code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def schedule(self, api_call, bundle_id, bundle_desc, bundling_request, kwargs=None): kwargs = (kwargs or dict()) bundle = self._bundle_for(api_call, bundle_id, bundle_desc, bundling_request, kwargs) elts = getattr(bundling_request, bundle_desc.bundled_field) event = bundle.extend(elts) count_threshold = self._options.element_count_threshold if ((count_threshold > 0) and (bundle.element_count >= count_threshold)): self._run_now(bundle.bundle_id) size_threshold = self._options.request_byte_threshold if ((size_threshold > 0) and (bundle.request_bytesize >= size_threshold)): self._run_now(bundle.bundle_id) return event
Schedules bundle_desc of bundling_request as part of bundle_id. The returned value an :class:`Event` that * has a ``result`` attribute that will eventually be set to the result the api call * will be used to wait for the response * holds the canceller function for canceling this part of the bundle Args: api_call (callable[[object], object]): the scheduled API call. bundle_id (str): identifies the bundle on which the API call should be made. bundle_desc (gax.BundleDescriptor): describes the structure of the bundled call. bundling_request (object): the request instance to use in the API call. kwargs (dict): optional, the keyword arguments passed to the API call. Returns: Event: the scheduled event.
codesearchnet
def get_storage(self, id_or_uri): uri = (self.URI + '/{}/storage'.format(extract_id_from_uri(id_or_uri))) return self._client.get(uri)
Get storage details of an OS Volume. Args: id_or_uri: ID or URI of the OS Volume. Returns: dict: Storage details
codesearchnet
def experimental_tpu_test_loop(model, dataset, verbose=0, steps=None, callbacks=None): mode = ModeKeys.TEST current_strategy = model._distribution_strategy iterator = dist_utils.get_iterator(dataset, current_strategy) scope = dist_utils.distributed_scope(strategy=current_strategy, learning_phase=0) scope.__enter__() out_labels = model.metrics_names def _test_step_fn(inputs): if isinstance(inputs, (tuple, list)) and len(inputs) == 2: inputs, targets = inputs else: targets = None distribute_lib.get_replica_context().merge_call(_build_model, args=(model, mode, inputs, targets)) _, outputs, updates, _ = _per_replica_execution_function(dist_utils.get_distributed_model(model, mode), mode) with ops.control_dependencies([updates]): return [array_ops.identity(out) for out in outputs] test_input_data = iterator.get_next() per_replica_outputs = current_strategy.run(_test_step_fn, args=(test_input_data,)) output_tensors = {} for label, output in zip(out_labels, per_replica_outputs): if label == 'loss': reduce_op = ds_reduce_util.ReduceOp.SUM else: reduce_op = ds_reduce_util.ReduceOp.MEAN output_tensors[label] = current_strategy.reduce(reduce_op, output, axis=None) test_op = control_flow_ops.group(list(output_tensors.values())) if verbose >= 1: progbar = Progbar(target=steps) if model._compile_distribution: dist_utils._copy_weights_to_distributed_model(model, mode) dist_utils._reset_metrics(model) callbacks = cbks.configure_callbacks(callbacks, model, do_validation=False, epochs=1, steps_per_epoch=steps, verbose=verbose, count_mode='steps', mode=ModeKeys.TEST) callbacks._call_begin_hook(mode) outs = [0.0] * len(model.metrics_names) if steps is not None: target_steps = steps else: raise ValueError('Number of steps could not be inferred from the data, please pass the steps argument.') current_step = 0 while current_step < target_steps: batch_logs = {'batch': current_step, 'size': 1} callbacks._call_batch_hook(mode, 'begin', current_step, batch_logs) try: _, batch_outs = backend.batch_get_value([test_op, output_tensors]) except errors.OutOfRangeError: warning_msg = 'Make sure that your dataset can generate at least `steps` batches (in this case, {} batches).'.format(steps) logging.warning('Your dataset iterator ran out of data; interrupting evaluation. ' + warning_msg) target_steps = current_step break for i, label in enumerate(model.metrics_names): if i == 0: outs[i] += batch_outs[label] else: outs[i] = batch_outs[label] batch_logs = cbks.make_logs(model, batch_logs, outs, mode) callbacks._call_batch_hook(mode, 'end', current_step, batch_logs) if verbose == 1: progbar.update(current_step + 1) current_step += 1 if verbose >= 1: progbar.update(target_steps) callbacks._call_end_hook(mode) scope.__exit__(None, None, None) if len(outs) >= 0: outs[0] /= target_steps if len(outs) == 1: return outs[0] return outs
Test loop for evaluating with TPU tf.distribute.Strategy. Args: model: Keras Model instance. dataset: Dataset for input data. verbose: Integer, Verbosity mode 0 or 1. steps: Total number of steps (batches of samples) before declaring predictions finished. Ignored with the default value of `None`. callbacks: List of callbacks to be called during training Returns: Scalar loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the outputs.
github-repos
def __init__(self, batch_size=8, data_dir=None): self._train_data, self._train_labels = None, None self._test_data, self._test_labels = None, None self._batch_size = batch_size self.img_size = IMAGE_SIZE self.num_channels = NUM_CHANNELS self.num_classes = NUM_CLASSES self.train_len = NUM_TRAIN_SAMPLES self.test_len = NUM_TEST_SAMPLES self.data_dir = data_dir or "./test_data" self.cifar10_dir = os.path.join(self.data_dir, 'cifar-10-batches-py') self.cifar10_tarball = os.path.join(self.data_dir, CIFAR10_URL.split('/')[-1]) self.maybe_download_and_extract()
CIFAR-10 dataset and TF model constructor. Args: batch_size: dataset batch size.
juraj-google-style
def _update_bird_conf_file(self, operation): conf_updated = False prefixes = [] ip_version = operation.ip_version config_file = self.bird_configuration[ip_version]['config_file'] variable_name = self.bird_configuration[ip_version]['variable_name'] changes_counter =\ self.bird_configuration[ip_version]['changes_counter'] dummy_ip_prefix =\ self.bird_configuration[ip_version]['dummy_ip_prefix'] try: prefixes = get_ip_prefixes_from_bird(config_file) except OSError as error: self.log.error("failed to open Bird configuration %s, this is a " "FATAL error, thus exiting main program", error) sys.exit(1) if not prefixes: self.log.error("found empty bird configuration %s, this is a FATAL" " error, thus exiting main program", config_file) sys.exit(1) if dummy_ip_prefix not in prefixes: self.log.warning("dummy IP prefix %s wasn't found in bird " "configuration, adding it. This shouldn't have " "happened!", dummy_ip_prefix) prefixes.insert(0, dummy_ip_prefix) conf_updated = True ip_prefixes_without_check = set(prefixes).difference( self.ip_prefixes[ip_version]) if ip_prefixes_without_check: self.log.warning("found %s IP prefixes in Bird configuration but " "we aren't configured to run health checks on " "them. Either someone modified the configuration " "manually or something went horrible wrong. We " "remove them from Bird configuration", ','.join(ip_prefixes_without_check)) prefixes[:] = (ip for ip in prefixes if ip not in ip_prefixes_without_check) conf_updated = True if operation.update(prefixes): conf_updated = True if not conf_updated: self.log.info('no updates for bird configuration') return conf_updated if self.bird_configuration[ip_version]['keep_changes']: archive_bird_conf(config_file, changes_counter) tempname = write_temp_bird_conf( dummy_ip_prefix, config_file, variable_name, prefixes ) try: os.rename(tempname, config_file) except OSError as error: self.log.critical("failed to create Bird configuration %s, this " "is a FATAL error, thus exiting main program", error) sys.exit(1) else: self.log.info("Bird configuration for IPv%s is updated", ip_version) if len(prefixes) == 1: self.log.warning("Bird configuration doesn't have IP prefixes for " "any of the services we monitor! It means local " "node doesn't receive any traffic") return conf_updated
Update BIRD configuration. It adds to or removes IP prefix from BIRD configuration. It also updates generation time stamp in the configuration file. Main program will exit if configuration file cant be read/written. Arguments: operation (obj): Either an AddOperation or DeleteOperation object Returns: True if BIRD configuration was updated otherwise False.
juraj-google-style
def Reinit(self, pid, auto_symfile_loading=True): self.ShutDownGdb() self.__init__(pid, auto_symfile_loading, architecture=self.arch)
Reinitializes the object with a new pid. Since all modes might need access to this object at any time, this object needs to be long-lived. To make this clear in the API, this shorthand is supplied. Args: pid: the pid of the target process auto_symfile_loading: whether the symbol file should automatically be loaded by gdb.
codesearchnet
def _update_run_calls_state(self, run_call_count, fetches, feed_dict, is_callable_runner=False): self._run_call_count = run_call_count self._feed_dict = feed_dict self._run_description = cli_shared.get_run_short_description(run_call_count, fetches, feed_dict, is_callable_runner=is_callable_runner) self._run_through_times -= 1 self._run_info = cli_shared.get_run_start_intro(run_call_count, fetches, feed_dict, self._tensor_filters, is_callable_runner=is_callable_runner)
Update the internal state with regard to run() call history. Args: run_call_count: (int) Number of run() calls that have occurred. fetches: a node/tensor or a list of node/tensor that are the fetches of the run() call. This is the same as the fetches argument to the run() call. feed_dict: None of a dict. This is the feed_dict argument to the run() call. is_callable_runner: (bool) whether a runner returned by Session.make_callable is being run.
github-repos
def construct_concept_to_indicator_mapping(n: int=1) -> Dict[(str, List[str])]: df = pd.read_sql_table('concept_to_indicator_mapping', con=engine) gb = df.groupby('Concept') _dict = {k: [get_variable_and_source(x) for x in take(n, v['Indicator'].values)] for (k, v) in gb} return _dict
Create a dictionary mapping high-level concepts to low-level indicators Args: n: Number of indicators to return Returns: Dictionary that maps concept names to lists of indicator names.
codesearchnet
def add_cidr_rules(self, rules): session = boto3.session.Session(profile_name=self.env, region_name=self.region) client = session.client('ec2') group_id = get_security_group_id(self.app_name, self.env, self.region) for rule in rules: data = {'DryRun': False, 'GroupId': group_id, 'IpPermissions': [{'IpProtocol': rule['protocol'], 'FromPort': rule['start_port'], 'ToPort': rule['end_port'], 'IpRanges': [{'CidrIp': rule['app']}]}]} self.log.debug('Security Group rule: %s', data) try: client.authorize_security_group_ingress(**data) except botocore.exceptions.ClientError as error: if ('InvalidPermission.Duplicate' in str(error)): self.log.debug('Duplicate rule exist, that is OK.') else: msg = 'Unable to add cidr rules to {}'.format(rule.get('app')) self.log.error(msg) raise SpinnakerSecurityGroupError(msg) return True
Add cidr rules to security group via boto. Args: rules (list): Allowed Security Group ports and protocols. Returns: True: Upon successful completion. Raises: SpinnakerSecurityGroupError: boto3 call failed to add CIDR block to Security Group.
codesearchnet
def delete_user(self, user): self.service.delete_user( user, self.url_prefix, self.auth, self.session, self.session_send_opts)
Delete the given user. Args: user (string): User name. Raises: requests.HTTPError on failure.
juraj-google-style
def _get_app_path(url): app_path = urlparse(url).path.rstrip("/") if not app_path.startswith("/"): app_path = "/" + app_path return app_path
Extract the app path from a Bokeh server URL Args: url (str) : Returns: str
juraj-google-style
def _RunInTransaction(self, function, readonly=False): start_query = 'START TRANSACTION;' if readonly: start_query = 'START TRANSACTION WITH CONSISTENT SNAPSHOT, READ ONLY;' for retry_count in range(_MAX_RETRY_COUNT): with contextlib.closing(self.pool.get()) as connection: try: with contextlib.closing(connection.cursor()) as cursor: cursor.execute(start_query) ret = function(connection) if (not readonly): connection.commit() return ret except MySQLdb.OperationalError as e: connection.rollback() if ((retry_count >= _MAX_RETRY_COUNT) or (not _IsRetryable(e))): raise time.sleep((random.uniform(1.0, 2.0) * math.pow(1.5, retry_count))) raise Exception('Looped ended early - last exception swallowed.')
Runs function within a transaction. Allocates a connection, begins a transaction on it and passes the connection to function. If function finishes without raising, the transaction is committed. If function raises, the transaction will be rolled back, if a retryable database error is raised, the operation may be repeated. Args: function: A function to be run, must accept a single MySQLdb.connection parameter. readonly: Indicates that only a readonly (snapshot) transaction is required. Returns: The value returned by the last call to function. Raises: Any exception raised by function.
codesearchnet
def get_column(self, column_name, column_type, index, verbose=True): return LazyOpResult( grizzly_impl.get_column( self.expr, self.weld_type, index ), column_type, 1 )
Summary Args: column_name (TYPE): Description column_type (TYPE): Description index (TYPE): Description Returns: TYPE: Description
juraj-google-style
def sys_wait_for_event(mask: int, k: Optional[Key], m: Optional[Mouse], flush: bool) -> int: return int(lib.TCOD_sys_wait_for_event(mask, (k.key_p if k else ffi.NULL), (m.mouse_p if m else ffi.NULL), flush))
Wait for an event then return. If flush is True then the buffer will be cleared before waiting. Otherwise each available event will be returned in the order they're recieved. Args: mask (int): :any:`Event types` to wait for. k (Optional[Key]): A tcod.Key instance which might be updated with an event. Can be None. m (Optional[Mouse]): A tcod.Mouse instance which might be updated with an event. Can be None. flush (bool): Clear the event buffer before waiting. .. deprecated:: 9.3 Use the :any:`tcod.event.wait` function to wait for events.
codesearchnet
def __init__(self, location, optional=False): super(Backtrack, self).__init__(location, optional=optional) self.location = location self.optional = optional self.validate()
Create a new Backtrack block, returning to the given location in the query. Args: location: Location object, specifying where to backtrack to optional: optional bool, specifying whether the steps between the current location and the location to which Backtrack is returning were optional or not Returns: new Backtrack object
juraj-google-style
def type_based_dispatch_signatures_for(cls): def contains_cls(x): if isinstance(x, dict): return any((contains_cls(v) for v in x.values())) elif x is cls: return True elif type_annotations.is_generic_list(x) or type_annotations.is_generic_union(x): type_args = type_annotations.get_generic_type_args(x) return any((contains_cls(arg) for arg in type_args)) else: return False result = {} for api, api_signatures in _TYPE_BASED_DISPATCH_SIGNATURES.items(): for _, signatures in api_signatures.items(): filtered = list(filter(contains_cls, signatures)) if filtered: result.setdefault(api, []).extend(filtered) return result
Returns dispatch signatures that have been registered for a given class. This function is intended for documentation-generation purposes. Args: cls: The class to search for. Type signatures are searched recursively, so e.g., if `cls=RaggedTensor`, then information will be returned for all dispatch targets that have `RaggedTensor` anywhere in their type annotations (including nested in `typing.Union` or `typing.List`.) Returns: A `dict` mapping `api` -> `signatures`, where `api` is a TensorFlow API function; and `signatures` is a list of dispatch signatures for `api` that include `cls`. (Each signature is a dict mapping argument names to type annotations; see `dispatch_for_api` for more info.)
github-repos
def _make_model(self, data, key=None): if (data['deleted'] and (not self.adapter.want_deleted)): raise ObjectDoesNotExist('Deleted object returned') model = self._model_class(self._current_context, _pass_perm_checks=self._pass_perm_checks) model.setattr('key', (ub_to_str(key) if key else ub_to_str(data.get('key')))) model = model.set_data(data, from_db=True) model._initial_data = model.clean_value() return model
Creates a model instance with the given data. Args: data: Model data returned from DB. key: Object key Returns: pyoko.Model object.
codesearchnet
def get_variation(self, experiment, user_id, attributes, ignore_user_profile=False): if (not experiment_helper.is_experiment_running(experiment)): self.logger.info(('Experiment "%s" is not running.' % experiment.key)) return None variation = self.config.get_forced_variation(experiment.key, user_id) if variation: return variation variation = self.get_forced_variation(experiment, user_id) if variation: return variation user_profile = UserProfile(user_id) if ((not ignore_user_profile) and self.user_profile_service): try: retrieved_profile = self.user_profile_service.lookup(user_id) except: self.logger.exception(('Unable to retrieve user profile for user "%s" as lookup failed.' % user_id)) retrieved_profile = None if validator.is_user_profile_valid(retrieved_profile): user_profile = UserProfile(**retrieved_profile) variation = self.get_stored_variation(experiment, user_profile) if variation: return variation else: self.logger.warning('User profile has invalid format.') if (not audience_helper.is_user_in_experiment(self.config, experiment, attributes, self.logger)): self.logger.info(('User "%s" does not meet conditions to be in experiment "%s".' % (user_id, experiment.key))) return None bucketing_id = self._get_bucketing_id(user_id, attributes) variation = self.bucketer.bucket(experiment, user_id, bucketing_id) if variation: if ((not ignore_user_profile) and self.user_profile_service): try: user_profile.save_variation_for_experiment(experiment.id, variation.id) self.user_profile_service.save(user_profile.__dict__) except: self.logger.exception(('Unable to save user profile for user "%s".' % user_id)) return variation return None
Top-level function to help determine variation user should be put in. First, check if experiment is running. Second, check if user is forced in a variation. Third, check if there is a stored decision for the user and return the corresponding variation. Fourth, figure out if user is in the experiment by evaluating audience conditions if any. Fifth, bucket the user and return the variation. Args: experiment: Experiment for which user variation needs to be determined. user_id: ID for user. attributes: Dict representing user attributes. ignore_user_profile: True to ignore the user profile lookup. Defaults to False. Returns: Variation user should see. None if user is not in experiment or experiment is not running.
codesearchnet
def __init__(self, rnn_class=LSTM, hidden_dims=[50, 50], bidirectional=True, dropout_rate=0.5, **rnn_kwargs): super(StackedRNN, self).__init__(dropout_rate) self.rnn_class = rnn_class self.hidden_dims = hidden_dims self.bidirectional = bidirectional self.rnn_kwargs = rnn_kwargs
Creates a stacked RNN. Args: rnn_class: The type of RNN to use. (Default Value = LSTM) encoder_dims: The number of hidden units of RNN. (Default Value: 50) bidirectional: Whether to use bidirectional encoding. (Default Value = True) **rnn_kwargs: Additional args for building the RNN.
juraj-google-style
def topics(self, exclude_internal_topics=True): topics = set(self._partitions.keys()) if exclude_internal_topics: return (topics - self.internal_topics) else: return topics
Get set of known topics. Arguments: exclude_internal_topics (bool): Whether records from internal topics (such as offsets) should be exposed to the consumer. If set to True the only way to receive records from an internal topic is subscribing to it. Default True Returns: set: {topic (str), ...}
codesearchnet
def process_extra_vars(extra_vars_list, force_json=True): extra_vars = {} extra_vars_yaml = "" for extra_vars_opt in extra_vars_list: if extra_vars_opt.startswith("@"): with open(extra_vars_opt[1:], 'r') as f: extra_vars_opt = f.read() opt_dict = string_to_dict(extra_vars_opt, allow_kv=False) else: opt_dict = string_to_dict(extra_vars_opt, allow_kv=True) if any(line.startswith(" extra_vars_yaml += extra_vars_opt + "\n" elif extra_vars_opt != "": extra_vars_yaml += yaml.dump( opt_dict, default_flow_style=False) + "\n" extra_vars.update(opt_dict) if not force_json: try: try_dict = yaml.load(extra_vars_yaml, Loader=yaml.SafeLoader) assert type(try_dict) is dict debug.log('Using unprocessed YAML', header='decision', nl=2) return extra_vars_yaml.rstrip() except Exception: debug.log('Failed YAML parsing, defaulting to JSON', header='decison', nl=2) if extra_vars == {}: return "" return json.dumps(extra_vars, ensure_ascii=False)
Returns a string that is valid JSON or YAML and contains all the variables in every extra_vars_opt inside of extra_vars_list. Args: parse_kv (bool): whether to allow key=value syntax. force_json (bool): if True, always output json.
juraj-google-style
def Query(self): if self.name is not None: return sb = ScriptBuilder() sb.EmitAppCallWithOperation(self.ScriptHash, 'name') sb.EmitAppCallWithOperation(self.ScriptHash, 'symbol') sb.EmitAppCallWithOperation(self.ScriptHash, 'decimals') engine = None try: engine = ApplicationEngine.Run(sb.ToArray(), exit_on_error=True, gas=Fixed8.FromDecimal(10.0), test_mode=False) except Exception as e: pass if engine and len(engine.ResultStack.Items) == 3: results = engine.ResultStack.Items try: self.name = results[0].GetString() self.symbol = results[1].GetString() self.decimals = results[2].GetBigInteger() if len(self.name) > 1 and self.name != 'Stack Item' \ and len(self.symbol) > 1 and self.symbol != 'Stack Item' \ and self.decimals < 10: return True except Exception as e: pass return False
Query the smart contract for its token information (name, symbol, decimals). Args: wallet (neo.Wallets.Wallet): a wallet instance. Returns: None: if the NEP5Token instance `Name` is already set. True: if all information was retrieved. False: if information retrieval failed.
juraj-google-style
def send_to_prv_exchange(self, user_id, message=None): exchange = 'prv_%s' % user_id.lower() msg = json.dumps(message, cls=ZEngineJSONEncoder) log.debug("Sending following users \"%s\" exchange:\n%s " % (exchange, msg)) self.get_channel().publish(exchange=exchange, routing_key='', body=msg)
Send messages through logged in users private exchange. Args: user_id string: User key message dict: Message object
juraj-google-style
def __eq__(self, other): return type(self) is type(other) and \ self.p == other.p and \ self.m == other.m and \ np.array_equal(self.reg, other.reg)
Check equivalence between two HyperLogLogs Args: other (datasketch.HyperLogLog): Returns: bool: True if both have the same internal state.
juraj-google-style
def transform_normalize_unicode(source, form, name=None): with ops.name_scope(name, 'TransformNormalizeUnicode', [source]): source = convert_to_tensor_or_sparse_tensor(source, dtype=tf.string) if isinstance(source, tf.SparseTensor): result = tf.SparseTensor(indices=source.indices, values=ops_module.transform_normalize_unicode(source.values, form), dense_shape=source.dense_shape) else: result = ops_module.transform_normalize_unicode(source, form) return result
Normalize unicode strings tensor. Args: source: `Tensor` or `SparseTensor` of any shape, strings to normalize. form: Scalar value, name of normalization algorithm. One of `"NFD"`, `"NFC"`, `"NFKD"`, `"NFKC"`. name: A name for the operation (optional). Returns: `Tensor` or `SparseTensor` of same shape and size as input.
codesearchnet
def set_setpoint(self, setpointvalue): _checkSetpointValue( setpointvalue, self.setpoint_max ) self.write_register( 4097, setpointvalue, 1)
Set the setpoint. Args: setpointvalue (float): Setpoint [most often in degrees]
juraj-google-style
def _check_interpret_cell(self, cell, prior_cell, row_index, column_index): changed = False if ((not is_empty_cell(cell)) and (not is_text_cell(cell))): self.flag_change(self.flags, 'interpreted', (row_index, column_index), self.worksheet, self.FLAGS['converted-to-string']) cell = str(cell) changed = True elif is_empty_cell(cell): self.flag_change(self.flags, 'interpreted', (row_index, column_index), self.worksheet, self.FLAGS['copied-title']) cell = prior_cell changed = True return (cell, changed)
Helper function which checks cell type and performs cell translation to strings where necessary. Returns: A tuple of the form '(cell, changed)' where 'changed' indicates if 'cell' differs from input.
codesearchnet
def typical_or_extreme_period_type(self, value=None): if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `typical_or_extreme_period_type`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `typical_or_extreme_period_type`') self._typical_or_extreme_period_type = value
Corresponds to IDD Field `typical_or_extreme_period_type` Args: value (str): value for IDD Field `typical_or_extreme_period_type` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
juraj-google-style
def query_with_attributes(type_to_query, client): session = client.create_session() query = session.query(Attribute.name, Attribute.value, Entity.id).join(Entity).filter((Entity.type == type_to_query)) df = client.df_query(query) session.close() df = df.dropna(how='any') df = df.set_index(['id', 'name']).unstack().reset_index() df.columns = (['id'] + list(df.columns.get_level_values(1)[1:])) return df
Query all entities of a specific type, with their attributes Args: type_to_query (str): type of entity to query client: DB client to perform query with Returns: pandas.DataFrame: table of entities, with attributes as columns
codesearchnet
def rank_dated_files(pattern, dir, descending=True): files = glob.glob(op.join(dir, pattern)) return sorted(files, reverse=descending)
Search a directory for files that match a pattern. Return an ordered list of these files by filename. Args: pattern: The glob pattern to search for. dir: Path to directory where the files will be searched for. descending: Default True, will sort alphabetically by descending order. Returns: list: Rank-ordered list by filename.
juraj-google-style
def update_node(self, node_id, version, node_spec=None): url = self._url('/nodes/{0}/update?version={1}', node_id, str(version)) res = self._post_json(url, data=node_spec) self._raise_for_status(res) return True
Update the node's configuration Args: node_id (string): ID of the node to be updated. version (int): The version number of the node object being updated. This is required to avoid conflicting writes. node_spec (dict): Configuration settings to update. Any values not provided will be removed. Default: ``None`` Returns: `True` if the request went through. Raises: :py:class:`docker.errors.APIError` If the server returns an error. Example: >>> node_spec = {'Availability': 'active', 'Name': 'node-name', 'Role': 'manager', 'Labels': {'foo': 'bar'} } >>> client.update_node(node_id='24ifsmvkjbyhk', version=8, node_spec=node_spec)
codesearchnet
def fetch_git_package(self, config): from git import Repo ref = self.determine_git_ref(config) dir_name = self.sanitize_git_path(uri=config['uri'], ref=ref) cached_dir_path = os.path.join(self.package_cache_dir, dir_name) if (not os.path.isdir(cached_dir_path)): logger.debug('Remote repo %s does not appear to have been previously downloaded - starting clone to %s', config['uri'], cached_dir_path) tmp_dir = tempfile.mkdtemp(prefix='stacker') try: tmp_repo_path = os.path.join(tmp_dir, dir_name) with Repo.clone_from(config['uri'], tmp_repo_path) as repo: repo.head.reference = ref repo.head.reset(index=True, working_tree=True) shutil.move(tmp_repo_path, self.package_cache_dir) finally: shutil.rmtree(tmp_dir) else: logger.debug('Remote repo %s appears to have been previously cloned to %s -- bypassing download', config['uri'], cached_dir_path) self.update_paths_and_config(config=config, pkg_dir_name=dir_name)
Make a remote git repository available for local use. Args: config (dict): git config dictionary
codesearchnet
def GetEventData(self, data_type): event_data = events.EventData(data_type=data_type) for property_name, property_value in iter(self._properties.items()): if isinstance(property_value, py2to3.BYTES_TYPE): property_value = repr(property_value) setattr(event_data, property_name, property_value) return event_data
Retrieves the properties as event data. Args: data_type (str): event data type. Returns: EventData: event data.
juraj-google-style
def resolve(node, source_info, graphs, include_annotations=True): node = TreeAnnotator(source_info, graphs, include_annotations).visit(node) return node
Resolves the live symbols at the exit of control flow statements. Args: node: ast.AST source_info: transformer.SourceInfo graphs: Dict[ast.FunctionDef, cfg.Graph] include_annotations: Bool, whether type annotations should be included in the analysis. Returns: ast.AST
github-repos
def encode_mezzanine_asset(access_token, processor_id, asset_id, output_assetname, json_profile): path = '/Jobs' endpoint = ''.join([ams_rest_endpoint, path]) assets_path = ''.join(["/Assets", "('", asset_id, "')"]) assets_path_encoded = urllib.parse.quote(assets_path, safe='') endpoint_assets = ''.join([ams_rest_endpoint, assets_path_encoded]) body = '{ \ "Name":"' + output_assetname + '", \ "InputMediaAssets":[{ \ "__metadata":{ \ "uri":"' + endpoint_assets + '" \ } \ }], \ "Tasks":[{ \ "Configuration":\'' + json_profile + '\', \ "MediaProcessorId":"' + processor_id + '", \ "TaskBody":"<?xml version=\\"1.0\\" encoding=\\"utf-16\\"?><taskBody><inputAsset>JobInputAsset(0)</inputAsset><outputAsset assetCreationOptions=\\"0\\" assetName=\\"' + output_assetname + '\\">JobOutputAsset(0)</outputAsset></taskBody>" \ }] \ }' return do_ams_post(endpoint, path, body, access_token)
Get Media Service Encode Mezanine Asset. Args: access_token (str): A valid Azure authentication token. processor_id (str): A Media Service Processor ID. asset_id (str): A Media Service Asset ID. output_assetname (str): A Media Service Asset Name. json_profile (str): A Media Service JSON Profile. Returns: HTTP response. JSON body.
juraj-google-style
def is_cpu_target_available(target): return _test_util.IsCPUTargetAvailable(target)
Indicates whether TensorFlow was built with support for a given CPU target. Args: target: The name of the CPU target whose support to check for. Returns: A boolean indicating whether TensorFlow was built with support for the given CPU target. This method should only be used in tests written with `tf.test.TestCase`. A typical usage is to skip tests that should only run with a given target. >>> class MyTest(tf.test.TestCase): ... ... def test_add_on_aarch64(self): ... if not tf.test.is_cpu_target_available('aarch64'): ... self.skipTest("test is only applicable on AArch64") ... @tf.function(jit_compile=True) ... def add(x, y): ... return tf.math.add(x, y) ... ... self.assertEqual(add(tf.ones(()), tf.ones(())), 2.0)
github-repos
def from_file(cls, fp, format_=None, fps=None, **kwargs): if format_ is None: text = fp.read() fragment = text[:10000] format_ = autodetect_format(fragment) fp = io.StringIO(text) impl = get_format_class(format_) subs = cls() subs.format = format_ subs.fps = fps impl.from_file(subs, fp, format_, fps=fps, **kwargs) return subs
Read subtitle file from file object. See :meth:`SSAFile.load()` for full description. Note: This is a low-level method. Usually, one of :meth:`SSAFile.load()` or :meth:`SSAFile.from_string()` is preferable. Arguments: fp (file object): A file object, ie. :class:`io.TextIOBase` instance. Note that the file must be opened in text mode (as opposed to binary). Returns: SSAFile
juraj-google-style
def reverse_ad(node, wrt, preserve_result, check_dims): if (not isinstance(node, gast.FunctionDef)): raise TypeError cfg.forward(node, cfg.Active(wrt)) ad = ReverseAD(wrt, preserve_result, check_dims) (pri, adj) = ad.visit(node) mod = gast.Module(body=[pri, adj]) mod = annotate.find_stacks(mod) return (mod, ad.required, ad.stack)
Perform reverse-mode AD on an AST. This function analyses the AST to determine which variables are active and proceeds by taking the naive derivative. Before returning the primal and adjoint it annotates push and pop statements as such. Args: node: A `FunctionDef` AST node. wrt: A tuple of argument indices with respect to which we take the derivative. preserve_result: A boolean indicating whether the generated derivative function should also return the original return value. check_dims: A boolean indicating whether the seed derivatives should have their dimensions checked to match their primal counterpart. Returns: mod: A `Module` node containing the naive primal and adjoint of the function which can be fed to the `split` and `joint` functions. required: A list of tuples of functions and argument indices. These functions were called by the function but did not have an adjoint.
codesearchnet
def get(self, key, default) -> Union[(Uniform, UniformBlock, Subroutine, Attribute, Varying)]: return self._members.get(key, default)
Returns a Uniform, UniformBlock, Subroutine, Attribute or Varying. Args: default: This is the value to be returned in case key does not exist. Returns: :py:class:`Uniform`, :py:class:`UniformBlock`, :py:class:`Subroutine`, :py:class:`Attribute` or :py:class:`Varying`
codesearchnet
def trans_v(self, structure): nsites = structure.num_sites volume = structure.volume natoms = structure.composition.num_atoms weight = float(structure.composition.weight) mass_density = 1.6605e3 * nsites * weight / (natoms * volume) if self.g_vrh < 0: raise ValueError("k_vrh or g_vrh is negative, " "sound velocity is undefined") return (1e9 * self.g_vrh / mass_density) ** 0.5
Calculates transverse sound velocity (in SI units) using the Voigt-Reuss-Hill average bulk modulus Args: structure: pymatgen structure object Returns: transverse sound velocity (in SI units)
juraj-google-style
def assert_key_has_value(self, key, caller): assert key, 'key parameter must be specified.' self.assert_key_exists(key, caller) if (self[key] is None): raise KeyInContextHasNoValueError(f"context['{key}'] must have a value for {caller}.")
Assert that context contains key which also has a value. Args: key: validate this key exists in context AND has a value that isn't None. caller: string. calling function name - this used to construct error messages Raises: KeyNotInContextError: Key doesn't exist KeyInContextHasNoValueError: context[key] is None AssertionError: if key is None
codesearchnet
def remove_object(self, file_path): file_path = self.absnormpath(self._original_path(file_path)) if self._is_root_path(file_path): self.raise_os_error(errno.EBUSY, file_path) try: dirname, basename = self.splitpath(file_path) target_directory = self.resolve(dirname) target_directory.remove_entry(basename) except KeyError: self.raise_io_error(errno.ENOENT, file_path) except AttributeError: self.raise_io_error(errno.ENOTDIR, file_path)
Remove an existing file or directory. Args: file_path: The path to the file relative to self. Raises: IOError: if file_path does not correspond to an existing file, or if part of the path refers to something other than a directory. OSError: if the directory is in use (eg, if it is '/').
juraj-google-style
def WriteScanContext(self, scan_context, scan_step=None): if scan_step is not None: print('Scan step: {0:d}'.format(scan_step)) print('Source type\t\t: {0:s}'.format(scan_context.source_type)) print('') scan_node = scan_context.GetRootScanNode() self.WriteScanNode(scan_context, scan_node) print('')
Writes the source scanner context to stdout. Args: scan_context (SourceScannerContext): the source scanner context. scan_step (Optional[int]): the scan step, where None represents no step.
juraj-google-style
def id_pools_ipv4_ranges(self): if (not self.__id_pools_ipv4_ranges): self.__id_pools_ipv4_ranges = IdPoolsIpv4Ranges(self.__connection) return self.__id_pools_ipv4_ranges
Gets the IdPoolsIpv4Ranges API client. Returns: IdPoolsIpv4Ranges:
codesearchnet
def matches_hostname(cls, certificate: cryptography.x509.Certificate, hostname: str) -> None: certificate_names = {'subject': (tuple([('commonName', name) for name in cls.get_common_names(certificate.subject)]),), 'subjectAltName': tuple([('DNS', name) for name in cls.get_dns_subject_alternative_names(certificate)])} ssl.match_hostname(certificate_names, hostname)
Verify that the certificate was issued for the given hostname. Raises: CertificateError: If the certificate was not issued for the supplied hostname.
codesearchnet
def set_direct(self, address_value_dict): with self._lock: for (address, value) in address_value_dict.items(): self._validate_write(address) if (address in self._state): self._state[address].set_result(result=value) else: fut = _ContextFuture(address=address) self._state[address] = fut fut.set_result(result=value)
Called in the context manager's set method to either overwrite the value for an address, or create a new future and immediately set a value in the future. Args: address_value_dict (dict of str:bytes): The unique full addresses with bytes to set at that address. Raises: AuthorizationException
codesearchnet
def train(self, X_train, Y_train, X_test, Y_test): while True: print(1) time.sleep(1) if random.randint(0, 9) >= 5: break
Train and validate the LR on a train and test dataset Args: X_train (np.array): Training data Y_train (np.array): Training labels X_test (np.array): Test data Y_test (np.array): Test labels
juraj-google-style
def _reference_info(references): document_paths = [] reference_map = {} for reference in references: doc_path = reference._document_path document_paths.append(doc_path) reference_map[doc_path] = reference return (document_paths, reference_map)
Get information about document references. Helper for :meth:`~.firestore_v1beta1.client.Client.get_all`. Args: references (List[.DocumentReference, ...]): Iterable of document references. Returns: Tuple[List[str, ...], Dict[str, .DocumentReference]]: A two-tuple of * fully-qualified documents paths for each reference in ``references`` * a mapping from the paths to the original reference. (If multiple ``references`` contains multiple references to the same document, that key will be overwritten in the result.)
codesearchnet
def attach(self, observer): if not observer in self._observers: self._observers.append(observer) return self
Attach an observer. Args: observer (func): A function to be called when new messages arrive Returns: :class:`Stream`. Current instance to allow chaining
juraj-google-style
def dew_point_temperature(self, value=99.9): if (value is not None): try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float for field `dew_point_temperature`'.format(value)) if (value <= (- 70.0)): raise ValueError('value need to be greater -70.0 for field `dew_point_temperature`') if (value >= 70.0): raise ValueError('value need to be smaller 70.0 for field `dew_point_temperature`') self._dew_point_temperature = value
Corresponds to IDD Field `dew_point_temperature` Args: value (float): value for IDD Field `dew_point_temperature` Unit: C value > -70.0 value < 70.0 Missing value: 99.9 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
codesearchnet
def get_changeset(changeset): url = 'https: changeset ) return ET.fromstring(requests.get(url).content)
Get the changeset using the OSM API and return the content as a XML ElementTree. Args: changeset: the id of the changeset.
juraj-google-style
def __init__(self, title: Text, value: Optional[Any] = None, disabled: Optional[Text] = None, checked: bool = False, shortcut_key: Optional[Text] = None) -> None: self.disabled = disabled self.value = value if value is not None else title self.title = title self.checked = checked if shortcut_key is not None: self.shortcut_key = str(shortcut_key) else: self.shortcut_key = None
Create a new choice. Args: title: Text shown in the selection list. value: Value returned, when the choice is selected. disabled: If set, the choice can not be selected by the user. The provided text is used to explain, why the selection is disabled. checked: Preselect this choice when displaying the options. shortcut_key: Key shortcut used to select this item.
juraj-google-style
def vgg_layer(inputs, nout, kernel_size=3, activation=tf.nn.leaky_relu, padding="SAME", is_training=True, has_batchnorm=False, scope=None): with tf.variable_scope(scope): net = tfl.conv2d(inputs, nout, kernel_size=kernel_size, padding=padding, activation=None, name="conv") if has_batchnorm: net = tfl.batch_normalization(net, training=is_training, name="bn") net = activation(net) return net
A layer of VGG network with batch norm. Args: inputs: image tensor nout: number of output channels kernel_size: size of the kernel activation: activation function padding: padding of the image is_training: whether it is training mode or not has_batchnorm: whether batchnorm is applied or not scope: variable scope of the op Returns: net: output of layer
juraj-google-style
def _Aff4Read(aff4_obj, offset, length): length = length or (_Aff4Size(aff4_obj) - offset) aff4_obj.Seek(offset) return aff4_obj.Read(length)
Reads contents of given AFF4 file. Args: aff4_obj: An AFF4 stream instance to retrieve contents for. offset: An offset to start the reading from. length: A number of bytes to read. Reads the whole file if 0. Returns: Contents of specified AFF4 stream. Raises: TypeError: If `aff4_obj` is not an instance of AFF4 stream.
juraj-google-style
def _force_edges_active_move(self, state: _STATE) -> _STATE: for _ in range(self._rand.randint(1, 4)): state = self._force_edge_active_move(state) return state
Move function which repeats _force_edge_active_move a few times. Args: state: Search state, not mutated. Returns: New search state which consists of incremental changes of the original state.
juraj-google-style
def parse_query(query_str): def _generate_match_all_fields_query(): stripped_query_str = ' '.join(query_str.replace(':', ' ').split()) return {'multi_match': {'query': stripped_query_str, 'fields': ['_all'], 'zero_terms_query': 'all'}} if not isinstance(query_str, six.text_type): query_str = six.text_type(query_str.decode('utf-8')) logger.info('Parsing: "' + query_str + '\".') parser = StatefulParser() rst_visitor = RestructuringVisitor() es_visitor = ElasticSearchVisitor() try: unrecognized_text, parse_tree = parser.parse(query_str, Query) if unrecognized_text: msg = 'Parser returned unrecognized text: "' + unrecognized_text + \ '" for query: "' + query_str + '".' if query_str == unrecognized_text and parse_tree is None: logger.warn(msg) return _generate_match_all_fields_query() else: msg += 'Continuing with recognized parse tree.' logger.warn(msg) except SyntaxError as e: logger.warn('Parser syntax error (' + six.text_type(e) + ') with query: "' + query_str + '". Continuing with a match_all with the given query.') return _generate_match_all_fields_query() try: restructured_parse_tree = parse_tree.accept(rst_visitor) logger.debug('Parse tree: \n' + emit_tree_format(restructured_parse_tree)) except Exception as e: logger.exception( RestructuringVisitor.__name__ + " crashed" + (": " + six.text_type(e) + ".") if six.text_type(e) else '.' ) return _generate_match_all_fields_query() try: es_query = restructured_parse_tree.accept(es_visitor) except Exception as e: logger.exception( ElasticSearchVisitor.__name__ + " crashed" + (": " + six.text_type(e) + ".") if six.text_type(e) else '.' ) return _generate_match_all_fields_query() if not es_query: return _generate_match_all_fields_query() return es_query
Drives the whole logic, by parsing, restructuring and finally, generating an ElasticSearch query. Args: query_str (six.text_types): the given query to be translated to an ElasticSearch query Returns: six.text_types: Return an ElasticSearch query. Notes: In case there's an error, an ElasticSearch `multi_match` query is generated with its `query` value, being the query_str argument.
juraj-google-style
def default(self): cmd = self.command_builder('ntp source', default=True) return self.configure(cmd)
Default the NTP source entry from the node. Returns: True if the operation succeeds, otherwise False.
codesearchnet
def charges(self, num, charge_id=None, **kwargs): baseuri = self._BASE_URI + "company/{}/charges".format(num) if charge_id is not None: baseuri += "/{}".format(charge_id) res = self.session.get(baseuri, params=kwargs) else: res = self.session.get(baseuri, params=kwargs) self.handle_http_error(res) return res
Search for charges against a company by company number. Args: num (str): Company number to search on. transaction (Optional[str]): Filing record number. kwargs (dict): additional keywords passed into requests.session.get params keyword.
juraj-google-style
def download_archive_artifact_bundle(self, id_or_uri, file_path): uri = self.BACKUP_ARCHIVE_PATH + '/' + extract_id_from_uri(id_or_uri) return self._client.download(uri, file_path)
Downloads an archive for the Artifact Bundle. Args: id_or_uri: ID or URI of the Artifact Bundle. file_path(str): Destination file path. Returns: bool: Successfully downloaded.
juraj-google-style
def stop_gradient(variables): if isinstance(variables, (list, tuple)): return map(array_ops.stop_gradient, variables) return array_ops.stop_gradient(variables)
Returns `variables` but with zero gradient w.r.t. every other variable. Args: variables: Tensor or list of tensors to consider constant with respect to any other variable. Returns: A single tensor or a list of tensors (depending on the passed argument) that has no gradient with respect to any other variable.
github-repos
def get(self, key): key = self._service_key(key) return self._service_ops['get'](key)
Return the object in `service` named by `key` or None. Args: key: Key naming the object to retrieve. Returns: object or None
codesearchnet
def Print(self, x, data, message, **kwargs): tf.logging.info('PlacementMeshImpl::Print') new_slices = x.tensor_list[:] with tf.device(self._devices[0]): new_slices[0] = tf.Print(new_slices[0], [t for d in data for t in d.tensor_list], message, **kwargs) return self.LaidOutTensor(new_slices)
call tf.Print. Args: x: a LaidOutTensor data: a list of LaidOutTensor message: a string **kwargs: keyword arguments to tf.print Returns: a LaidOutTensor
codesearchnet
def obs_space_info(obs_space): if isinstance(obs_space, gym.spaces.Dict): assert isinstance(obs_space.spaces, OrderedDict) subspaces = obs_space.spaces else: subspaces = {None: obs_space} keys = [] shapes = {} dtypes = {} for (key, box) in subspaces.items(): keys.append(key) shapes[key] = box.shape dtypes[key] = box.dtype return (keys, shapes, dtypes)
Get dict-structured information about a gym.Space. Returns: A tuple (keys, shapes, dtypes): keys: a list of dict keys. shapes: a dict mapping keys to shapes. dtypes: a dict mapping keys to dtypes.
codesearchnet
def is_layer_block(node): match = LAYER_SUFFIX_RE.match(node.get('module_path', '')) if not match or not node.get('children'): return False number = match.group(2) return any((f'.{number}.' in child.get('module_path', '') for child in node['children']))
Checks whether a node represents a layer block with submodules. Args: node (`dict`): A node from the call tree. Returns: `bool`: Whether the node is a layer block.
github-repos
def traverse_postorder(self, leaves=True, internal=True): for node in self.root.traverse_postorder(leaves=leaves, internal=internal): yield node
Perform a postorder traversal of the ``Node`` objects in this ``Tree`` Args: ``leaves`` (``bool``): ``True`` to include leaves, otherwise ``False`` ``internal`` (``bool``): ``True`` to include internal nodes, otherwise ``False``
juraj-google-style
def update_offset(self, new_offset): self.offset = new_offset self.data_points = self._data_points[self.offset:] self.timestamps = self._timestamps[self.offset:]
Updates how many data points to skip in caculations. Always use this function to update offset instead of directly setting self.offset. Args: new_offset: The new offset.
codesearchnet
def join(*paths): absolute = False relpaths = [] for p in paths: if p: if (p[0] == '/'): del relpaths[:] absolute = True relpaths.append(p) path = normpath('/'.join(relpaths)) if absolute: path = abspath(path) return path
Join any number of paths together. Arguments: *paths (str): Paths to join, given as positional arguments. Returns: str: The joined path. Example: >>> join('foo', 'bar', 'baz') 'foo/bar/baz' >>> join('foo/bar', '../baz') 'foo/baz' >>> join('foo/bar', '/baz') '/baz'
codesearchnet
def _PushParameterListState(self, newline): current = self.next_token previous = current.previous_token if _IsFunctionDefinition(previous): first_param_column = previous.total_length + self.stack[-2].indent self.param_list_stack.append(object_state.ParameterListState(previous, newline, first_param_column))
Push a new parameter list state for a function definition. Args: newline: Whether the current token is to be added on a newline.
github-repos
def save_image(tensor, filename, nrow=8, padding=2, pad_value=0): from PIL import Image grid = make_grid(tensor, nrow=nrow, padding=padding, pad_value=pad_value) im = Image.fromarray(pre_pillow_float_img_process(grid)) im.save(filename)
Save a given Tensor into an image file. Args: tensor (Tensor or list): Image to be saved. If given a mini-batch tensor, saves the tensor as a grid of images by calling ``make_grid``. **kwargs: Other arguments are documented in ``make_grid``.
juraj-google-style
def process_remote_sources(raw_config, environment=None): config = yaml.safe_load(raw_config) if (config and config.get('package_sources')): processor = SourceProcessor(sources=config['package_sources'], stacker_cache_dir=config.get('stacker_cache_dir')) processor.get_package_sources() if processor.configs_to_merge: for i in processor.configs_to_merge: logger.debug('Merging in remote config "%s"', i) remote_config = yaml.safe_load(open(i)) config = merge_map(remote_config, config) if (not environment): environment = {} return render(str(config), environment) return raw_config
Stage remote package sources and merge in remote configs. Args: raw_config (str): the raw stacker configuration string. environment (dict, optional): any environment values that should be passed to the config Returns: str: the raw stacker configuration string
codesearchnet
def commits(self, **kwargs): path = ('%s/%s/commits' % (self.manager.path, self.get_id())) data_list = self.manager.gitlab.http_list(path, as_list=False, **kwargs) manager = ProjectCommitManager(self.manager.gitlab, parent=self.manager._parent) return RESTObjectList(manager, ProjectCommit, data_list)
List the merge request commits. Args: all (bool): If True, return all the items, without pagination per_page (int): Number of items to retrieve per request page (int): ID of the page to return (starts with page 1) as_list (bool): If set to False and no pagination option is defined, return a generator instead of a list **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabListError: If the list could not be retrieved Returns: RESTObjectList: The list of commits
codesearchnet
def savefits(cube, fitsname, **kwargs): dropdeg = kwargs.pop('dropdeg', False) ndim = len(cube.dims) FITSINFO = get_data('decode', 'data/fitsinfo.yaml') hdrdata = yaml.load(FITSINFO, dc.utils.OrderedLoader) if ndim == 2: header = fits.Header(hdrdata['dcube_2d']) data = cube.values.T elif ndim == 3: if dropdeg: header = fits.Header(hdrdata['dcube_2d']) data = cube.values[:, :, 0].T else: header = fits.Header(hdrdata['dcube_3d']) kidfq = cube.kidfq.values freqrange = ~np.isnan(kidfq) orderedfq = np.argsort(kidfq[freqrange]) newcube = cube[:, :, orderedfq] data = newcube.values.T else: raise TypeError(ndim) if cube.coordsys == 'AZEL': header.update({'CTYPE1': 'dAZ', 'CTYPE2': 'dEL'}) elif cube.coordsys == 'RADEC': header.update({'OBSRA': float(cube.xref), 'OBSDEC': float(cube.yref)}) else: pass header.update({'CRVAL1': float(cube.x[0]), 'CDELT1': float(cube.x[1] - cube.x[0]), 'CRVAL2': float(cube.y[0]), 'CDELT2': float(cube.y[1] - cube.y[0]), 'DATE': datetime.now(timezone('UTC')).isoformat()}) if (ndim == 3) and (not dropdeg): header.update({'CRVAL3': float(newcube.kidfq[0]), 'CDELT3': float(newcube.kidfq[1] - newcube.kidfq[0])}) fitsname = str(Path(fitsname).expanduser()) fits.writeto(fitsname, data, header, **kwargs) logger.info('{} has been created.'.format(fitsname))
Save a cube to a 3D-cube FITS file. Args: cube (xarray.DataArray): Cube to be saved. fitsname (str): Name of output FITS file. kwargs (optional): Other arguments common with astropy.io.fits.writeto().
juraj-google-style
def scheme(name, bins, bin_method='quantiles'): return {'name': name, 'bins': bins, 'bin_method': (bin_method if isinstance(bins, int) else '')}
Return a custom scheme based on CARTOColors. Args: name (str): Name of a CARTOColor. bins (int or iterable): If an `int`, the number of bins for classifying data. CARTOColors have 7 bins max for quantitative data, and 11 max for qualitative data. If `bins` is a `list`, it is the upper range for classifying data. E.g., `bins` can be of the form ``(10, 20, 30, 40, 50)``. bin_method (str, optional): One of methods in :obj:`BinMethod`. Defaults to ``quantiles``. If `bins` is an interable, then that is the bin method that will be used and this will be ignored. .. Warning:: Input types are particularly sensitive in this function, and little feedback is given for errors. ``name`` and ``bin_method`` arguments are case-sensitive.
codesearchnet
def dumps(graphs, triples=False, cls=PENMANCodec, **kwargs): codec = cls(**kwargs) strings = [codec.encode(g, triples=triples) for g in graphs] return '\n\n'.join(strings)
Serialize each graph in *graphs* to the PENMAN format. Args: graphs: an iterable of Graph objects triples: if True, write graphs as triples instead of as PENMAN Returns: the string of serialized graphs
juraj-google-style
def get(object_ids): if isinstance(object_ids, (tuple, np.ndarray)): return ray.get(list(object_ids)) elif isinstance(object_ids, dict): keys_to_get = [k for (k, v) in object_ids.items() if isinstance(v, ray.ObjectID)] ids_to_get = [v for (k, v) in object_ids.items() if isinstance(v, ray.ObjectID)] values = ray.get(ids_to_get) result = object_ids.copy() for (key, value) in zip(keys_to_get, values): result[key] = value return result else: return ray.get(object_ids)
Get a single or a collection of remote objects from the object store. This method is identical to `ray.get` except it adds support for tuples, ndarrays and dictionaries. Args: object_ids: Object ID of the object to get, a list, tuple, ndarray of object IDs to get or a dict of {key: object ID}. Returns: A Python object, a list of Python objects or a dict of {key: object}.
codesearchnet
def change_extension(self, filepath, new_extension): filename, ext = os.path.splitext(filepath) return '.'.join([filename, new_extension])
Change final filename extension. Args: filepath (str): A file path (relative or absolute). new_extension (str): New extension name (without leading dot) to apply. Returns: str: Filepath with new extension.
juraj-google-style
def create_branch(profile, name, branch_off): branch_off_sha = get_branch_sha(profile, branch_off) ref = "heads/" + name data = refs.create_ref(profile, ref, branch_off_sha) return data
Create a branch. Args: profile A profile generated from ``simplygithub.authentication.profile``. Such profiles tell this module (i) the ``repo`` to connect to, and (ii) the ``token`` to connect with. name The name of the new branch. branch_off The name of a branch to create the new branch off of. Returns: A dict with data about the new branch.
juraj-google-style
def include(filename, hosts=False, when=True): if (not pyinfra.is_cli): raise PyinfraError('local.include is only available in CLI mode.') if (not when): return if (hosts is not False): hosts = ensure_host_list(hosts, inventory=pseudo_state.inventory) if (pseudo_host not in hosts): return if pseudo_state.deploy_dir: filename = path.join(pseudo_state.deploy_dir, filename) frameinfo = get_caller_frameinfo() logger.debug('Including local file: {0}'.format(filename)) try: from pyinfra_cli.config import extract_file_config from pyinfra_cli.util import exec_file config_data = extract_file_config(filename) kwargs = {key.lower(): value for (key, value) in six.iteritems(config_data) if (key in ['SUDO', 'SUDO_USER', 'SU_USER', 'PRESERVE_SUDO_ENV', 'IGNORE_ERRORS'])} with pseudo_state.deploy(filename, kwargs, None, frameinfo.lineno, in_deploy=False): exec_file(filename) except IOError as e: raise PyinfraError('Could not include local file: {0}\n{1}'.format(filename, e))
Executes a local python file within the ``pyinfra.pseudo_state.deploy_dir`` directory. Args: hosts (string, list): group name or list of hosts to limit this include to when (bool): indicate whether to trigger operations in this include
codesearchnet
def _CreateShapesFolder(self, schedule, doc): if (not schedule.GetShapeList()): return None shapes_folder = self._CreateFolder(doc, 'Shapes') shapes = list(schedule.GetShapeList()) shapes.sort(key=(lambda x: x.shape_id)) for shape in shapes: placemark = self._CreatePlacemark(shapes_folder, shape.shape_id) self._CreateLineStringForShape(placemark, shape) if self.shape_points: self._CreateShapePointFolder(shapes_folder, shape) return shapes_folder
Create a KML Folder containing all the shapes in a schedule. The folder contains a placemark for each shape. If there are no shapes in the schedule then the folder is not created and None is returned. Args: schedule: The transitfeed.Schedule instance. doc: The KML Document ElementTree.Element instance. Returns: The Folder ElementTree.Element instance or None.
codesearchnet
def do_import(self, keys, values, name=None): with tf.name_scope(name or '%s_lookup_table_import' % self._name): op = gen_simple_hash_table_op.examples_simple_hash_table_import(self.resource_handle, keys, values) return op
Import all `key` and `value` pairs. (Note that "import" is a python reserved word, so it cannot be the name of a method.) Args: keys: Tensor of all keys. values: Tensor of all values. name: A name for the operation (optional). Returns: A tuple of two tensors, the first with the `keys` and the second with the `values`.
github-repos
def _find_countour_yaml(start, checked, names=None): extensions = [] if names: for name in names: if not os.path.splitext(name)[1]: extensions.append(name + ".yaml") extensions.append(name + ".yml") yaml_names = (names or []) + CONTOUR_YAML_NAMES + extensions directory = start while directory not in checked: checked.add(directory) for fs_yaml_name in yaml_names: yaml_path = os.path.join(directory, fs_yaml_name) if os.path.exists(yaml_path): return yaml_path directory = os.path.dirname(directory) return
Traverse the directory tree identified by start until a directory already in checked is encountered or the path of countour.yaml is found. Checked is present both to make the loop termination easy to reason about and so the same directories do not get rechecked Args: start: the path to start looking in and work upward from checked: the set of already checked directories Returns: the path of the countour.yaml file or None if it is not found
juraj-google-style
def _find_address_range(addresses): first = last = addresses[0] last_index = 0 for ip in addresses[1:]: if (ip._ip == (last._ip + 1)): last = ip last_index += 1 else: break return (first, last, last_index)
Find a sequence of addresses. Args: addresses: a list of IPv4 or IPv6 addresses. Returns: A tuple containing the first and last IP addresses in the sequence, and the index of the last IP address in the sequence.
codesearchnet
def _init_from_proto(self, variable_def, import_scope=None): assert isinstance(variable_def, variable_pb2.VariableDef) g = ops.get_default_graph() self._variable = g.as_graph_element(ops.prepend_name_scope(variable_def.variable_name, import_scope=import_scope)) self._name = self._variable.name self._initializer_op = g.as_graph_element(ops.prepend_name_scope(variable_def.initializer_name, import_scope=import_scope)) if hasattr(variable_def, 'initial_value_name') and variable_def.initial_value_name: self._initial_value = g.as_graph_element(ops.prepend_name_scope(variable_def.initial_value_name, import_scope=import_scope)) else: self._initial_value = None synchronization, aggregation, trainable = variables.validate_synchronization_aggregation_trainable(variable_def.synchronization, variable_def.aggregation, variable_def.trainable, variable_def.variable_name) self._synchronization = synchronization self._aggregation = aggregation self._trainable = trainable self._snapshot = g.as_graph_element(ops.prepend_name_scope(variable_def.snapshot_name, import_scope=import_scope)) if variable_def.HasField('save_slice_info_def'): self._save_slice_info = variables.Variable.SaveSliceInfo(save_slice_info_def=variable_def.save_slice_info_def, import_scope=import_scope) else: self._save_slice_info = None self._caching_device = None self._constraint = None
Recreates the Variable object from a `VariableDef` protocol buffer. Args: variable_def: `VariableDef` protocol buffer, describing a variable whose nodes already exists in the graph. import_scope: Optional `string`. Name scope to add.
github-repos
def _create_uninitialized_mirrored_tpu_replicated_variables(**kwargs): dtype = kwargs.get('dtype', None) shape = kwargs.get('shape', None) initial_value = kwargs.get('initial_value', None) if initial_value is None: return _create_mirrored_tpu_replicated_variables(**kwargs) with maybe_init_scope(): if initial_value is not None: if callable(initial_value): initial_value = initial_value() initial_value = ops.convert_to_tensor(initial_value, dtype=dtype) kwargs['initial_value'] = initial_value if dtype is None: kwargs['dtype'] = kwargs['initial_value'].dtype if shape is None: kwargs['shape'] = kwargs['initial_value'].shape mirrored_replicated_var_list = [] for replica_id in range(num_replicas): replicated_var_list = [] for logic_core_id in range(num_cores_per_replica): with ops.device(self._tpu_devices[replica_id][logic_core_id]): v = uninitialized_variable_creator(**kwargs) replicated_var_list.append(v) replica_name = '{}/r:{}'.format(kwargs['name'], replica_id) tpu_replicated_var = tpu_replicated_variable.TPUReplicatedVariable(variables=replicated_var_list, name=replica_name) mirrored_replicated_var_list.append(tpu_replicated_var) return mirrored_replicated_var_list
Returns a list of `TPUReplicatedVariable`s. The list consists of `num_replicas` `TPUReplicatedVariable`s and can be used to initialize a `TPUMirroredVariable`. Each `TPUReplicatedVariable` contains a list of `tf.Variable`s which are replicated to `num_cores_per_replica` logical cores to enable XLA SPMD compilation. Args: **kwargs: the keyword arguments for creating a variable
github-repos
def generate_encoder_output_proposals(self, enc_output, padding_mask, spatial_shapes): batch_size = enc_output.shape[0] proposals = [] current_position = 0 for level, (height, width) in enumerate(spatial_shapes): mask_flatten_ = padding_mask[:, current_position:current_position + height * width] mask_flatten_ = mask_flatten_.view(batch_size, height, width, 1) valid_height = torch.sum(~mask_flatten_[:, :, 0, 0], 1) valid_width = torch.sum(~mask_flatten_[:, 0, :, 0], 1) grid_y, grid_x = meshgrid(torch.linspace(0, height - 1, height, dtype=torch.float32, device=enc_output.device), torch.linspace(0, width - 1, width, dtype=torch.float32, device=enc_output.device), indexing='ij') grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) scale = torch.cat([valid_width.unsqueeze(-1), valid_height.unsqueeze(-1)], 1).view(batch_size, 1, 1, 2) grid = (grid.unsqueeze(0).expand(batch_size, -1, -1, -1) + 0.5) / scale width_height = torch.ones_like(grid) * 0.05 * 2.0 ** level proposal = torch.cat((grid, width_height), -1).view(batch_size, -1, 4) proposals.append(proposal) current_position += height * width output_proposals = torch.cat(proposals, 1) output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True) output_proposals = torch.log(output_proposals / (1 - output_proposals)) output_proposals = output_proposals.masked_fill(padding_mask.unsqueeze(-1), float('inf')) output_proposals = output_proposals.masked_fill(~output_proposals_valid, float('inf')) object_query = enc_output object_query = object_query.masked_fill(padding_mask.unsqueeze(-1), float(0)) object_query = object_query.masked_fill(~output_proposals_valid, float(0)) object_query = self.enc_output_norm(self.enc_output(object_query)) return (object_query, output_proposals)
Generate the encoder output proposals from encoded enc_output. Args: enc_output (`torch.Tensor[batch_size, sequence_length, hidden_size]`): Output of the encoder. padding_mask (`torch.Tensor[batch_size, sequence_length]`): Padding mask for `enc_output`. spatial_shapes (`torch.Tensor[num_feature_levels, 2]`): Spatial shapes of the feature maps. Returns: `tuple(torch.FloatTensor)`: A tuple of feature map and bbox prediction. - object_query (Tensor[batch_size, sequence_length, hidden_size]): Object query features. Later used to directly predict a bounding box. (without the need of a decoder) - output_proposals (Tensor[batch_size, sequence_length, 4]): Normalized proposals, after an inverse sigmoid.
github-repos
def handle_server_error(error: Exception) -> ResponseReturnValue: return (DQMResponse(name=error.__class__.__name__, description=str(error), code=500), 500)
DQM Server Error Response. Args: * error: Server error Returns: * DQMResponse for the error with a 500 status code
github-repos
def with_device( self, new_device: devices.Device, qubit_mapping: Callable[[ops.Qid], ops.Qid] = lambda e: e, ) -> 'Circuit': return Circuit( moments=[ops.Moment(operation.transform_qubits(qubit_mapping) for operation in moment.operations) for moment in self._moments], device=new_device )
Maps the current circuit onto a new device, and validates. Args: new_device: The new device that the circuit should be on. qubit_mapping: How to translate qubits from the old device into qubits on the new device. Returns: The translated circuit.
juraj-google-style
def ParseNSSwitchConf(nsswitch_filename): with open(nsswitch_filename, 'r') as nsswitch_file: nsswitch = {} map_re = re.compile('^([a-z]+): *(.*)$') for line in nsswitch_file: match = map_re.match(line) if match: sources = match.group(2).split() nsswitch[match.group(1)] = sources return nsswitch
Parse /etc/nsswitch.conf and return the sources for each map. Args: nsswitch_filename: Full path to an nsswitch.conf to parse. See manpage nsswitch.conf(5) for full details on the format expected. Returns: a dictionary keyed by map names and containing a list of sources for each map.
github-repos
def format_formula(formula): formatted_formula = '' number_format = '' for (i, s) in enumerate(formula): if s.isdigit(): if (not number_format): number_format = '_{' number_format += s if (i == (len(formula) - 1)): number_format += '}' formatted_formula += number_format else: if number_format: number_format += '}' formatted_formula += number_format number_format = '' formatted_formula += s return ('$%s$' % formatted_formula)
Converts str of chemical formula into latex format for labelling purposes Args: formula (str): Chemical formula
codesearchnet
def restore_app_connection(self, port=None): self.host_port = (port or utils.get_available_host_port()) self._adb.forward([('tcp:%d' % self.host_port), ('tcp:%d' % self.device_port)]) try: self.connect() except: self.log.exception('Failed to re-connect to app.') raise jsonrpc_client_base.AppRestoreConnectionError(self._ad, ('Failed to restore app connection for %s at host port %s, device port %s' % (self.package, self.host_port, self.device_port))) self._proc = None self._restore_event_client()
Restores the app after device got reconnected. Instead of creating new instance of the client: - Uses the given port (or find a new available host_port if none is given). - Tries to connect to remote server with selected port. Args: port: If given, this is the host port from which to connect to remote device port. If not provided, find a new available port as host port. Raises: AppRestoreConnectionError: When the app was not able to be started.
codesearchnet
def __call__(self, image): frame_height = image.shape[0] frame_width = image.shape[1] faces = self.find_faces(image, self.draw_box) for x, y, w, h in faces: hat = self.hat.copy() hat_width = int(w * self.w_offset) hat_height = int(hat_width * hat.shape[0] / hat.shape[1]) hat = cv2.resize(hat, (hat_width, hat_height)) hat_left = 0 hat_top = 0 hat_bottom = hat_height hat_right = hat_width y0 = y - hat_height + self.y_offset if y0 < 0: hat_top = abs(y0) y0 = 0 y1 = y0 + hat_height - hat_top if y1 > frame_height: hat_bottom = hat_height - (y1 - frame_height) y1 = frame_height x0 = x + self.x_offset if x0 < 0: hat_left = abs(x0) x0 = 0 x1 = x0 + hat_width - hat_left if x1 > frame_width: hat_right = hat_width - (x1 - frame_width) x1 = frame_width for c in range(0, 3): hat_slice = hat[hat_top:hat_bottom, hat_left:hat_right, c] * \ (hat[hat_top:hat_bottom, hat_left:hat_right, 3] / 255.0) bg_slice = image[y0:y1, x0:x1, c] * \ (1.0 - hat[hat_top:hat_bottom, hat_left:hat_right, 3] / 255.0) image[y0:y1, x0:x1, c] = hat_slice + bg_slice return image
Draws a hat on top of detected faces inside the image. Args: image: The image. Returns: The image with a hat.
juraj-google-style
def sonos_uri_from_id(self, item_id): item_id = quote_url(item_id.encode('utf-8')) account = self.account result = 'soco: return result
Get a uri which can be sent for playing. Args: item_id (str): The unique id of a playable item for this music service, such as that returned in the metadata from `get_metadata`, eg ``spotify:track:2qs5ZcLByNTctJKbhAZ9JE`` Returns: str: A URI of the form: ``soco://spotify%3Atrack %3A2qs5ZcLByNTctJKbhAZ9JE?sid=2311&sn=1`` which encodes the ``item_id``, and relevant data from the account for the music service. This URI can be sent to a Sonos device for playing, and the device itself will retrieve all the necessary metadata such as title, album etc.
codesearchnet
def checkStatus(self): checkAccount() data = {'userid': self.user_id, 'useridx': self.useridx } r = self.session.post(nurls['checkStatus'], data = data) p = re.compile(r'\<message\>(?P<message>.+)\</message\>') message = p.search(r.text).group('message') if message == 'success': return True else: return False
Check status Args: Returns: True: Sucess False: Failed
juraj-google-style
def GetAttributeContainerByIndex(self, index): if (index < 0): raise IndexError('Unsupported negative index value: {0:d}.'.format(index)) if (index < len(self._list)): return self._list[index] return None
Retrieves a specific serialized attribute container from the list. Args: index (int): attribute container index. Returns: bytes: serialized attribute container data or None if not available. Raises: IndexError: if the index is less than zero.
codesearchnet
def _FindAugmentingEdge(self, queue): for y in (v for v in self.right - self.t if self.slack[v] == 0): if y not in self.matches: return (True, self.slackx[y], y) self.t.add(y) if self.matches[y] not in self.s: queue.append(self.matches[y]) self._AddToTree(self.matches[y], self.slackx[y]) return (False, None, None)
Find a final edge for an augmenting path after updating labels. At least one new edge should have been added to the equality subgraph, so we check if any new edges will create an augmenting path. Args: queue: Queue for performing BFS traversal. Returns: found: True if path was found. x: Left vertex of final path edge. y: Right vertex of final path edge.
github-repos
def __init__(self, observations, sources, provisional_name): self.mpc_observations = {} self.observations = observations self.sys_header = None self.sources = [astrom.Source(reading_list, provisional_name) for reading_list in sources]
Constructs a new astronomy data set object. Args: observations: list(Observations) The observations that are part of the data set.
juraj-google-style
def add_arguments(self, parser): parser.add_argument('-p', '--product', action='store_true', help='print the production information') parser.add_argument('-j', '--jtag', action='store_true', help='print the JTAG pin status') return self.add_common_arguments(parser, False)
Adds the information commands to the parser. Args: self (InfoCommand): the ``InfoCommand`` instance parser (argparse.ArgumentParser): the parser to add the arguments to Returns: ``None``
codesearchnet
def get_length(alt_len, ref_len, category, pos, end, svtype=None, svlen=None): length = -1 if category in ('snv', 'indel', 'cancer'): if ref_len == alt_len: length = alt_len else: length = abs(ref_len - alt_len) elif category == 'sv': if svtype == 'bnd': length = int(10e10) else: if svlen: length = abs(int(svlen)) elif end: if end != pos: length = end - pos return length
Return the length of a variant Args: alt_len(int) ref_len(int) category(str) svtype(str) svlen(int)
juraj-google-style
def op_functions_and_classes(ops_module): for op_class_name in dir(ops_module): op_class = getattr(ops_module, op_class_name) if isinstance(op_class, type) and Operation in op_class.__mro__: op_function_name = to_snake_case(op_class_name) op_function_name = {'batch_norm': 'batch_normalization', 'rms_norm': 'rms_normalization', 'search_sorted': 'searchsorted'}.get(op_function_name, op_function_name) op_function = getattr(ops_module, op_function_name, None) if op_function is not None: yield (op_function, op_class)
Enumerate pairs of op function and op classes in a module. Will return for instance `(ExpandDims, expand_dims)`, `(Sum, sum)`, ... Args: ops_module: the module to explore. Returns: iterable returning tuples with function and class pairs.
github-repos
def get_params(self, deep=True): params = {'weights': self.coef_, 'bias': self.intercept_} if deep: for (key, value) in self.B.items(): params[('b_' + str(key))] = value return params
Get parameters for the estimator. Args: deep (boolean, optional) : If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params : mapping of string to any contained subobjects that are estimators.
codesearchnet