code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs): vision_data = {} if image_sizes is not None: num_image_tokens = [self.image_seq_length] * len(image_sizes) num_image_patches = [1] * len(image_sizes) vision_data.update({'num_image_tokens': num_image_tokens, 'num_image_patches': num_image_patches}) return MultiModalData(**vision_data)
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes. Args: image_sizes (`List[List[int]]`, *optional*): The input sizes formatted as (height, width) per each image. Returns: `MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided input modalities, along with other useful data.
github-repos
def PreparePairedSequenceBatch(source, target_in, pad=0): target = target_in[(:, :(- 1))] target_y = target_in[(:, 1:)] source_mask = np.reshape((source != pad), (source.shape[0], 1, 1, source.shape[(- 1)])) target_mask = MakeTargetMask(target, pad) memory_mask = np.reshape((np.arange(target.shape[(- 1)]) < source.shape[(- 1)]), [(- 1), 1]) ntokens = np.sum((target_y != pad)) return (source, target, target_y, source_mask, target_mask, memory_mask, ntokens)
Build masks for this batch. Args: source: (batch, source_len) array of integer-coded symbols for inputs target_in: (batch, batch_len) array of integer-coded symbols for targets pad: int: the padding symbol used to pad the above Returns: Prepared batch of tuple of arrays: source, input-target, shifted-target, source mask, target mask, source-target "memory" mask, minibatch token count
codesearchnet
def list_dir(self, context): doc = inspect.getdoc(context) listing = "" listing += "\n" listing += annotate.context_name(context) + "\n" if doc is not None: doc = inspect.cleandoc(doc) listing += doc + "\n" listing += "\nDefined Functions:\n" is_dict = False if isinstance(context, dict): funs = context.keys() is_dict = True else: funs = utils.find_all(context) for fun in sorted(funs): override_name = None if is_dict: override_name = fun fun = self.find_function(context, fun) if isinstance(fun, dict): if is_dict: listing += " - " + override_name + '\n' else: listing += " - " + fun.metadata.name + '\n' else: listing += " - " + fun.metadata.signature(name=override_name) + '\n' if annotate.short_description(fun) != "": listing += " " + annotate.short_description(fun) + '\n' listing += "\nBuiltin Functions\n" for bif in sorted(self.builtins.keys()): listing += ' - ' + bif + '\n' listing += '\n' return listing
Return a listing of all of the functions in this context including builtins. Args: context (object): The context to print a directory for. Returns: str
juraj-google-style
def from_text_vision_configs(cls, text_config: Dict, vision_config: Dict, **kwargs): config_dict = {} config_dict['text_config'] = text_config config_dict['vision_config'] = vision_config return cls.from_dict(config_dict, **kwargs)
Instantiate a [`OwlViTConfig`] (or a derived class) from owlvit text model configuration and owlvit vision model configuration. Returns: [`OwlViTConfig`]: An instance of a configuration object
github-repos
def set_token(self, token): self.token = token self.set_header( 'Authorization', "Bearer {}".format(token) )
Set the token for the v20 context Args: token: The token used to access the v20 REST api
juraj-google-style
def _print_choice_field(self, field_name: str, field: descriptor.FieldDescriptor, choice_container: message.Message) -> None: if len(choice_container.DESCRIPTOR.oneofs) != 1: raise ValueError(f'Invalid value for choice field {field_name}: {choice_container}.') oneof_group = choice_container.DESCRIPTOR.oneofs[0] set_oneof_name = choice_container.WhichOneof(oneof_group.name) if set_oneof_name is None: raise ValueError(f'Oneof not set on choice type: {choice_container.DESCRIPTOR.full_name}.') value_field = choice_container.DESCRIPTOR.fields_by_name[set_oneof_name] oneof_field_name = proto_utils.json_field_name(value_field) oneof_field_name = oneof_field_name[0].upper() + oneof_field_name[1:] value = proto_utils.get_value_at_field(choice_container, value_field) if annotation_utils.is_primitive_type(value_field.message_type): self._print_primitive_field(field_name + oneof_field_name, value_field, value) else: self._print_message_field(field_name + oneof_field_name, value_field, value)
Prints a FHIR choice field. This field is expected to have one valid oneof set. Args: field_name: The name of the field. field: The FieldDescriptor whose contents to print. choice_container: The value present at field, which should be a oneof with a single value set.
github-repos
def _ParseCachedEntry2003(self, value_data, cached_entry_offset): try: cached_entry = self._ReadStructureFromByteStream( value_data[cached_entry_offset:], cached_entry_offset, self._cached_entry_data_type_map) except (ValueError, errors.ParseError) as exception: raise errors.ParseError( 'Unable to parse cached entry value with error: {0!s}'.format( exception)) path_size = cached_entry.path_size maximum_path_size = cached_entry.maximum_path_size path_offset = cached_entry.path_offset if path_offset > 0 and path_size > 0: path_size += path_offset maximum_path_size += path_offset try: path = value_data[path_offset:path_size].decode('utf-16-le') except UnicodeDecodeError: raise errors.ParseError('Unable to decode cached entry path to string') cached_entry_object = AppCompatCacheCachedEntry() cached_entry_object.cached_entry_size = ( self._cached_entry_data_type_map.GetByteSize()) cached_entry_object.file_size = getattr(cached_entry, 'file_size', None) cached_entry_object.last_modification_time = ( cached_entry.last_modification_time) cached_entry_object.path = path return cached_entry_object
Parses a Windows 2003 cached entry. Args: value_data (bytes): value data. cached_entry_offset (int): offset of the first cached entry data relative to the start of the value data. Returns: AppCompatCacheCachedEntry: cached entry. Raises: ParseError: if the value data could not be parsed.
juraj-google-style
def _fluent_size(self, fluents, ordering) -> Sequence[Sequence[int]]: shapes = [] for name in ordering: fluent = fluents[name] shape = self._param_types_to_shape(fluent.param_types) shapes.append(shape) return tuple(shapes)
Returns the sizes of `fluents` following the given `ordering`. Returns: Sequence[Sequence[int]]: A tuple of tuple of integers representing the shape and size of each fluent.
codesearchnet
def get(self, attr, value=None, resolve=True): try: if resolve: value = self._resolve_attribute(attr) else: value = self.attributes[attr] except KeyError: pass return value
Get the value of an attribute from submit description file. Args: attr (str): The name of the attribute whose value should be returned. value (str, optional): A default value to return if 'attr' doesn't exist. Defaults to None. resolve (bool, optional): If True then resolve references to other attributes in the value of 'attr'. If False then return the raw value of 'attr'. Defaults to True. Returns: str: The value assigned to 'attr' if 'attr' exists, otherwise 'value'.
codesearchnet
def _GetParentModificationTime(self, gzip_file_entry): parent_file_entry = path_spec_resolver.Resolver.OpenFileEntry(gzip_file_entry.path_spec.parent) if (not parent_file_entry): return None return parent_file_entry.modification_time
Retrieves the modification time of the file entry's parent file. Note that this retrieves the time from the file entry of the parent of the gzip file entry's path spec, which is different from trying to retrieve it from the gzip file entry's parent file entry. It would be preferable to retrieve the modification time from the metadata in the gzip file itself, but it appears to not be set when the file is written by fseventsd. Args: gzip_file_entry (dfvfs.FileEntry): file entry of the gzip file containing the fseventsd data. Returns: dfdatetime.DateTimeValues: parent modification time, or None if not available.
codesearchnet
def label_count(self): occurrences = collections.defaultdict(int) for label in self: occurrences[label.value] += 1 return occurrences
Return for each label the number of occurrences within the list. Returns: dict: A dictionary containing for every label-value (key) the number of occurrences (value). Example: >>> ll = LabelList(labels=[ >>> Label('a', 3.2, 4.5), >>> Label('b', 5.1, 8.9), >>> Label('a', 7.2, 10.5), >>> Label('b', 10.5, 14), >>> Label('a', 15, 18) >>> ]) >>> ll.label_count() {'a': 3 'b': 2}
codesearchnet
def getRetinas(self, retina_name=None): resourcePath = '/retinas' method = 'GET' queryParams = {} headerParams = {'Accept': 'Application/json', 'Content-Type': 'application/json'} postData = None queryParams['retina_name'] = retina_name response = self.apiClient._callAPI(resourcePath, method, queryParams, postData, headerParams) return [retina.Retina(**r) for r in response.json()]
Information about retinas Args: retina_name, str: The retina name (optional) (optional) Returns: Array[Retina]
juraj-google-style
def from_hising(cls, h, J, offset=None): poly = {(k,): v for k, v in h.items()} poly.update(J) if offset is not None: poly[frozenset([])] = offset return cls(poly, Vartype.SPIN)
Construct a binary polynomial from a higher-order Ising problem. Args: h (dict): The linear biases. J (dict): The higher-order biases. offset (optional, default=0.0): Constant offset applied to the model. Returns: :obj:`.BinaryPolynomial` Examples: >>> poly = dimod.BinaryPolynomial.from_hising({'a': 2}, {'ab': -1}, 0)
juraj-google-style
def get_fast_tokenizer_file(tokenization_files: List[str]) -> str: tokenizer_files_map = {} for file_name in tokenization_files: search = _re_tokenizer_file.search(file_name) if search is not None: v = search.groups()[0] tokenizer_files_map[v] = file_name available_versions = sorted(tokenizer_files_map.keys()) tokenizer_file = FULL_TOKENIZER_FILE transformers_version = version.parse(__version__) for v in available_versions: if version.parse(v) <= transformers_version: tokenizer_file = tokenizer_files_map[v] else: break return tokenizer_file
Get the tokenization file to use for this version of transformers. Args: tokenization_files (`List[str]`): The list of available configuration files. Returns: `str`: The tokenization file to use.
github-repos
def p40baro(msg): d = hex2bin(data(msg)) if (d[26] == '0'): return None p = ((bin2int(d[27:39]) * 0.1) + 800) return p
Barometric pressure setting Args: msg (String): 28 bytes hexadecimal message (BDS40) string Returns: float: pressure in millibar
codesearchnet
def get_diff_for_doctesting(repo: Repo, base_commit: str, commits: List[str]) -> List[str]: print('\n code_diff = [] for commit in commits: for diff_obj in commit.diff(base_commit): if not diff_obj.b_path.endswith('.py') and (not diff_obj.b_path.endswith('.md')): continue if diff_obj.change_type in ['A']: code_diff.append(diff_obj.b_path) elif diff_obj.change_type in ['M', 'R']: if diff_obj.a_path != diff_obj.b_path: code_diff.extend([diff_obj.a_path, diff_obj.b_path]) elif diff_contains_doc_examples(repo, commit, diff_obj.b_path): code_diff.append(diff_obj.a_path) else: print(f"Ignoring diff in {diff_obj.b_path} as it doesn't contain any doc example.") return code_diff
Get the diff in doc examples between a base commit and one or several commits. Args: repo (`git.Repo`): A git repository (for instance the Transformers repo). base_commit (`str`): The commit reference of where to compare for the diff. This is the current commit, not the branching point! commits (`List[str]`): The list of commits with which to compare the repo at `base_commit` (so the branching point). Returns: `List[str]`: The list of Python and Markdown files with a diff (files added or renamed are always returned, files modified are returned if the diff in the file is only in doctest examples).
github-repos
def _make_3d(field, twod): shp = list(field.shape) if (twod and ('X' in twod)): shp.insert(1, 1) elif twod: shp.insert(0, 1) return field.reshape(shp)
Add a dimension to field if necessary. Args: field (numpy.array): the field that need to be 3d. twod (str): 'XZ', 'YZ' or None depending on what is relevant. Returns: numpy.array: reshaped field.
codesearchnet
def _CreatePlacemark(self, parent, name, style_id=None, visible=True, description=None): placemark = ET.SubElement(parent, 'Placemark') placemark_name = ET.SubElement(placemark, 'name') placemark_name.text = name if (description is not None): desc_tag = ET.SubElement(placemark, 'description') desc_tag.text = description if (style_id is not None): styleurl = ET.SubElement(placemark, 'styleUrl') styleurl.text = (' if (not visible): visibility = ET.SubElement(placemark, 'visibility') visibility.text = '0' return placemark
Create a KML Placemark element. Args: parent: The parent ElementTree.Element instance. name: The placemark name as a string. style_id: If not None, the id of a style to use for the placemark. visible: Whether the placemark is initially visible or not. description: A description string or None. Returns: The placemark ElementTree.Element instance.
codesearchnet
def get_special_tokens_mask(self, token_ids_0: list, token_ids_1: Optional[list]=None, already_has_special_tokens: bool=False) -> list[int]: if already_has_special_tokens: if token_ids_1 is not None: raise ValueError('You should not supply a second sequence if the provided sequence of ids is already formatted with special tokens for the model.') return super().get_special_tokens_mask(token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True) return [0] * ((len(token_ids_1) if token_ids_1 else 0) + len(token_ids_0))
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. Args: token_ids_0 (`List[int]`): List of ids of the first sequence. token_ids_1 (`List[int]`, *optional*): List of ids of the second sequence. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
github-repos
def unbind(self, binding): username = self.backend.config.generate_binding_username(binding) try: self.backend.atlas.DatabaseUsers.delete_a_database_user(username) except ErrAtlasNotFound: pass self.backend.storage.remove(binding)
Unbind the instance Args: binding (AtlasServiceBinding.Binding): Existing or New binding
juraj-google-style
def mean_pooling(self, model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-09)
Calculates the mean of token embeddings Args: model_output: The output of the model. attention_mask: This is a tensor that contains 1s for all input tokens and 0s for all padding tokens. Returns: The mean of the token embeddings.
github-repos
def write(self, data): self._check_open() if not isinstance(data, str): raise TypeError('Expected str but got %s.' % type(data)) if not data: return self._buffer.append(data) self._buffered += len(data) self._offset += len(data) if self._buffered >= self._flushsize: self._flush()
Write some bytes. Args: data: data to write. str. Raises: TypeError: if data is not of type str.
juraj-google-style
def AddArguments(cls, argument_group): argument_group.add_argument( '--fields', dest='fields', type=str, action='store', default=cls._DEFAULT_FIELDS, help=( 'Defines which fields should be included in the output.')) argument_group.add_argument( '--additional_fields', dest='additional_fields', type=str, action='store', default='', help=( 'Defines extra fields to be included in the output, in addition to' ' the default fields, which are {0:s}.'.format( cls._DEFAULT_FIELDS))) argument_group.add_argument( '--timestamp_format', dest='timestamp_format', type=str, action='store', default=cls._DEFAULT_TIMESTAMP_FORMAT, help=( 'Set the timestamp format that will be used in the datetime' 'column of the XLSX spreadsheet.'))
Adds command line arguments the helper supports to an argument group. This function takes an argument parser or an argument group object and adds to it all the command line arguments this helper supports. Args: argument_group (argparse._ArgumentGroup|argparse.ArgumentParser): argparse group.
juraj-google-style
def delta_E( reactants, products, check_balance=True ): if check_balance: if delta_stoichiometry( reactants, products ) != {}: raise ValueError( "reaction is not balanced: {}".format( delta_stoichiometry( reactants, products) ) ) return sum( [ r.energy for r in products ] ) - sum( [ r.energy for r in reactants ] )
Calculate the change in energy for reactants --> products. Args: reactants (list(vasppy.Calculation): A list of vasppy.Calculation objects. The initial state. products (list(vasppy.Calculation): A list of vasppy.Calculation objects. The final state. check_balance (bool:optional): Check that the reaction stoichiometry is balanced. Default: True. Returns: (float) The change in energy.
juraj-google-style
def modify_ack_deadline(self, items): ack_ids = [item.ack_id for item in items] seconds = [item.seconds for item in items] request = types.StreamingPullRequest(modify_deadline_ack_ids=ack_ids, modify_deadline_seconds=seconds) self._manager.send(request)
Modify the ack deadline for the given messages. Args: items(Sequence[ModAckRequest]): The items to modify.
codesearchnet
def pick(self, connections): if len(connections) == 1: return connections[0] def key(conn): return (datetime.min if conn.backoff_time is None else conn.backoff_time) return min(*connections, key=key)
Picks a connection with the earliest backoff time. As a result, the first connection is picked for as long as it has no backoff time. Otherwise, the connections are tried in a round robin fashion. Args: connections (:obj:list): List of :class:`~bigchaindb_driver.connection.Connection` instances.
juraj-google-style
def now_playing(self, **kwargs): path = self._get_path('now_playing') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
Get the list of movies playing in theatres. This list refreshes every day. The maximum number of items this list will include is 100. Args: page: (optional) Minimum value of 1. Expected value is an integer. language: (optional) ISO 639-1 code. Returns: A dict representation of the JSON returned from the API.
juraj-google-style
def init_app(self, app, context=DEFAULT_DICT): if context is not _CONTEXT_MISSING: self.update_context(context, app=app) if (app not in _CONTEXT_CALLBACK_MAP and context is not _CONTEXT_MISSING): key = self._get_context_name(app=app) self._context_callbacks(app, key, original_context=context)
Lazy constructor for the :class:`Component` class. This method will allow the component to be used like a Flask extension/singleton. Args: app (flask.Flask): The Application to base this Component upon. Useful for app wide singletons. Keyword Args: context (dict, optional): The contextual information to supply to this component.
juraj-google-style
def filter_paragraph(p): tokens = p.split() if len(tokens) < 6: return True if not re.search(_SOME_ALPHA_RE, p): return True last = 0 found_sentence = False num_alpha = 0 for i, x in enumerate(tokens): if x == '.': if i - last > 3 and num_alpha >= 3: found_sentence = True break last = i num_alpha = 0 if re.match(_ONLY_ALPHA_RE, x): num_alpha += 1 if not found_sentence: return True return False
Simple filter to remove obviously bad paragraphs (bad text extraction). Note this needs to run very quickly as it is applied to every paragraph in the corpus, so nothing fancy! This whole method should be linear expected time in len(p). Args: p: string, paragraph Returns: True if we should remove the paragraph.
juraj-google-style
def _copy_non_source(op, graph, op_map, base_graph): input_mutations = [] control_mutations = [] copied_inputs = [] for input_index, original_input in enumerate(op.inputs): copied_input = op_map.get(original_input, None) if copied_input is None: copied_input = array_ops.placeholder(name='unused_control_flow_input', shape=original_input.shape, dtype=original_input.dtype) input_mutations.append(_InputMutation(copied_op=None, input_index=input_index, old_graph_tensor=original_input)) copied_inputs.append(copied_input) copied_control_inputs = [] for original_control_input in op.control_inputs: copied_control_input = op_map.get(original_control_input, None) if copied_control_input is None: control_mutations.append(_ControlMutation(copied_op=None, old_graph_op=original_control_input)) else: copied_control_inputs.append(copied_control_input) with ops.control_dependencies(copied_control_inputs), ops.device(op.device): f = base_graph._functions.get(op.type, None) if f is not None and compat.as_str(f.name) not in graph._functions: f.add_to_graph(graph) copied_op = graph.create_op(op_type=op.type, inputs=copied_inputs, dtypes=[x.dtype for x in op.outputs], attrs={key: value for key, value in op.node_def.attr.items() if not key.startswith('_class') and (not key.startswith('_tpu_replicate'))}, name=op.name) op_map[op] = copied_op for i, o in enumerate(op.outputs): op_map[o] = copied_op.outputs[i] return ([mutation._replace(copied_op=copied_op) for mutation in input_mutations], [mutation._replace(copied_op=copied_op) for mutation in control_mutations])
Copy an op directly to a given graph. Generally `op`'s inputs should already have been copied. If this is not the case, for example with v1 while_loops, then `_copy_non_source` inserts placeholders for the unavailable Tensors and returns a list of required mutations. Args: op: The op to be copied. graph: The destination graph. op_map: A dict mapping ops and tensors in the old graph to the new one. base_graph: The graph we're copying from, for any necessary functions. Returns: A tuple of (required_inputs, required_control_inputs): required_inputs: A list of `_InputMutation` tuples containing inputs to `copied_op` which must be updated once `old_graph_tensor` has been copied. required_control_inputs: A list of `_ControlMutation` tuples containing control inputs to `copied_op` which must be added once `old_graph_op` has been copied.
github-repos
def replace_pyof_version(module_fullname, version): module_version = MetaStruct.get_pyof_version(module_fullname) if ((not module_version) or (module_version == version)): return None return module_fullname.replace(module_version, version)
Replace the OF Version of a module fullname. Get's a module name (eg. 'pyof.v0x01.common.header') and returns it on a new 'version' (eg. 'pyof.v0x02.common.header'). Args: module_fullname (str): The fullname of the module (e.g.: pyof.v0x01.common.header) version (str): The version to be 'inserted' on the module fullname. Returns: str: module fullname The new module fullname, with the replaced version, on the format "pyof.v0x01.common.header". If the requested version is the same as the one of the module_fullname or if the module_fullname is not a 'OF version' specific module, returns None.
codesearchnet
def set_from_json(self, name, json, models=None, setter=None): if (name in self.properties()): log.trace('Patching attribute %r of %r with %r', name, self, json) descriptor = self.lookup(name) descriptor.set_from_json(self, json, models, setter) else: log.warning("JSON had attr %r on obj %r, which is a client-only or invalid attribute that shouldn't have been sent", name, self)
Set a property value on this object from JSON. Args: name: (str) : name of the attribute to set json: (JSON-value) : value to set to the attribute to models (dict or None, optional) : Mapping of model ids to models (default: None) This is needed in cases where the attributes to update also have values that have references. setter(ClientSession or ServerSession or None, optional) : This is used to prevent "boomerang" updates to Bokeh apps. In the context of a Bokeh server application, incoming updates to properties will be annotated with the session that is doing the updating. This value is propagated through any subsequent change notifications that the update triggers. The session can compare the event setter to itself, and suppress any updates that originate from itself. Returns: None
codesearchnet
def find_rule(condition): final_condition = re.sub('{{.*}}', '42', condition) ast_tokens = Condition.get_tokens(final_condition) ast_compressed_tokens = Condition.compress_tokens(ast_tokens) name = 'undefined' function = (lambda tokens: False) if (len(ast_compressed_tokens) > 0): for rule in Condition.RULES: if Condition.match_tokens(ast_compressed_tokens, rule['types']): name = rule['name'] function = rule['evaluate'] break return (name, ast_tokens, function)
Find rule for given condition. Args: condition (str): Python condition as string. Returns: str, list, function: found rule name, list of AST tokens for condition and verification function.
codesearchnet
def _convert(self, value, dtype): if isinstance(value, resource_variable_ops.ResourceVariable): raise RuntimeError(f'Attempting to return a variable from an eagerly executed py_func. Only numeric data structures like Tensors or NumPy arrays should be returned; to return the value of a variable, make sure to obtain the Tensor backing it by calling `.read_value()` on the variable in question: {value}') if value is None and self._is_grad_func: return constant_op.constant(0.0, dtype=dtype) return ops.convert_to_tensor(value, dtype=dtype)
Converts `value` to a tensor of type `dtype`, with error checking. Args: value: The tensor to convert. dtype: The desired dtype. Returns: A tensor of type `dtype`, or a zeros tensor if value is None and this function is in fact a gradient function. Raises: RuntimeError: if `value` is a variable.
github-repos
def save_graph(graph_str, dest_file, fmt=None, image_ratio=None): g = pydot.graph_from_dot_data(graph_str) if fmt is None: fmt = os.path.splitext(dest_file)[1].lower().strip('.') or "png" if hasattr(g, "write_" + fmt): write_fn = getattr(g, "write_" + fmt) else: raise Exception("Unsupported graph format: '%s'" % fmt) if image_ratio: g.set_ratio(str(image_ratio)) write_fn(dest_file) return fmt
Render a graph to an image file. Args: graph_str (str): Dot-language graph string. dest_file (str): Filepath to save the graph to. fmt (str): Format, eg "png", "jpg". image_ratio (float): Image ratio. Returns: String representing format that was written, such as 'png'.
juraj-google-style
def buckets_insert(self, bucket, project_id=None): args = {'project': project_id if project_id else self._project_id} data = {'name': bucket} url = Api._ENDPOINT + (Api._BUCKET_PATH % '') return datalab.utils.Http.request(url, args=args, data=data, credentials=self._credentials)
Issues a request to create a new bucket. Args: bucket: the name of the bucket. project_id: the project to use when inserting the bucket. Returns: A parsed bucket information dictionary. Raises: Exception if there is an error performing the operation.
juraj-google-style
def delete(self, path): self.__validate_storage_path(path, projects_allowed=False) entity = self.api_client.get_entity_by_query(path=path) if (entity['entity_type'] in self.__BROWSABLE_TYPES): contents = self.api_client.list_folder_content(entity['uuid']) if (contents['count'] > 0): raise StorageArgumentException('This method cannot delete non-empty folder. Please empty the folder first.') self.api_client.delete_folder(entity['uuid']) elif (entity['entity_type'] == 'file'): self.api_client.delete_file(entity['uuid'])
Delete an entity from the storage service using its path. Args: path(str): The path of the entity to be delete Returns: The uuid of created file entity as string Raises: StorageArgumentException: Invalid arguments StorageForbiddenException: Server response code 403 StorageNotFoundException: Server response code 404 StorageException: other 400-600 error codes
codesearchnet
def _update_flags(compiler_flags, remove_flags=()): for flag in GFORTRAN_SHARED_FLAGS: if (flag not in compiler_flags): compiler_flags.append(flag) if (DEBUG_ENV in os.environ): to_add = GFORTRAN_DEBUG_FLAGS to_remove = GFORTRAN_OPTIMIZE_FLAGS else: to_add = GFORTRAN_OPTIMIZE_FLAGS if (os.environ.get(WHEEL_ENV) is None): to_add += (GFORTRAN_NATIVE_FLAG,) to_remove = GFORTRAN_DEBUG_FLAGS for flag in to_add: if (flag not in compiler_flags): compiler_flags.append(flag) return [flag for flag in compiler_flags if (not ((flag in to_remove) or (flag in remove_flags)))]
Update a given set of compiler flags. Args: compiler_flags (List[str]): Existing flags associated with a compiler. remove_flags (Optional[Container[str]]): A container of flags to remove that will override any of the defaults. Returns: List[str]: The modified list (i.e. some flags added and some removed).
codesearchnet
def __init__(self, callback): self._callback = callback self._interface = brocade_interface( callback=pynos.utilities.return_xml ) self._rbridge = brocade_rbridge( callback=pynos.utilities.return_xml ) self._mac_address_table = brocade_mac_address_table( callback=pynos.utilities.return_xml ) self._tunnels = brocade_tunnels( callback=pynos.utilities.return_xml )
Interface init function. Args: callback: Callback function that will be called for each action. Returns: Interface Object Raises: None
juraj-google-style
def tangent(f): node = annotate.resolve_calls(f) RemoveWith().visit(node) wrapped = functools.wraps(f)(compile_.compile_function(node)) wrapped.tangent = f return wrapped
A decorator which removes the `with insert_grad_of` statement. This allows the function to be called as usual. Args: f: A function Returns: A function with any `with insert_grad_of` context managers removed.
codesearchnet
def make_parser(): parser = argparse.ArgumentParser(usage='%(prog)s [options] input') parser.add_argument('--output-cfg', type=str, action='store', dest='output_cfg', default=None, help='Output control flow graph as SVG.') parser.add_argument('--output-typegraph', type=str, action='store', dest='output_typegraph', default=None, help='Output typegraph as SVG.') parser.add_argument('--visualize', type=str, action='store', dest='visualize_typegraph', default=None, help='Generate an HTML visualization of the typegraph.') parser.add_argument('--visualize-blocks', type=str, action='store', dest='visualize_block_graph', default=None, help='Generate an HTML visualization of the blockgraph.') wrapper = datatypes.ParserWrapper(parser) pytype_config.add_all_pytype_options(wrapper) return arg_parser.Parser(parser, pytype_single_args=wrapper.actions)
Make parser for command line args. Returns: A Parser object.
github-repos
def __init__(self, max_workers=None): _remove_dead_thread_references() if max_workers is None: self._max_workers = multiprocessing.cpu_count() else: self._max_workers = max_workers self._call_queue = multiprocessing.Queue(self._max_workers + EXTRA_QUEUED_CALLS) self._result_queue = multiprocessing.Queue() self._work_ids = queue.Queue() self._queue_management_thread = None self._processes = set() self._shutdown_thread = False self._shutdown_process_event = multiprocessing.Event() self._shutdown_lock = threading.Lock() self._queue_count = 0 self._pending_work_items = {}
Initializes a new ProcessPoolExecutor instance. Args: max_workers: The maximum number of processes that can be used to execute the given calls. If None or not given then as many worker processes will be created as the machine has processors.
juraj-google-style
def __init__(self, packet_count=None, byte_count=None): super().__init__() self.packet_count = packet_count self.byte_count = byte_count
Create BucketCounter with the optional parameters below. Args: packet_count (int): Number of packets processed by bucket. byte_count (int): Number of bytes processed by bucket.
juraj-google-style
def get_package_from_handle(package_handle): if isinstance(package_handle, dict): package_handle = ResourceHandle.from_dict(package_handle) package_resource = package_repository_manager.get_resource_from_handle(package_handle) package = Package(package_resource) return package
Create a package given its handle (or serialized dict equivalent) Args: package_handle (`ResourceHandle` or dict): Resource handle, or equivalent serialized dict representation from ResourceHandle.to_dict Returns: `Package`.
juraj-google-style
def WriteGraphOpCreation(self, graph_op_creation): debug_event = debug_event_pb2.DebugEvent(graph_op_creation=graph_op_creation) self._EnsureTimestampAdded(debug_event) _pywrap_debug_events_writer.WriteGraphOpCreation(self._dump_root, debug_event)
Write a GraphOpCreation proto with the writer. Args: graph_op_creation: A GraphOpCreation proto, describing the details of the creation of an op inside a TensorFlow Graph.
github-repos
def test_sample_paths_2d(self, use_time_grid, supply_normal_draws): dtype = tf.float64 mu = np.array([0.2, 0.7]) a = np.array([[0.4, 0.1], [0.3, 0.2]]) b = np.array([[0.33, -0.03], [0.21, 0.5]]) def drift_fn(t, x): return mu * tf.sqrt(t) * tf.ones_like(x, dtype=t.dtype) def vol_fn(t, x): del x return (a * t + b) * tf.ones([2, 2], dtype=t.dtype) process = tff.models.GenericItoProcess(dim=2, drift_fn=drift_fn, volatility_fn=vol_fn) times = np.array([0.1, 0.21, 0.32, 0.43, 0.55]) x0 = np.array([0.1, -1.1]) if use_time_grid: times_grid = tf.linspace(tf.constant(0.0, dtype=dtype), 0.55, 56) time_step = None else: times_grid = None time_step = 0.01 if supply_normal_draws: num_samples = 1 normal_draws = tf.random.normal(shape=[5000, times_grid.shape[0] - 1, 2], dtype=dtype) normal_draws = tf.concat([normal_draws, -normal_draws], axis=0) else: num_samples = 10000 normal_draws = None paths = self.evaluate(process.sample_paths(times, num_samples=num_samples, initial_state=x0, time_step=time_step, times_grid=times_grid, normal_draws=normal_draws, seed=12134)) num_samples = 10000 self.assertAllClose(paths.shape, (num_samples, 5, 2), atol=0) means = np.mean(paths, axis=0) times = np.reshape(times, [-1, 1]) expected_means = x0 + 2.0 / 3.0 * mu * np.power(times, 1.5) self.assertAllClose(means, expected_means, rtol=0.01, atol=0.01)
Tests path properties for 2-dimentional Ito process. We construct the following Ito processes. dX_1 = mu_1 sqrt(t) dt + s11 dW_1 + s12 dW_2 dX_2 = mu_2 sqrt(t) dt + s21 dW_1 + s22 dW_2 mu_1, mu_2 are constants. s_ij = a_ij t + b_ij For this process expected value at time t is (x_0)_i + 2/3 * mu_i * t^1.5. Args: use_time_grid: A boolean to indicate whther `times_grid` is supplied. supply_normal_draws: A boolean to indicate whether `normal_draws` is supplied.
github-repos
def getGUA(self, filterByPrefix=None): print '%s call getGUA' % self.port print filterByPrefix globalAddrs = [] try: globalAddrs = self.getGlobal() if filterByPrefix is None: return globalAddrs[0] else: for line in globalAddrs: fullIp = ModuleHelper.GetFullIpv6Address(line) if fullIp.startswith(filterByPrefix): return fullIp print 'no global address matched' return str(globalAddrs[0]) except Exception, e: ModuleHelper.WriteIntoDebugLogger("getGUA() Error: " + str(e))
get expected global unicast IPv6 address of Thread device Args: filterByPrefix: a given expected global IPv6 prefix to be matched Returns: a global IPv6 address
juraj-google-style
def stop_capture_handler(self, name): empty_capturers_indeces = [] for (k, sc) in self._stream_capturers.iteritems(): stream_capturer = sc[0] stream_capturer.remove_handler(name) if (stream_capturer.handler_count == 0): self._pool.killone(sc[1]) empty_capturers_indeces.append(k) for i in empty_capturers_indeces: del self._stream_capturers[i]
Remove all handlers with a given name Args: name: The name of the handler(s) to remove.
codesearchnet
def handle_unsubscribe(self, request, path): ret = [] if path: name = path[0] child = self.children[name] ret += child.handle_unsubscribe(request, path[1:]) if ((not child.children) and (not child.update_requests) and (not child.delta_requests)): del self.children[name] else: if (request in self.update_requests): self.update_requests.remove(request) else: self.delta_requests.remove(request) ret.append(request.return_response()) return ret
Remove from the notifier list and send a return Args: request (Subscribe): The original subscribe request path (list): The relative path from ourself Returns: list: [(callback, Response)] that need to be called
codesearchnet
def gvd(self, wavelength): g = (wavelength*1.e-9)**3./(2.*spc.pi*spc.c**2.) * self.nDer2(wavelength) return g
The group velocity dispersion (GVD) with respect to wavelength. Args: wavelength (float, list, None): The wavelength(s) the GVD will be evaluated at. Returns: float, list: The GVD at the target wavelength(s).
juraj-google-style
def end(self: EventSetOrNode) -> EventSetOrNode: from temporian.core.operators.end import end return end(self)
Generates a single timestamp at the end of an [`EventSet`][temporian.EventSet], per index key. Usage example: ```python >>> a = tp.event_set( ... timestamps=[5, 6, 7, 1], ... features={"f": [50, 60, 70, 10], "idx": [1, 1, 1, 2]}, ... indexes=["idx"] ... ) >>> a_end = a.end() >>> a_end indexes: [('idx', int64)] features: [] events: idx=1 (1 events): timestamps: [7.] idx=2 (1 events): timestamps: [1.] ... ``` Returns: A feature-less EventSet with a single timestamp per index group.
github-repos
def for_document(cls, document_ref, snapshot_callback, snapshot_class_instance, reference_class_instance): return cls(document_ref, document_ref._client, {'documents': {'documents': [document_ref._document_path]}, 'target_id': WATCH_TARGET_ID}, document_watch_comparator, snapshot_callback, snapshot_class_instance, reference_class_instance)
Creates a watch snapshot listener for a document. snapshot_callback receives a DocumentChange object, but may also start to get targetChange and such soon Args: document_ref: Reference to Document snapshot_callback: callback to be called on snapshot snapshot_class_instance: instance of DocumentSnapshot to make snapshots with to pass to snapshot_callback reference_class_instance: instance of DocumentReference to make references
codesearchnet
def delete_detector(self, detector_id, **kwargs): resp = self._delete(self._u(self._DETECTOR_ENDPOINT_SUFFIX, detector_id), **kwargs) resp.raise_for_status() return resp
Remove a detector. Args: detector_id (string): the ID of the detector.
codesearchnet
def __init__(self, servers, debug=False): self.servers = [servers] if isinstance(servers, basestring) else servers self.key_hasher = self._debug_key_hash if debug else self._key_hash self._client = None self.debug = debug self.current = ''
Create a memcached client. Args: servers (str or list of str): Server URI(s), eg '127.0.0.1:11211'. debug (bool): If True, quasi human readable keys are used. This helps debugging - run 'memcached -vv' in the foreground to see the keys being get/set/stored.
juraj-google-style
def abs_url(self, url): parsed_url = urllib.parse.urlparse(url) if not parsed_url.scheme and not parsed_url.netloc: return urllib.parse.urljoin(str(self.base_url), str(url)) else: return url
Given a relative or absolute URL; return an absolute URL. Args: url(basestring): A relative or absolute URL. Returns: str: An absolute URL.
juraj-google-style
def variance(numbers, type='population'): mean = average(numbers) variance = 0 for number in numbers: variance += ((mean - number) ** 2) if (type == 'population'): return (variance / len(numbers)) else: return (variance / (len(numbers) - 1))
Calculates the population or sample variance of a list of numbers. A large number means the results are all over the place, while a small number means the results are comparatively close to the average. Args: numbers: a list of integers or floating point numbers to compare. type: string, 'population' or 'sample', the kind of variance to be computed. Returns: The computed population or sample variance. Defaults to population variance. Requires: The math module, average()
codesearchnet
def file_to_list(file_name, file_location): file = __os.path.join(file_location, file_name) read_file = open(file, "r") temp_list = read_file.read().splitlines() read_file.close() return temp_list
Function to import a text file to a list Args: file_name: The name of file to be import file_location: The location of the file, derive from the os module Returns: returns a list
juraj-google-style
def add(self, index): if (index - self.flush_at) < self.interval: return now = time.time() elapsed = now - self.lap elapsed_total = now - self.start it = index - self.flush_at self.lap = now if self.verbose: logger.info("iter={} {{{}}}={}[sec/{}iter] {}[sec]".format( index, self.name, elapsed, it, elapsed_total)) if self.fd is not None: print("{} {} {} {}".format(index, elapsed, it, elapsed_total), file=self.fd) self.flush_at = index
Calculate time elapsed from the point previously called this method or this object is created to this is called. Args: index (int): Index to be displayed, and be used to take intervals.
juraj-google-style
def GetFileEntryByPathSpec(self, path_spec): if not self.FileEntryExistsByPathSpec(path_spec): return None location = getattr(path_spec, 'location', None) if len(location) == 1: return tar_file_entry.TARFileEntry( self._resolver_context, self, path_spec, is_root=True, is_virtual=True) kwargs = {} try: kwargs['tar_info'] = self._tar_file.getmember(location[1:]) except KeyError: kwargs['is_virtual'] = True return tar_file_entry.TARFileEntry( self._resolver_context, self, path_spec, **kwargs)
Retrieves a file entry for a path specification. Args: path_spec (PathSpec): path specification. Returns: TARFileEntry: file entry or None.
juraj-google-style
def tf_retrieve_indices(self, buffer_elements, priority_indices): states = dict() buffer_start = self.buffer_index - buffer_elements buffer_end = self.buffer_index for name in sorted(self.states_memory): buffer_state_memory = self.states_buffer[name] buffer_states = buffer_state_memory[buffer_start:buffer_end] memory_states = tf.gather(params=self.states_memory[name], indices=priority_indices) states[name] = tf.concat(values=(buffer_states, memory_states), axis=0) internals = dict() for name in sorted(self.internals_memory): internal_buffer_memory = self.internals_buffer[name] buffer_internals = internal_buffer_memory[buffer_start:buffer_end] memory_internals = tf.gather(params=self.internals_memory[name], indices=priority_indices) internals[name] = tf.concat(values=(buffer_internals, memory_internals), axis=0) actions = dict() for name in sorted(self.actions_memory): action_buffer_memory = self.actions_buffer[name] buffer_action = action_buffer_memory[buffer_start:buffer_end] memory_action = tf.gather(params=self.actions_memory[name], indices=priority_indices) actions[name] = tf.concat(values=(buffer_action, memory_action), axis=0) buffer_terminal = self.terminal_buffer[buffer_start:buffer_end] priority_terminal = tf.gather(params=self.terminal_memory, indices=priority_indices) terminal = tf.concat(values=(buffer_terminal, priority_terminal), axis=0) buffer_reward = self.reward_buffer[buffer_start:buffer_end] priority_reward = tf.gather(params=self.reward_memory, indices=priority_indices) reward = tf.concat(values=(buffer_reward, priority_reward), axis=0) if self.include_next_states: assert util.rank(priority_indices) == 1 next_priority_indices = (priority_indices + 1) % self.capacity next_buffer_start = (buffer_start + 1) % self.buffer_size next_buffer_end = (buffer_end + 1) % self.buffer_size next_states = dict() for name in sorted(self.states_memory): buffer_state_memory = self.states_buffer[name] buffer_next_states = buffer_state_memory[next_buffer_start:next_buffer_end] memory_next_states = tf.gather(params=self.states_memory[name], indices=next_priority_indices) next_states[name] = tf.concat(values=(buffer_next_states, memory_next_states), axis=0) next_internals = dict() for name in sorted(self.internals_memory): buffer_internal_memory = self.internals_buffer[name] buffer_next_internals = buffer_internal_memory[next_buffer_start:next_buffer_end] memory_next_internals = tf.gather(params=self.internals_memory[name], indices=next_priority_indices) next_internals[name] = tf.concat(values=(buffer_next_internals, memory_next_internals), axis=0) return dict( states=states, internals=internals, actions=actions, terminal=terminal, reward=reward, next_states=next_states, next_internals=next_internals ) else: return dict( states=states, internals=internals, actions=actions, terminal=terminal, reward=reward )
Fetches experiences for given indices by combining entries from buffer which have no priorities, and entries from priority memory. Args: buffer_elements: Number of buffer elements to retrieve priority_indices: Index tensor for priority memory Returns: Batch of experiences
juraj-google-style
def system(self, error: str) -> None: log = self._build_system_message(error) self.queue_log_message(log)
Adds system error information to base log message and sends it to the logger for writing. Args: * error: error that occurred Returns: * None
github-repos
def write(self): if self.description: return '@{0} {1}{4}{2}{4}+{4}{3}{4}'.format(self.id, self.description, self.sequence, self.quality, os.linesep) else: return '@{0}{3}{1}{3}+{3}{2}{3}'.format(self.id, self.sequence, self.quality, os.linesep)
Return FASTQ formatted string Returns: str: FASTQ formatted string containing entire FASTQ entry
codesearchnet
def unpack(self, buff=None, offset=0): property_type = UBInt16(enum_ref=TableFeaturePropType) property_type.unpack(buff, offset) self.__class__ = TableFeaturePropType(property_type.value).find_class() length = UBInt16() length.unpack(buff, offset=offset+2) super().unpack(buff[:offset+length.value], offset=offset)
Unpack *buff* into this object. This method will convert a binary data into a readable value according to the attribute format. Args: buff (bytes): Binary buffer. offset (int): Where to begin unpacking. Raises: :exc:`~.exceptions.UnpackException`: If unpack fails.
juraj-google-style
def create(self, resource): uri = self.URI + self.RESOURCES_PATH return self._client.create(resource=resource, uri=uri)
Set all the labels for a resource. Args: resource: The object containing the resource URI and a list of labels Returns: dict: Resource Labels
juraj-google-style
def _GetFrameCodeObjectName(frame): if ((frame.f_code.co_argcount >= 1) and ('self' == frame.f_code.co_varnames[0])): return ((frame.f_locals['self'].__class__.__name__ + '.') + frame.f_code.co_name) else: return frame.f_code.co_name
Gets the code object name for the frame. Args: frame: the frame to get the name from Returns: The function name if the code is a static function or the class name with the method name if it is an member function.
codesearchnet
def kron(*matrices: np.ndarray) -> np.ndarray: product = np.eye(1) for m in matrices: product = np.kron(product, m) return np.array(product)
Computes the kronecker product of a sequence of matrices. A *args version of lambda args: functools.reduce(np.kron, args). Args: *matrices: The matrices and controls to combine with the kronecker product. Returns: The resulting matrix.
juraj-google-style
def fetch(self, settlement_id, data={}, **kwargs): return super(Settlement, self).fetch(settlement_id, data, **kwargs)
Fetch Settlement data for given Id Args: settlement_id : Id for which settlement object has to be retrieved Returns: settlement dict for given settlement id
juraj-google-style
def RegisterMountPoint(cls, mount_point, path_spec): if mount_point in cls._mount_points: raise KeyError('Mount point: {0:s} already set.'.format(mount_point)) cls._mount_points[mount_point] = path_spec
Registers a path specification mount point. Args: mount_point (str): mount point identifier. path_spec (PathSpec): path specification of the mount point. Raises: KeyError: if the corresponding mount point is already set.
juraj-google-style
def add_arguments(cls, parser): parser.add_argument( '-i', '--issue', action='store', nargs='?', const='', dest='issue', help="[pr] issue ) parser.add_argument( '-br', '--branch', action='store', nargs='?', const='', dest='branch', help="[pr] branch", ) parser.add_argument( '-tbr', '--target-branch', action='store', nargs='?', const='', default='master', dest='target_branch', help="[pr] name of branch to pull changes into\n(defaults to: master)", )
Add arguments to the parser for collection in app.args. Args: parser: `argparse.ArgumentParser`. Parser. Arguments added here are server on self.args.
juraj-google-style
def get_lowest_decomposition(self, composition): entries_list = [] elements = [e.symbol for e in composition.elements] for i in range(len(elements)): for combi in itertools.combinations(elements, (i + 1)): chemsys = [Element(e) for e in combi] x = self.costdb.get_entries(chemsys) entries_list.extend(x) try: pd = PhaseDiagram(entries_list) return pd.get_decomposition(composition) except IndexError: raise ValueError('Error during PD building; most likely, cost data does not exist!')
Get the decomposition leading to lowest cost Args: composition: Composition as a pymatgen.core.structure.Composition Returns: Decomposition as a dict of {Entry: amount}
codesearchnet
def create_multispan_plots(tag_ids): import matplotlib.gridspec as gridspec fig = plt.figure() nrows = 1 if len(tag_ids) > 1: nrows = 2 fig.set_size_inches(10, 5*nrows) gs = gridspec.GridSpec(nrows, len(tag_ids)) ax_list = [fig.add_subplot(g) for g in gs] ax_dict = {} for i, tag_dict in enumerate(tag_ids): ax_dict[tag_dict['id']] = ax_list[i] ax_dict[tag_dict['id']].set_title( 'System {} (id {})'.format(tag_dict['name'], tag_dict['id'])) if nrows > 1: ax_total = plt.subplot(gs[1, :]) title = 'Combined {}'.format(tag_ids[0]['name']) for i in range(1, len(tag_ids)): title = title + ' and {}'.format(tag_ids[i]['name']) ax_total.set_title(title) gs.tight_layout(fig, rect=[0, 0.03, 1, 0.95]) return fig, ax_dict, ax_total gs.tight_layout(fig, rect=[0, 0.03, 1, 0.95]) return fig, ax_dict, None
Create detail plots (first row) and total block(second row) of experiments. Args: tag_ids: list of tag-dictionaries, where the dictionaries must have fields 'name' (used for naming) and 'id' (used for numbering axis_dict) Returns: Figure element fig, ax_dict containing the first row plots (accessed via id) and ax_total containing the second row block.
juraj-google-style
def post_url(self, url, token='', json=None, data=None, headers=None): if (token == ''): token = self._user_token if headers: headers.update({'Authorization': 'Token {}'.format(token)}) else: headers = {'Authorization': 'Token {}'.format(token)} if json: return requests.post(url, headers=headers, json=json, verify=False) if data: return requests.post(url, headers=headers, data=data, verify=False) return requests.post(url, headers=headers, verify=False)
Returns a post resquest object taking in a url, user token, and possible json information. Arguments: url (str): The url to make post to token (str): The authentication token json (dict): json info to send Returns: obj: Post request object
juraj-google-style
def _unbind_topics(self, topics): self.client.unsubscribe(topics.status) self.client.unsubscribe(topics.tracing) self.client.unsubscribe(topics.streaming) self.client.unsubscribe(topics.response)
Unsubscribe to all of the topics we needed for communication with device Args: topics (MQTTTopicValidator): The topic validator for this device that we have connected to.
juraj-google-style
def decode(data): dom = None try: dom = dhtmlparser.parseString(data) except Exception, e: raise MetaParsingException("Can't parse your XML data: %s" % e.message) root = dom.find("root") if not root: raise MetaParsingException("All elements have to be inside <root>.") if len(root) > 1: raise MetaParsingException("Too many <root> elements in your XML!") items = root[0].find("item") if not items: raise MetaParsingException("There are no <items> in your XML <root>!") decoded = [] for item in items: if "key" not in item.params: raise MetaParsingException( "There is no 'key' parameter in %s." % str(item) ) decoded.append([ item.params["key"], item.getContent().strip() ]) decoded = validator.check_structure(decoded) return decoded
Handles decoding of the XML `data`. Args: data (str): Data which will be decoded. Returns: dict: Dictionary with decoded data.
juraj-google-style
def _control_flow_post_processing(self, input_tensors=None) -> None: if input_tensors is None: input_tensors = self.inputs for input_tensor in input_tensors: control_flow_util.CheckInputFromValidContext(self, input_tensor.op) if self._control_flow_context is not None: self._control_flow_context.AddOp(self)
Add this op to its control flow context. This may add new ops and change this op's inputs. self.inputs must be available before calling this method. Args: input_tensors: (Optional.) A list of `Tensors` corresponding to the inputs of this op, which should be equivalent to `self.inputs`. Pass this argument to avoid evaluating `self.inputs` unnecessarily.
github-repos
def __init__(self, descriptors=None, descriptor_loader=import_descriptor_loader): self.__descriptor_loader = descriptor_loader self.__descriptors = descriptors or {}
Constructor. Args: descriptors: A dictionary or dictionary-like object that can be used to store and cache descriptors by definition name. definition_loader: A function used for resolving missing descriptors. The function takes a definition name as its parameter and returns an appropriate descriptor. It may raise DefinitionNotFoundError.
juraj-google-style
def sort_request(request: Dict[(str, Any)]) -> OrderedDict: sort_order = ['jsonrpc', 'method', 'params', 'id'] return OrderedDict(sorted(request.items(), key=(lambda k: sort_order.index(k[0]))))
Sort a JSON-RPC request dict. This has no effect other than making the request nicer to read. >>> json.dumps(sort_request( ... {'id': 2, 'params': [2, 3], 'method': 'add', 'jsonrpc': '2.0'})) '{"jsonrpc": "2.0", "method": "add", "params": [2, 3], "id": 2}' Args: request: JSON-RPC request in dict format.
codesearchnet
def string_join(inputs, separator='', name=None): return gen_string_ops.string_join(inputs, separator=separator, name=name)
Perform element-wise concatenation of a list of string tensors. Given a list of string tensors of same shape, performs element-wise concatenation of the strings of the same index in all tensors. >>> tf.strings.join(['abc','def']).numpy() b'abcdef' >>> tf.strings.join([['abc','123'], ... ['def','456'], ... ['ghi','789']]).numpy() array([b'abcdefghi', b'123456789'], dtype=object) >>> tf.strings.join([['abc','123'], ... ['def','456']], ... separator=" ").numpy() array([b'abc def', b'123 456'], dtype=object) The reduction version of this elementwise operation is `tf.strings.reduce_join` Args: inputs: A list of `tf.Tensor` objects of same size and `tf.string` dtype. separator: A string added between each string being joined. name: A name for the operation (optional). Returns: A `tf.string` tensor.
github-repos
def _PrintSessionsDetails(self, storage_reader): for (session_number, session) in enumerate(storage_reader.GetSessions()): session_identifier = uuid.UUID(hex=session.identifier) session_identifier = '{0!s}'.format(session_identifier) start_time = 'N/A' if (session.start_time is not None): start_time = timelib.Timestamp.CopyToIsoFormat(session.start_time) completion_time = 'N/A' if (session.completion_time is not None): completion_time = timelib.Timestamp.CopyToIsoFormat(session.completion_time) enabled_parser_names = 'N/A' if session.enabled_parser_names: enabled_parser_names = ', '.join(sorted(session.enabled_parser_names)) command_line_arguments = (session.command_line_arguments or 'N/A') parser_filter_expression = (session.parser_filter_expression or 'N/A') preferred_encoding = (session.preferred_encoding or 'N/A') if isinstance(preferred_encoding, py2to3.BYTES_TYPE): preferred_encoding = preferred_encoding.decode('utf-8') if session.artifact_filters: artifact_filters_string = ', '.join(session.artifact_filters) else: artifact_filters_string = 'N/A' filter_file = (session.filter_file or 'N/A') title = 'Session: {0:s}'.format(session_identifier) table_view = views.ViewsFactory.GetTableView(self._views_format_type, title=title) table_view.AddRow(['Start time', start_time]) table_view.AddRow(['Completion time', completion_time]) table_view.AddRow(['Product name', session.product_name]) table_view.AddRow(['Product version', session.product_version]) table_view.AddRow(['Command line arguments', command_line_arguments]) table_view.AddRow(['Parser filter expression', parser_filter_expression]) table_view.AddRow(['Enabled parser and plugins', enabled_parser_names]) table_view.AddRow(['Preferred encoding', preferred_encoding]) table_view.AddRow(['Debug mode', session.debug_mode]) table_view.AddRow(['Artifact filters', artifact_filters_string]) table_view.AddRow(['Filter file', filter_file]) table_view.Write(self._output_writer) if self._verbose: self._PrintPreprocessingInformation(storage_reader, (session_number + 1)) self._PrintParsersCounter(session.parsers_counter, session_identifier=session_identifier) self._PrintAnalysisReportCounter(session.analysis_reports_counter, session_identifier=session_identifier) self._PrintEventLabelsCounter(session.event_labels_counter, session_identifier=session_identifier)
Prints the details of the sessions. Args: storage_reader (BaseStore): storage.
codesearchnet
def _run_pytype(self, pytype_args_dict): with self._create_pytype_subprocess(pytype_args_dict) as p: self.stdout, self.stderr = (s.decode('utf-8') for s in p.communicate()) self.returncode = p.returncode
A single command-line call to the pytype binary. Typically you'll want to use _CheckTypesAndErrors or _InferTypesAndCheckErrors, which will set up the command-line arguments properly and check that the errors file is in the right state after the call. (The errors check is bundled in to avoid the user forgetting to call assertHasErrors() with no arguments when expecting no errors.) Args: pytype_args_dict: A dictionary of the arguments to pass to pytype, minus the binary name. For example, to run pytype simple.py --output=- the arguments should be {"simple.py": self.INCLUDE, "--output": "-"}
github-repos
def __init__(self, api_key=None, endpoint=None, dtype=None, verbose=None, debug=None): self.api_key = api_key if api_key else os.environ['MPDS_KEY'] self.network = httplib2.Http() self.endpoint = endpoint or self.endpoint self.dtype = dtype or MPDSDataTypes.PEER_REVIEWED self.verbose = verbose if verbose is not None else self.verbose self.debug = debug or self.debug
MPDS API consumer constructor Args: api_key: (str) The MPDS API key, or None if the MPDS_KEY envvar is set endpoint: (str) MPDS API gateway URL Returns: None
juraj-google-style
def backward_propagation(parameters, cache, X, Y): m = X.shape[1] W1 = parameters['W1'] W2 = parameters['W2'] A1 = cache['A1'] A2 = cache['A2'] dZ2 = (A2 - Y) dW2 = ((1.0 / m) * np.dot(dZ2, A1.T)) db2 = ((1.0 / m) * np.sum(dZ2, axis=1, keepdims=True)) dZ1 = ((W2.T * dZ2) * (1 - np.power(A1, 2))) dW1 = ((1.0 / m) * np.dot(dZ1, X.T)) db1 = ((1.0 / m) * np.sum(dZ1, axis=1, keepdims=True)) grads = {'dW1': dW1, 'db1': db1, 'dW2': dW2, 'db2': db2} return grads
Implement the backward propagation using the instructions above. Arguments: parameters -- python dictionary containing our parameters cache -- a dictionary containing "Z1", "A1", "Z2" and "A2". X -- input data of shape (2, number of examples) Y -- "true" labels vector of shape (1, number of examples) Returns: grads -- python dictionary containing your gradients with respect to different parameters
codesearchnet
def BuildLSTMLayer(batch_size, seq_length, num_inputs, num_nodes): weights = RandomVar(LSTMCellWeightsShape(num_inputs, num_nodes), name='weights') m = array_ops.zeros([batch_size, num_nodes], name='init_m') c = array_ops.zeros([batch_size, num_nodes], name='init_c') x_seq, pad_seq = RandomInputs(batch_size, seq_length, num_inputs) out_seq = LSTMLayer('lstm', weights, m, c, x_seq, pad_seq) return (out_seq, [weights])
Builds a single LSTM layer with random weights and inputs. Args: batch_size: Inputs are fed in batches of this size. seq_length: The sequence length to unroll the LSTM layer. num_inputs: Dimension of inputs that are fed into each LSTM cell. num_nodes: The number of nodes in each LSTM cell. Returns: (out_seq, weights) pair. The out_seq is a list of per-sequence-step outputs, each with shape [batch_size, num_nodes]. The weights are a list of weight variables that may be trained.
github-repos
def __init__(self, image_processor, tokenizer, chat_template=None, image_seq_length=256, policy_definitions=None, **kwargs): super().__init__(image_processor, tokenizer, chat_template, image_seq_length, **kwargs) if policy_definitions is None: self.policy_definitions = DEFAULT_SHIELDGEMMA2_POLICIES else: self.policy_definitions = policy_definitions
A processor for the ShieldGemma 2 model. Args: image_processor: The image processor to use, typically a `Gemma3ImageProcessorFast` instance. tokenizer: The tokenizer to use, typically a `GemmaTokenizerFast` instance. chat_template: The chat template to use with this processor. Typically, this is unset as the processor configuration on Hugging Face Hub includes this value already. image_seq_length: The number of soft tokens per image. Typically, this is unset as the processor configuration on Hugging Face Hub includes this value already. policy_definitions: A mapping from policy name to its description in text used as the default policies to classify images against. The policy descriptions are included in the text of the prompts generated by this processor. Typically, this is unset as the processor configuration on Hugging Face Hub includes the base policies ShieldGemma was trained on.
github-repos
def build_chunk(oscillators): step_random_processes(oscillators) subchunks = [] for osc in oscillators: osc.amplitude.step_amp() osc_chunk = osc.get_samples(config.CHUNK_SIZE) if osc_chunk is not None: subchunks.append(osc_chunk) if len(subchunks): new_chunk = sum(subchunks) else: new_chunk = numpy.zeros(config.CHUNK_SIZE) chunk_amplitude = amplitude.find_amplitude(new_chunk) if chunk_amplitude > config.MAX_AMPLITUDE: new_chunk = amplitude.normalize_amplitude(new_chunk, config.MAX_AMPLITUDE) avg_amp = (sum(osc.amplitude.value for osc in oscillators) / len(oscillators)) for osc in oscillators: if (osc.amplitude.value > avg_amp and rand.prob_bool(0.1) or rand.prob_bool(0.01)): osc.amplitude.drift_target = rand.weighted_rand( [(-5, 1), (0, 10)]) osc.amplitude.change_rate = rand.weighted_rand( osc.amplitude.change_rate_weights) return new_chunk.astype(config.SAMPLE_DATA_TYPE).tostring()
Build an audio chunk and progress the oscillator states. Args: oscillators (list): A list of oscillator.Oscillator objects to build chunks from Returns: str: a string of audio sample bytes ready to be written to a wave file
juraj-google-style
def daylight_saving_end_day(self, value=None): if (value is not None): try: value = str(value) except ValueError: raise ValueError('value {} need to be of type str for field `daylight_saving_end_day`'.format(value)) if (',' in value): raise ValueError('value should not contain a comma for field `daylight_saving_end_day`') self._daylight_saving_end_day = value
Corresponds to IDD Field `daylight_saving_end_day` Args: value (str): value for IDD Field `daylight_saving_end_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
codesearchnet
def Deserialize(self, reader): super(ContractState, self).Deserialize(reader) code = FunctionCode() code.Deserialize(reader) self.Code = code self.ContractProperties = reader.ReadUInt8() self.Name = reader.ReadVarString(max=252) self.CodeVersion = reader.ReadVarString(max=252) self.Author = reader.ReadVarString(max=252) self.Email = reader.ReadVarString(max=252) self.Description = reader.ReadVarString(max=65536)
Deserialize full object. Args: reader (neocore.IO.BinaryReader):
juraj-google-style
def from_json(json): return Point( lat=json['lat'], lon=json['lon'], time=isostr_to_datetime(json['time']) )
Creates Point instance from JSON representation Args: json (:obj:`dict`): Must have at least the following keys: lat (float), lon (float), time (string in iso format). Example, { "lat": 9.3470298, "lon": 3.79274, "time": "2016-07-15T15:27:53.574110" } json: map representation of Point instance Returns: :obj:`Point`
juraj-google-style
def initialize(): global __initialized if __initialized: return try: for data in DEFAULT_CONFIG_OPTIONS: nsobj = _get_config_namespace(data['prefix'], data['name'], sort_order=data['sort_order']) for opt in data['options']: _register_default_option(nsobj, opt) db.session.add(nsobj) for (ns, info) in CINQ_PLUGINS.items(): if (info['name'] == 'commands'): continue for entry_point in info['plugins']: _cls = entry_point.load() if hasattr(_cls, 'ns'): ns_name = '{}: {}'.format(info['name'].capitalize(), _cls.name) if (not isinstance(_cls.options, abstractproperty)): nsobj = _get_config_namespace(_cls.ns, ns_name) if _cls.options: for opt in _cls.options: _register_default_option(nsobj, opt) db.session.add(nsobj) _add_default_roles() _import_templates() db.session.commit() dbconfig.reload_data() __initialized = True except ProgrammingError as ex: if (str(ex).find('1146') != (- 1)): logging.getLogger('cloud_inquisitor').error('Missing required tables, please make sure you run `cloud-inquisitor db upgrade`')
Initialize the application configuration, adding any missing default configuration or roles Returns: `None`
codesearchnet
def bessel_i0e(x, name=None): with ops.name_scope(name, 'bessel_i0e', [x]): return gen_special_math_ops.bessel_i0e(x)
Computes the Bessel i0e function of `x` element-wise. Modified Bessel function of order 0. >>> tf.math.special.bessel_i0e([-1., -0.5, 0.5, 1.]).numpy() array([0.46575961, 0.64503527, 0.64503527, 0.46575961], dtype=float32) Args: x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`. @compatibility(scipy) Equivalent to scipy.special.i0e @end_compatibility
github-repos
def _get_unique_function_name(function_type, functions): function_name = function_name_base = function_type count = 2 while (function_name in functions): function_name = '{}_{}'.format(function_name_base, count) count += 1 return function_name
Get a unique function name. Args: function_type(str): Name of Function. Ex) Convolution, Affine functions(OrderedDict of (str, Function) Returns: str A unique function name
codesearchnet
def Factory(cls, name, min_threads, max_threads=None): with cls.factory_lock: result = cls.POOLS.get(name) if (result is None): cls.POOLS[name] = result = cls(name, min_threads, max_threads=max_threads) return result
Creates a new thread pool with the given name. If the thread pool of this name already exist, we just return the existing one. This allows us to have different pools with different characteristics used by different parts of the code, at the same time. Args: name: The name of the required pool. min_threads: The number of threads in the pool. max_threads: The maximum number of threads to grow the pool to. If not set we do not grow the pool. Returns: A threadpool instance.
codesearchnet
def _DepthwiseConv2dNumpyBasic(x1, x2, strides): n, h, w, c = x1.shape fh, fw, c2, o = x2.shape assert c == c2 _, sh, sw, _ = strides out_rows = (h - fh + sh) out_cols = (w - fw + sw) out = np.zeros([n, out_rows, out_cols, c * o]) for i in range(out_rows): for j in range(out_cols): for k in range(c): start_height = i * sh end_height = start_height + fh start_width = j * sw end_width = start_width + fw multiplied_slice = x1[:, start_height:end_height, start_width:end_width, k, np.newaxis] * x2[:, :, k, :] out[:, i, j, k * o:(k + 1) * o] = np.sum(multiplied_slice, axis=(1, 2)) return out
Compute depthwise_conv2d using Numpy. This allows use to test TensorFlow's depthwise_conv2d by comparing to the Numpy version. Args: x1: The input Numpy array, in NHWC format. x2: The filter Numpy array. strides: A Python list of 4 elements representing the strides. Returns: The depthwise conv2d output as a Numpy array.
github-repos
def compute_specificity_at_sensitivity(tp, tn, fp, fn, name): sensitivities = math_ops.divide(tp, tp + fn + kepsilon) min_val = math_ops.reduce_min(math_ops.abs(sensitivities - sensitivity)) indices_at_minval = math_ops.equal(math_ops.abs(sensitivities - sensitivity), min_val) indices_at_minval = math_ops.cast(indices_at_minval, dtypes.int64) indices_at_minval = math_ops.cumsum(indices_at_minval) tf_index = math_ops.argmax(indices_at_minval, 0) tf_index = math_ops.cast(tf_index, dtypes.int32) return math_ops.divide(tn[tf_index], tn[tf_index] + fp[tf_index] + kepsilon, name)
Computes the specificity at the given sensitivity. Args: tp: True positives. tn: True negatives. fp: False positives. fn: False negatives. name: The name of the operation. Returns: The specificity using the aggregated values.
github-repos
def create_resource_group(access_token, subscription_id, rgname, location): endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/resourcegroups/', rgname, '?api-version=', RESOURCE_API]) rg_body = {'location': location} body = json.dumps(rg_body) return do_put(endpoint, body, access_token)
Create a resource group in the specified location. Args: access_token (str): A valid Azure authentication token. subscription_id (str): Azure subscription id. rgname (str): Azure resource group name. location (str): Azure data center location. E.g. westus. Returns: HTTP response. JSON body.
juraj-google-style
def arccos(x): if any_symbolic_tensors((x,)): return Arccos().symbolic_call(x) return backend.numpy.arccos(x)
Trigonometric inverse cosine, element-wise. The inverse of `cos` so that, if `y = cos(x)`, then `x = arccos(y)`. Args: x: Input tensor. Returns: Tensor of the angle of the ray intersecting the unit circle at the given x-coordinate in radians `[0, pi]`. Example: >>> x = keras.ops.convert_to_tensor([1, -1]) >>> keras.ops.arccos(x) array([0.0, 3.1415927], dtype=float32)
github-repos
def _collapse_state(args: Dict[str, Any]): index = args['index'] result = args['result'] prob_one = args['prob_one'] state = _state_shard(args) normalization = np.sqrt(prob_one if result else 1 - prob_one) state *= (_one_projector(args, index) * result + (1 - _one_projector(args, index)) * (1 - result)) state /= normalization
Projects state shards onto the appropriate post measurement state. This function makes no assumptions about the interpretation of quantum theory. Args: args: The args from shard_num_args.
juraj-google-style
def Query(self, query, parameters=None): if parameters: self._cursor.execute(query, parameters) else: self._cursor.execute(query) return self._cursor.fetchall()
Queries the database file. Args: query (str): SQL query. parameters (Optional[dict|tuple]): query parameters. Returns: list[sqlite3.Row]: rows resulting from the query.
juraj-google-style
def remove_trunk_group(self, intf, value): string = 'no switchport trunk group {}'.format(value) return self.configure_interface(intf, string)
Removes a specified trunk group to the interface Args: intf (str): The interface name to remove the trunk group from value (str): The trunk group value Returns: True if the operation as successfully applied otherwise false
codesearchnet
def email_users(users, subject, text_body, html_body=None, sender=None, configuration=None, **kwargs): if (not users): raise ValueError('No users supplied') recipients = list() for user in users: recipients.append(user.data['email']) if (configuration is None): configuration = users[0].configuration configuration.emailer().send(recipients, subject, text_body, html_body=html_body, sender=sender, **kwargs)
Email a list of users Args: users (List[User]): List of users subject (str): Email subject text_body (str): Plain text email body html_body (str): HTML email body sender (Optional[str]): Email sender. Defaults to SMTP username. configuration (Optional[Configuration]): HDX configuration. Defaults to configuration of first user in list. **kwargs: See below mail_options (List): Mail options (see smtplib documentation) rcpt_options (List): Recipient options (see smtplib documentation) Returns: None
codesearchnet