAsObject(self, property_value):
if (property_value.type == pyolecf.value_types.BOOLEAN):
return property_value.data_as_boolean
if (property_value.type in self._INTEGER_TYPES):
return property_value.data_as_integer
if (property_value.type in self._STRING_TYPES):
return property_value.data_as_string
try:
data = property_value.data
except IOError:
data = None
return data
|
Retrieves the property value as a Python object.
Args:
property_value (pyolecf.property_value): OLECF property value.
Returns:
object: property value as a Python object.
|
codesearchnet
|
def clear_config(clear_constants=False):
_set_config_is_locked(False)
_CONFIG.clear()
_SINGLETONS.clear()
if clear_constants:
_CONSTANTS.clear()
else:
saved_constants = _CONSTANTS.copy()
_CONSTANTS.clear()
for (name, value) in six.iteritems(saved_constants):
constant(name, value)
_IMPORTED_MODULES.clear()
_OPERATIVE_CONFIG.clear()
|
Clears the global configuration.
This clears any parameter values set by `bind_parameter` or `parse_config`, as
well as the set of dynamically imported modules. It does not remove any
configurable functions or classes from the registry of configurables.
Args:
clear_constants: Whether to clear constants created by `constant`. Defaults
to False.
|
codesearchnet
|
def restrict_bond_dict(self, bond_dict):
return {j: (bond_dict[j] & set(self.index)) for j in self.index}
|
Restrict a bond dictionary to self.
Args:
bond_dict (dict): Look into :meth:`~chemcoord.Cartesian.get_bonds`,
to see examples for a bond_dict.
Returns:
bond dictionary
|
codesearchnet
|
def _reduced_kernel_size_for_small_input(input_tensor, kernel_size):
shape = input_tensor.get_shape().as_list()
if ((shape[1] is None) or (shape[2] is None)):
kernel_size_out = kernel_size
else:
kernel_size_out = [min(shape[1], kernel_size[0]), min(shape[2], kernel_size[1])]
return kernel_size_out
|
Define kernel size which is automatically reduced for small input.
If the shape of the input images is unknown at graph construction time this
function assumes that the input images are is large enough.
Args:
input_tensor: input tensor of size [batch_size, height, width, channels].
kernel_size: desired kernel size of length 2: [kernel_height, kernel_width]
Returns:
a tensor with the kernel size.
TODO(jrru): Make this function work with unknown shapes. Theoretically, this
can be done with the code below. Problems are two-fold: (1) If the shape was
known, it will be lost. (2) inception.slim.ops._two_element_tuple cannot
handle tensors that define the kernel size.
shape = tf.shape(input_tensor)
return = tf.stack([tf.minimum(shape[1], kernel_size[0]),
tf.minimum(shape[2], kernel_size[1])])
|
codesearchnet
|
def default_if_empty(self, default):
if self.closed():
raise ValueError('Attempt to call default_if_empty() on a closed Queryable.')
return self._create(self._generate_default_if_empty_result(default))
|
If the source sequence is empty return a single element sequence
containing the supplied default value, otherwise return the source
sequence unchanged.
Note: This method uses deferred execution.
Args:
default: The element to be returned if the source sequence is empty.
Returns:
The source sequence, or if the source sequence is empty an sequence
containing a single element with the supplied default value.
Raises:
ValueError: If the Queryable has been closed.
|
codesearchnet
|
def build_from_file(self, path: str | None) -> imports_map.ImportsMap | None:
if not path:
return None
items = self._read_from_file(path)
return self.build_from_items(items)
|
Create an ImportsMap from a .imports_info file.
Builds a dict of short_path to full name
(e.g. "path/to/file.py" =>
"$GENDIR/rulename~~pytype-gen/path_to_file.py~~pytype"
Args:
path: The file with the info (may be None, for do-nothing)
Returns:
Dict of .py short_path to list of .pytd path or None if no path
|
github-repos
|
def objects_ids_and_slot_variables_and_paths(graph_view, skip_slot_variables=False):
trackable_objects, node_paths = graph_view.breadth_first_traversal()
object_names = object_identity.ObjectIdentityDictionary()
for obj, path in node_paths.items():
object_names[obj] = trackable_utils.object_path_to_string(path)
node_ids = object_identity.ObjectIdentityDictionary()
for node_id, node in enumerate(trackable_objects):
node_ids[node] = node_id
if skip_slot_variables:
slot_variables = object_identity.ObjectIdentityDictionary()
else:
slot_variables = serialize_slot_variables(trackable_objects=trackable_objects, node_ids=node_ids, object_names=object_names)
return (trackable_objects, node_paths, node_ids, slot_variables, object_names)
|
Traverse the object graph and list all accessible objects.
Looks for `Trackable` objects which are dependencies of
`root_trackable`. Includes slot variables only if the variable they are
slotting for and the optimizer are dependencies of `root_trackable`
(i.e. if they would be saved with a checkpoint).
Args:
graph_view: A GraphView object.
skip_slot_variables: If True does not return trackables for slot variable.
Default False.
Returns:
A tuple of (trackable objects, paths from root for each object,
object -> node id, slot variables, object_names)
|
github-repos
|
def default_logger(name):
logger = logging.getLogger(name)
logger_handler = logging.StreamHandler()
formatter = logging.Formatter('%(name)s - %(levelname)s - %(message)s')
logger_handler.setFormatter(formatter)
logger.addHandler(logger_handler)
return logger
|
Return a toplevel logger.
This should be used only in the toplevel file.
Files deeper in the hierarchy should use
``logger = logging.getLogger(__name__)``,
in order to considered as children of the toplevel logger.
Beware that without a setLevel() somewhere,
the default value (warning) will be used, so no debug message will be shown.
Args:
name (str): usually `__name__` in the package toplevel __init__.py, or
`__file__` in a script file
(because __name__ would be "__main__" in this case).
|
codesearchnet
|
def body(self, body):
self._request.body = body
self.add_matcher(matcher('BodyMatcher', body))
|
Defines the body data to match.
``body`` argument can be a ``str``, ``binary`` or a regular expression.
Arguments:
body (str|binary|regex): body data to match.
Returns:
self: current Mock instance.
|
codesearchnet
|
def get_minimizer_options(method):
if method == 'Powell':
return {'patience': 2,
'patience_line_search': None,
'reset_method': 'EXTRAPOLATED_POINT'}
elif method == 'Nelder-Mead':
return {'patience': 200,
'alpha': 1.0, 'beta': 0.5, 'gamma': 2.0, 'delta': 0.5, 'scale': 0.1,
'adaptive_scales': True}
elif method == 'Levenberg-Marquardt':
return {'patience': 250, 'step_bound': 100.0, 'scale_diag': 1, 'usertol_mult': 30}
elif method == 'Subplex':
return {'patience': 10,
'patience_nmsimplex': 100,
'alpha': 1.0, 'beta': 0.5, 'gamma': 2.0, 'delta': 0.5, 'scale': 1.0, 'psi': 0.0001, 'omega': 0.01,
'adaptive_scales': True,
'min_subspace_length': 'auto',
'max_subspace_length': 'auto'}
raise ValueError('Could not find the specified method "{}".'.format(method))
|
Return a dictionary with the default options for the given minimization method.
Args:
method (str): the name of the method we want the options off
Returns:
dict: a dictionary with the default options
|
juraj-google-style
|
def send_state_event(self, event_type, content, state_key=''):
return self.client.api.send_state_event(self.room_id, event_type, content, state_key)
|
Send a state event to the room.
Args:
event_type (str): The type of event that you are sending.
content (): An object with the content of the message.
state_key (str, optional): A unique key to identify the state.
|
codesearchnet
|
def _get_by_name(self, feed_item):
key = ''
if self._search_field:
key = feed_item[self._search_field].strip()
search_string = feed_item[self._search_field].strip()
args = self._get_base_search_args(search_string)
if self._parent_filter_name:
if feed_item.get(self._parent_filter_field_name, None):
args[self._parent_filter_name] = feed_item.get(self._parent_filter_field_name, None)
elif self._parent_dao:
parent = self._parent_dao.get(feed_item, required=True)
if parent:
args[self._parent_filter_name] = parent.get('id', None)
key = str(args.get(self._parent_filter_name, '')) + key
print('hitting the api to search for %s, %s' % (self._entity, search_string))
search_result = self._api().list(**args).execute()
items = search_result[self._list_name]
if items and len(items) > 0:
item = items[0]
if search_string == item['name']:
if len(items) > 1 and items[1]['name'] == search_string:
raise Exception('ERROR: More than one item found with %s %s' % (self._search_field, feed_item[self._search_field]))
else:
return (item, key)
return (None, key)
|
Searches CM for an item of name defined in the search field of the DAO class.
If more than one item is returned an error is raised, e.g. if there are more
than one item with the same name.
Args:
feed_item: The Bulkdozer feed item with the name to search for.
Returns:
If found, the CM entity object that matches the search string.
|
github-repos
|
def appliance_device_snmp_v3_users(self):
if (not self.__appliance_device_snmp_v3_users):
self.__appliance_device_snmp_v3_users = ApplianceDeviceSNMPv3Users(self.__connection)
return self.__appliance_device_snmp_v3_users
|
Gets the ApplianceDeviceSNMPv3Users API client.
Returns:
ApplianceDeviceSNMPv3Users:
|
codesearchnet
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.