code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def read_index(fn):
index = None
with open(fn, 'rb') as i_file:
if (i_file.read(len(_CHECK_STRING)) != _CHECK_STRING):
raise ValueError('{}: not a valid index file'.format(fn))
index = pd.read_csv(io.StringIO(zlib.decompress(i_file.read()).decode(encoding='utf-8')))
return index
|
Reads index from file.
Args:
fn (str): the name of the file containing the index.
Returns:
pandas.DataFrame: the index of the file.
Before reading the index, we check the first couple of bytes to see if it
is a valid index file.
|
codesearchnet
|
def remove_padding_from_sc(value_in_checkpoint: tensor.Tensor, variable_shape: tuple[int, int]) -> tensor.Tensor:
checkpoint_value_shape = value_in_checkpoint.shape.as_list()
is_init_value_padded = all([i >= j for i, j in zip(checkpoint_value_shape, variable_shape)])
if not is_init_value_padded:
return value_in_checkpoint
begin = [0] * len(checkpoint_value_shape)
return array_ops.slice(value_in_checkpoint, begin=begin, size=variable_shape)
|
Removes padding, if any, from sparsecore checkpoint.
Args:
value_in_checkpoint: input tensor value, usually from checkpoint.
variable_shape: Expected shape of tensor after removing padding.
Returns:
A slice of the input tensor to match the variable_shape if the
variable shape is a valid slice if the input tensor.
|
github-repos
|
def chglog(amend: bool = False, stage: bool = False, next_version: str = None, auto_next_version: bool = False):
changed_files = CTX.repo.changed_files()
changelog_file_path: Path = config.CHANGELOG_FILE_PATH()
changelog_file_name = changelog_file_path.name
if changelog_file_name in changed_files:
LOGGER.error('changelog has changed; cannot update it')
exit(-1)
_chglog(amend, stage, next_version, auto_next_version)
|
Writes the changelog
Args:
amend: amend last commit with changes
stage: stage changes
next_version: indicates next version
auto_next_version: infer next version from VCS
|
juraj-google-style
|
def from_dict(cls, video_processor_dict: Dict[str, Any], **kwargs):
video_processor_dict = video_processor_dict.copy()
return_unused_kwargs = kwargs.pop('return_unused_kwargs', False)
if 'size' in kwargs and 'size' in video_processor_dict:
video_processor_dict['size'] = kwargs.pop('size')
if 'crop_size' in kwargs and 'crop_size' in video_processor_dict:
video_processor_dict['crop_size'] = kwargs.pop('crop_size')
video_processor = cls(**video_processor_dict)
to_remove = []
for key, value in kwargs.items():
if hasattr(video_processor, key):
setattr(video_processor, key, value)
to_remove.append(key)
for key in to_remove:
kwargs.pop(key, None)
logger.info(f'Video processor {video_processor}')
if return_unused_kwargs:
return (video_processor, kwargs)
else:
return video_processor
|
Instantiates a type of [`~video_processing_utils.VideoProcessorBase`] from a Python dictionary of parameters.
Args:
video_processor_dict (`Dict[str, Any]`):
Dictionary that will be used to instantiate the video processor object. Such a dictionary can be
retrieved from a pretrained checkpoint by leveraging the
[`~video_processing_utils.VideoProcessorBase.to_dict`] method.
kwargs (`Dict[str, Any]`):
Additional parameters from which to initialize the video processor object.
Returns:
[`~video_processing_utils.VideoProcessorBase`]: The video processor object instantiated from those
parameters.
|
github-repos
|
def IsSynced(self):
if (Blockchain.Default().Height == 0):
return False
if (int(((100 * self._current_height) / Blockchain.Default().Height)) < 100):
return False
else:
return True
|
Check if wallet is synced.
Returns:
bool: True if wallet is synced.
|
codesearchnet
|
def change_password(username, new_password):
assert (username in passwd_reader.load_users()), ("Username '%s' not found!" % username)
sh.ftpasswd('--change-password', passwd=True, name=username, stdin=True, file=settings.LOGIN_FILE, _in=new_password)
reload_configuration()
|
Change password for given `username`.
Args:
username (str): User's name.
new_password (str): User's new password.
|
codesearchnet
|
def format(self, record):
if ((not FLAGS['showprefixforinfo'].value) and (FLAGS['verbosity'].value == converter.ABSL_INFO) and (record.levelno == logging.INFO) and (_absl_handler.python_handler.stream == sys.stderr)):
prefix = ''
else:
prefix = get_absl_log_prefix(record)
return (prefix + super(PythonFormatter, self).format(record))
|
Appends the message from the record to the results of the prefix.
Args:
record: logging.LogRecord, the record to be formatted.
Returns:
The formatted string representing the record.
|
codesearchnet
|
def command_factory(command):
def communicate(body={}, root_dir=None):
'Communicate with the daemon.\n\n This function sends a payload to the daemon and returns the unpickled\n object sent by the daemon.\n\n Args:\n body (dir): Any other arguments that should be put into the payload.\n root_dir (str): The root directory in which we expect the daemon.\n We need this to connect to the daemons socket.\n Returns:\n function: The returned payload.\n '
client = connect_socket(root_dir)
body['mode'] = command
if ('func' in body):
del body['func']
data_string = pickle.dumps(body, (- 1))
client.send(data_string)
response = receive_data(client)
return response
return communicate
|
A factory which returns functions for direct daemon communication.
This factory will create a function which sends a payload to the daemon
and returns the unpickled object which is returned by the daemon.
Args:
command (string): The type of payload this should be. This determines
as what kind of instruction this will be interpreted by the daemon.
Returns:
function: The created function.
|
codesearchnet
|
def read_until(self, s, echo=None):
s_len = len(s)
buf = self.read(s_len, echo)
while buf[-s_len:] != s:
buf += self.read(1, echo)
return buf
|
Read until a certain string is encountered..
Args:
s(bytes): The string to wait for.
echo(bool): Whether to write the read data to stdout.
Returns:
bytes: The data up to and including *s*.
Raises:
EOFError: If the channel was closed.
|
juraj-google-style
|
def assign(self, variable, value):
variable.assign(value)
|
Assign a value to a variable.
This should be used in optimizers instead of `variable.assign(value)` to
support backend specific optimizations.
Note that the variable can be a model variable or an optimizer variable;
it can be a backend native variable or a Keras variable.
Args:
variable: The variable to update.
value: The value to add to the variable.
|
github-repos
|
def add_cell_argument(self, name, help, required=False):
for action in self._actions:
if action.dest == name:
raise ValueError('Arg "%s" was added by add_argument already.' % name)
self._cell_args[name] = {'required': required, 'help': help}
|
Add a cell only argument.
Args:
name: name of the argument. No need to start with "-" or "--".
help: the help string of the argument.
required: Whether it is required in cell content.
|
juraj-google-style
|
def silu(x):
if any_symbolic_tensors((x,)):
return Silu().symbolic_call(x)
return backend.nn.silu(x)
|
Sigmoid Linear Unit (SiLU) activation function, also known as Swish.
The SiLU activation function is computed by the sigmoid function multiplied
by its input. It is defined as `f(x) = x * sigmoid(x)`.
Args:
x: Input tensor.
Returns:
A tensor with the same shape as `x`.
Example:
>>> x = keras.ops.convert_to_tensor([-6.0, 1.0, 0.0, 1.0, 6.0])
>>> keras.ops.sigmoid(x)
array([0.00247262, 0.7310586, 0.5, 0.7310586, 0.9975274], dtype=float32)
>>> keras.ops.silu(x)
array([-0.0148357, 0.7310586, 0.0, 0.7310586, 5.9851646], dtype=float32)
|
github-repos
|
def to_dict(self, drop_null=True, camel=False):
def to_dict(obj, drop_null, camel):
'Recursively constructs the dict.'
if isinstance(obj, (Body, BodyChild)):
obj = obj.__dict__
if isinstance(obj, dict):
data = {}
for (attr, val) in six.iteritems(obj):
if camel:
attr = _snake_to_camel(attr)
valid_null = (isinstance(val, bool) or (val == 0) or (val and to_dict(val, drop_null, camel)))
if ((not drop_null) or (drop_null and valid_null)):
data[attr] = to_dict(val, drop_null, camel)
return data
elif isinstance(obj, list):
data = []
for val in obj:
valid_null = (isinstance(val, bool) or (val == 0) or (val and to_dict(val, drop_null, camel)))
if ((not drop_null) or (drop_null and valid_null)):
data.append(to_dict(val, drop_null, camel))
return data
else:
return obj
return to_dict(self, drop_null, camel)
|
Serialize self as dict.
Args:
drop_null: bool, default True. Remove 'empty' attributes.
camel: bool, default True. Convert keys to camelCase.
Return:
dict: object params.
|
codesearchnet
|
def count_star(session: Union[Session, Engine, Connection],
tablename: str,
*criteria: Any) -> int:
query = select([func.count()]).select_from(table(tablename))
for criterion in criteria:
query = query.where(criterion)
return session.execute(query).scalar()
|
Returns the result of ``COUNT(*)`` from the specified table (with
additional ``WHERE`` criteria if desired).
Args:
session: SQLAlchemy :class:`Session`, :class:`Engine`, or
:class:`Connection` object
tablename: name of the table
criteria: optional SQLAlchemy "where" criteria
Returns:
a scalar
|
juraj-google-style
|
def ConvertToWireFormat(self, value):
output = _SerializeEntries(((python_format, wire_format, value.type_descriptor) for (python_format, wire_format) in value.wrapped_list))
return (b'', b'', output)
|
Convert to the wire format.
Args:
value: is of type RepeatedFieldHelper.
Returns:
A wire format representation of the value.
|
codesearchnet
|
def decode(self, ids, strip_extraneous=False):
if strip_extraneous:
ids = strip_ids(ids, list(range(self._num_reserved_ids or 0)))
return " ".join(self.decode_list(ids))
|
Transform a sequence of int ids into a human-readable string.
EOS is not expected in ids.
Args:
ids: list of integers to be converted.
strip_extraneous: bool, whether to strip off extraneous tokens
(EOS and PAD).
Returns:
s: human-readable string.
|
juraj-google-style
|
def groups(self, group_type=None, filters=None, params=None):
group = self._tcex.ti.group(group_type)
for g in self.tc_requests.groups_from_tag(group, self.name, filters=filters, params=params):
(yield g)
|
Gets all groups from a tag.
Args:
filters:
params:
group_type:
|
codesearchnet
|
def Execute(self, http):
self._Execute(http)
for key in self.__request_response_handlers:
response = self.__request_response_handlers[key].response
callback = self.__request_response_handlers[key].handler
exception = None
if (response.status_code >= 300):
exception = exceptions.HttpError.FromResponse(response)
if (callback is not None):
callback(response, exception)
if (self.__callback is not None):
self.__callback(response, exception)
|
Execute all the requests as a single batched HTTP request.
Args:
http: A httplib2.Http object to be used with the request.
Returns:
None
Raises:
BatchError if the response is the wrong format.
|
codesearchnet
|
def add_error(self, error, critical=False):
self.errors.append((error, critical))
|
Adds an error to the state.
Args:
error: The text that will be added to the error list.
critical: If set to True and the error is checked with check_errors, will
dfTimewolf will abort.
|
juraj-google-style
|
def tf_loss(self, states, internals, actions, terminal, reward, next_states, next_internals, update, reference=None):
loss_per_instance = self.fn_loss_per_instance(states=states, internals=internals, actions=actions, terminal=terminal, reward=reward, next_states=next_states, next_internals=next_internals, update=update, reference=reference)
updated = self.memory.update_batch(loss_per_instance=loss_per_instance)
with tf.control_dependencies(control_inputs=(updated,)):
loss = tf.reduce_mean(input_tensor=loss_per_instance, axis=0)
if ('losses' in self.summary_labels):
tf.contrib.summary.scalar(name='loss-without-regularization', tensor=loss)
losses = self.fn_regularization_losses(states=states, internals=internals, update=update)
if (len(losses) > 0):
loss += tf.add_n(inputs=[losses[name] for name in sorted(losses)])
if ('regularization' in self.summary_labels):
for name in sorted(losses):
tf.contrib.summary.scalar(name=('regularization/' + name), tensor=losses[name])
if (('losses' in self.summary_labels) or ('total-loss' in self.summary_labels)):
tf.contrib.summary.scalar(name='total-loss', tensor=loss)
return loss
|
Creates the TensorFlow operations for calculating the full loss of a batch.
Args:
states: Dict of state tensors.
internals: List of prior internal state tensors.
actions: Dict of action tensors.
terminal: Terminal boolean tensor.
reward: Reward tensor.
next_states: Dict of successor state tensors.
next_internals: List of posterior internal state tensors.
update: Boolean tensor indicating whether this call happens during an update.
reference: Optional reference tensor(s), in case of a comparative loss.
Returns:
Loss tensor.
|
codesearchnet
|
def ReadClientMetadata(self, client_id):
result = self.MultiReadClientMetadata([client_id])
try:
return result[client_id]
except KeyError:
raise UnknownClientError(client_id)
|
Reads the ClientMetadata record for a single client.
Args:
client_id: A GRR client id string, e.g. "C.ea3b2b71840d6fa7".
Returns:
An rdfvalues.object.ClientMetadata object.
Raises:
UnknownClientError: if no client with corresponding id was found.
|
juraj-google-style
|
def get_tensor_from_tensor_info(tensor_info, graph=None, import_scope=None):
graph = graph or ops.get_default_graph()
def _get_tensor(name):
return graph.get_tensor_by_name(ops.prepend_name_scope(name, import_scope=import_scope))
encoding = tensor_info.WhichOneof('encoding')
if encoding == 'name':
return _get_tensor(tensor_info.name)
elif encoding == 'coo_sparse':
return sparse_tensor.SparseTensor(_get_tensor(tensor_info.coo_sparse.indices_tensor_name), _get_tensor(tensor_info.coo_sparse.values_tensor_name), _get_tensor(tensor_info.coo_sparse.dense_shape_tensor_name))
elif encoding == 'composite_tensor':
spec_proto = struct_pb2.StructuredValue(type_spec_value=tensor_info.composite_tensor.type_spec)
spec = nested_structure_coder.decode_proto(spec_proto)
components = [_get_tensor(component.name) for component in tensor_info.composite_tensor.components]
return nest.pack_sequence_as(spec, components, expand_composites=True)
else:
raise ValueError(f'Invalid TensorInfo.encoding: {encoding}. Expected `coo_sparse`, `composite_tensor`, or `name` for a dense tensor.')
|
Returns the Tensor or CompositeTensor described by a TensorInfo proto.
Args:
tensor_info: A TensorInfo proto describing a Tensor or SparseTensor or
CompositeTensor.
graph: The tf.Graph in which tensors are looked up. If None, the
current default graph is used.
import_scope: If not None, names in `tensor_info` are prefixed with this
string before lookup.
Returns:
The Tensor or SparseTensor or CompositeTensor in `graph` described by
`tensor_info`.
Raises:
KeyError: If `tensor_info` does not correspond to a tensor in `graph`.
ValueError: If `tensor_info` is malformed.
|
github-repos
|
def write_bashrc(_path):
cfg_mounts = CFG["container"]["mounts"].value
cfg_prefix = CFG["container"]["prefixes"].value
path.mkfile_uchroot("/etc/portage/bashrc")
mounts = uchroot.mounts("mnt", cfg_mounts)
p_paths, p_libs = uchroot.env(cfg_prefix)
paths, libs = uchroot.env(mounts)
paths = paths + p_paths
libs = libs + p_libs
with open(_path, 'w') as bashrc:
lines = .format(path.list_to_path(paths), path.list_to_path(libs))
bashrc.write(lines)
|
Write a valid gentoo bashrc file to :path:.
Args:
path - The output path of the make.conf
|
juraj-google-style
|
def read(self, x):
access_logits = self._address_content(x)
weights = tf.nn.softmax(access_logits)
retrieved_mem = tf.reduce_sum(tf.multiply(tf.expand_dims(weights, 3), tf.expand_dims(self.mem_vals, axis=1)), axis=2)
return (access_logits, retrieved_mem)
|
Read from the memory.
An external component can use the results via a simple MLP,
e.g., fn(x W_x + retrieved_mem W_m).
Args:
x: a tensor in the shape of [batch_size, length, depth].
Returns:
access_logits: the logits for accessing the memory in shape of
[batch_size, length, memory_size].
retrieved_mem: the retrieved results in the shape of
[batch_size, length, val_depth].
|
codesearchnet
|
def is20(msg):
if allzeros(msg):
return False
d = hex2bin(data(msg))
if d[0:8] != '00100000':
return False
cs = cs20(msg)
if '
return False
return True
|
Check if a message is likely to be BDS code 2,0
Args:
msg (String): 28 bytes hexadecimal message string
Returns:
bool: True or False
|
juraj-google-style
|
def read_tree_nexus(nexus):
if not isinstance(nexus, str):
raise TypeError("nexus must be a str")
if nexus.lower().endswith('.gz'):
f = gopen(expanduser(nexus))
elif isfile(expanduser(nexus)):
f = open(expanduser(nexus))
else:
f = nexus.splitlines()
trees = dict()
for line in f:
if isinstance(line,bytes):
l = line.decode().strip()
else:
l = line.strip()
if l.lower().startswith('tree '):
i = l.index('='); left = l[:i].strip(); right = l[i+1:].strip()
name = ' '.join(left.split(' ')[1:])
trees[name] = read_tree_newick(right)
if hasattr(f,'close'):
f.close()
return trees
|
Read a tree from a Nexus string or file
Args:
``nexus`` (``str``): Either a Nexus string or the path to a Nexus file (plain-text or gzipped)
Returns:
``dict`` of ``Tree``: A dictionary of the trees represented by ``nexus``, where keys are tree names (``str``) and values are ``Tree`` objects
|
juraj-google-style
|
def parse_line(self, line):
line = line.lstrip()
toks = shlex.split(line)
cmd = toks[0]
arg = line[len(cmd):]
return (cmd, [arg])
|
Parser for the debugging shell.
Treat everything after the first token as one literal entity. Whitespace
characters between the first token and the next first non-whitespace
character are preserved.
For example, ' foo dicj didiw ' is parsed as
( 'foo', ' dicj didiw ' )
Returns:
A tuple (cmd, args), where the args is a list that consists of one
and only one string containing everything after the cmd as is.
|
codesearchnet
|
def stop_gradient(input_layer):
if input_layer.is_sequence():
result = [tf.stop_gradient(t) for t in input_layer.sequence]
return input_layer.with_sequence(result)
else:
return tf.stop_gradient(input_layer)
|
Cuts off the gradient at this point.
This works on both sequence and regular Pretty Tensors.
Args:
input_layer: The input.
Returns:
A new Pretty Tensor of the same type with stop_gradient applied.
|
juraj-google-style
|
def get(url, params={}):
request_url = url
if len(params):
request_url = '{}?{}'.format(url, urlencode(params))
try:
req = Request(request_url, headers={'User-Agent': 'Mozilla/5.0'})
response = json.loads(urlopen(req).read().decode('utf-8'))
return response
except HTTPError as err:
raise MtgException(err.read())
|
Invoke an HTTP GET request on a url
Args:
url (string): URL endpoint to request
params (dict): Dictionary of url parameters
Returns:
dict: JSON response as a dictionary
|
codesearchnet
|
def _pull_out_unaffected_blocks_lhs(lhs, rest, out_port, in_port):
(_, block_index) = lhs.index_in_block(out_port)
bs = lhs.block_structure
(nbefore, nblock, nafter) = (sum(bs[:block_index]), bs[block_index], sum(bs[(block_index + 1):]))
(before, block, after) = lhs.get_blocks((nbefore, nblock, nafter))
if ((before != cid(nbefore)) or (after != cid(nafter))):
outer_lhs = ((before + cid((nblock - 1))) + after)
inner_lhs = ((cid(nbefore) + block) + cid(nafter))
return (outer_lhs << Feedback.create(SeriesProduct.create(inner_lhs, *rest), out_port=out_port, in_port=in_port))
elif (block == cid(nblock)):
outer_lhs = ((before + cid((nblock - 1))) + after)
return (outer_lhs << Feedback.create(SeriesProduct.create(*rest), out_port=out_port, in_port=in_port))
raise CannotSimplify()
|
In a self-Feedback of a series product, where the left-most operand is
reducible, pull all non-trivial blocks outside of the feedback.
Args:
lhs (Circuit): The reducible circuit
rest (tuple): The other SeriesProduct operands
out_port (int): The feedback output port index
in_port (int): The feedback input port index
Returns:
Circuit: The simplified circuit
|
codesearchnet
|
def __init__(self, fail_on_unset: bool = False, default: str = 'none'):
self.fail_on_unset = bool(fail_on_unset)
self.default = str(default)
|
Initializer.
Args:
fail_on_unset (bool): If set to True an exception will be raised when the environment
variable is unset; otherwise the default value (see next) will be used instead.
default (str): If a environment variable is unset, it will get this value instead.
|
juraj-google-style
|
def addStreamHandler(self,lvl=20):
sh = logging.StreamHandler(sys.stdout)
sh.setLevel(lvl)
sFrmt = logging.Formatter('%(message)s')
if False:
sFrmt = logging.Formatter('%(name)s - %(levelname)s - %(message)s')
sh.setFormatter(sFrmt)
self.addHandler(sh)
|
This function will add a stream handler to a log with the provided level.
Args:
lvl (int): The severity level of messages printed to the screen with
the stream handler, default = 20.
|
juraj-google-style
|
def search(cls, session, queries):
return super(Customers, cls).search(session, queries, SearchCustomer)
|
Search for a customer given a domain.
Args:
session (requests.sessions.Session): Authenticated session.
queries (helpscout.models.Domain or iter): The queries for the
domain. If a ``Domain`` object is provided, it will simply be
returned. Otherwise, a ``Domain`` object will be generated
from the complex queries. In this case, the queries should
conform to the interface in
:func:`helpscout.domain.Domain.from_tuple`.
Returns:
RequestPaginator(output_type=helpscout.models.SearchCustomer):
SearchCustomer iterator.
|
codesearchnet
|
def codify(combination):
if (isinstance(combination, int) and ((combination < 0) or (combination >= LIMIT))):
raise errors.FlagError('Out-of-range flag-combination!')
codes = []
for enum in (Style, Color, Fill):
for flag in enum:
if (combination & flag):
codes.append(str(flag))
return ';'.join(codes)
|
Gets escape-codes for flag combinations.
Arguments:
combination (int): Either a single integer-convertible flag
or an OR'd flag-combination.
Returns:
A semi-colon-delimited string of appropriate escape sequences.
Raises:
errors.FlagError if the combination is out-of-range.
|
codesearchnet
|
def _match_instance_against_type(self, left, other_type, subst, view):
if isinstance(other_type, abstract.LiteralClass):
other_value = other_type.value
if isinstance(left, abstract.ConcreteValue) and isinstance(other_value, abstract.ConcreteValue):
return subst if left.pyval == other_value.pyval else None
elif isinstance(left, abstract.Instance) and left.cls.is_enum and isinstance(other_value, abstract.Instance) and other_value.cls.is_enum:
names_match = left.name == other_value.name
clses_match = left.cls == other_value.cls
return subst if names_match and clses_match else None
else:
return None
elif isinstance(other_type, typed_dict.TypedDictClass):
if not self._match_dict_against_typed_dict(left, other_type):
return None
return subst
elif isinstance(other_type, abstract.ParameterizedClass) and isinstance(other_type.base_cls, typed_dict.TypedDictClass):
if not self._match_dict_against_typed_dict(left, other_type.base_cls):
return None
return self._match_instance_parameters(left.cls, left, other_type, subst, view)
elif isinstance(left.cls, typed_dict.TypedDictClass):
return self._match_typed_dict_against_dict(left, other_type, subst, view)
elif isinstance(other_type, (fiddle_overlay.BuildableBuilder, fiddle_overlay.BuildableType)):
return self._match_fiddle_instance(left.cls, left, other_type, subst, view)
elif isinstance(other_type, abstract.PyTDClass) and fiddle_overlay.is_fiddle_buildable_pytd(other_type.pytd_cls) and isinstance(left, fiddle_overlay.Buildable):
return self._match_fiddle_instance_against_bare_type(left.cls, left, other_type, subst, view)
elif isinstance(other_type, abstract.Class):
if not self._satisfies_noniterable_str(left.cls, other_type):
self._noniterable_str_error = error_types.NonIterableStrError(left.cls, other_type)
return None
base = self.match_from_mro(left.cls, other_type)
if base is None:
if other_type.is_protocol:
with self._track_partially_matched_protocols():
return self._match_against_protocol(left, other_type, subst, view)
elif other_type.has_protocol_base():
return subst
return None
elif isinstance(base, abstract.AMBIGUOUS_OR_EMPTY):
return self._match_maybe_parameterized_instance(base, left, other_type, subst, view)
else:
return self._match_instance(base, left, other_type, subst, view)
elif isinstance(other_type, abstract.Empty):
return None
else:
raise NotImplementedError(f"Can't match {left!r} against {other_type!r}")
|
Checks whether an instance of a type is compatible with a (formal) type.
Args:
left: An instance of a type.
other_type: A formal type. E.g. abstract.Class or abstract.Union.
subst: The current type parameter assignment.
view: The current mapping of Variable to Value.
Returns:
A new type parameter assignment if the matching succeeded, None otherwise.
|
github-repos
|
def decode(self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray]=None, decoder_attention_mask: Optional[jnp.ndarray]=None, decoder_position_ids: Optional[jnp.ndarray]=None, past_key_values: Optional[dict]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, train: bool=False, params: Optional[dict]=None, dropout_rng: PRNGKey=None):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError('Make sure to provide `decoder_position_ids` when passing `past_key_values`.')
decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
rngs = {}
if dropout_rng is not None:
rngs['dropout'] = dropout_rng
inputs = {'params': params or self.params}
if past_key_values:
inputs['cache'] = past_key_values
mutable = ['cache']
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
outputs = decoder_module(decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = module.model.variables['params']['shared']['embedding']
lm_logits = module.lm_head.apply({'params': {'kernel': shared_embedding.T}}, hidden_states)
else:
lm_logits = module.lm_head(hidden_states)
lm_logits += module.final_logits_bias.astype(self.dtype)
return (lm_logits, outputs)
outputs = self.module.apply(inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype='i4'), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype='i4'), decoder_position_ids=jnp.array(decoder_position_ids, dtype='i4'), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype='i4'), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward)
if past_key_values is None:
lm_logits, decoder_outputs = outputs
else:
(lm_logits, decoder_outputs), past = outputs
if return_dict:
outputs = FlaxCausalLMOutputWithCrossAttentions(logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions)
else:
outputs = (lm_logits,) + decoder_outputs[1:]
if past_key_values is not None and return_dict:
outputs['past_key_values'] = unfreeze(past['cache'])
return outputs
elif past_key_values is not None and (not return_dict):
outputs = outputs[:1] + (unfreeze(past['cache']),) + outputs[1:]
return outputs
|
Returns:
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxMarianMTModel
>>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=64, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
```
|
github-repos
|
def shift_by_n_processors(self, x, mesh_axis, offset, wrap):
n = self.shape[mesh_axis].size
source_pcoord = []
for i in xrange(n):
c = (i - offset)
if (c != (c % n)):
if wrap:
c = (c % n)
else:
c = None
source_pcoord.append(c)
return self.receive(x, mesh_axis, source_pcoord)
|
Receive the slice from processor pcoord - offset.
Args:
x: a LaidOutTensor
mesh_axis: an integer
offset: an integer
wrap: a boolean. If True, then wrap around. Otherwise, pad with zeros.
|
codesearchnet
|
def _wrap_usage_section(source, width):
if not any(len(line) > width for line in source.splitlines()):
return source
section_header = source[:source.index(':') + 1].strip()
lines = [section_header]
for commands, args in parse_commands(source):
command = ' {} '.format(' '.join(commands))
max_len = width - len(command)
sep = '\n' + ' ' * len(command)
wrapped_args = sep.join(textwrap.wrap(' '.join(args), max_len))
full_command = command + wrapped_args
lines += full_command.splitlines()
return '\n'.join(lines)
|
Wrap the given usage section string to the current terminal size.
Note:
Commands arguments are wrapped to the column that the arguments began
on the first line of the command.
Args:
source: The section string to wrap.
Returns:
The wrapped section string.
|
juraj-google-style
|
def _find_all_hints_in_nodes(nodes):
func_calls = _collections.defaultdict(_LiteFuncCall)
for node in nodes:
attr = node.attr
if OpHint.FUNCTION_UUID_ATTR not in attr or not attr[OpHint.FUNCTION_UUID_ATTR].s:
continue
uuid = attr[OpHint.FUNCTION_UUID_ATTR].s
call_def = func_calls[uuid]
call_def.uuid = uuid
call_def.function_name = attr[OpHint.FUNCTION_NAME_ATTR].s
call_def.level = attr[OpHint.FUNCTION_LEVEL_ATTR].i
sort = attr[OpHint.FUNCTION_SORT_INDEX_ATTR].i if OpHint.FUNCTION_SORT_INDEX_ATTR in attr else None
if sort == -1:
sort = None
aggregation = None
if OpHint.FUNCTION_AGGREGATE_ATTR in attr:
aggregation = _compat.as_text(attr[OpHint.FUNCTION_AGGREGATE_ATTR].s)
if OpHint.CHILDREN_INPUTS_MAPPINGS in attr:
call_def.children_inputs_mappings = _json.loads(_compat.as_text(attr[OpHint.CHILDREN_INPUTS_MAPPINGS].s))
def put_operand(stuff, index, sort, operand, aggregation):
if sort is None:
stuff[index] = _LiteSingleOperand(operand)
else:
if index not in stuff:
stuff[index] = _LiteAggregateOperand(aggregation)
stuff[index].add(sort, operand)
if OpHint.FUNCTION_INPUT_INDEX_ATTR in attr:
put_operand(call_def.inputs, attr[OpHint.FUNCTION_INPUT_INDEX_ATTR].i, sort, node, aggregation)
if OpHint.FUNCTION_OUTPUT_INDEX_ATTR in attr:
put_operand(call_def.outputs, attr[OpHint.FUNCTION_OUTPUT_INDEX_ATTR].i, sort, node, aggregation)
for a in attr:
if a.startswith('_tflite_attr_'):
call_def.params[a.replace('_tflite_attr_,', '')] = attr[a].tensor
return func_calls
|
Look at the all the input nodes and return a list of LiteFuncCall objs.
Args:
nodes: A TensorFlow graph_def to look for LiteFuncCalls.
Returns:
a list of `LifeFuncCall` objects in the form
|
github-repos
|
def verify(self, byts, sign):
try:
chosen_hash = c_hashes.SHA256()
hasher = c_hashes.Hash(chosen_hash, default_backend())
hasher.update(byts)
digest = hasher.finalize()
self.publ.verify(sign, digest, c_ec.ECDSA(c_utils.Prehashed(chosen_hash)))
return True
except InvalidSignature:
logger.exception('Error in publ.verify')
return False
|
Verify the signature for the given bytes using the ECC
public key.
Args:
byts (bytes): The data bytes.
sign (bytes): The signature bytes.
Returns:
bool: True if the data was verified, False otherwise.
|
codesearchnet
|
def _count_and_gen_subtokens(token_counts, alphabet, subtoken_dict, max_subtoken_length):
subtoken_counts = collections.defaultdict(int)
for (token, count) in six.iteritems(token_counts):
token = _escape_token(token, alphabet)
subtokens = _split_token_to_subtokens(token, subtoken_dict, max_subtoken_length)
start = 0
for subtoken in subtokens:
for end in xrange((start + 1), (len(token) + 1)):
new_subtoken = token[start:end]
subtoken_counts[new_subtoken] += count
start += len(subtoken)
return subtoken_counts
|
Count number of times subtokens appear, and generate new subtokens.
Args:
token_counts: dict mapping tokens to the number of times they appear in the
original files.
alphabet: list of allowed characters. Used to escape the tokens, which
guarantees that all tokens can be split into subtokens.
subtoken_dict: dict mapping subtokens to ids.
max_subtoken_length: maximum length of subtoken in subtoken_dict.
Returns:
A defaultdict mapping subtokens to the number of times they appear in the
tokens. The dict may contain new subtokens.
|
codesearchnet
|
def print_variant(variant_line, outfile=None, silent=False):
variant_line = variant_line.rstrip()
if not variant_line.startswith('
if outfile:
outfile.write(variant_line+'\n')
else:
if not silent:
print(variant_line)
return
|
Print a variant.
If a result file is provided the variante will be appended to the file,
otherwise they are printed to stdout.
Args:
variants_file (str): A string with the path to a file
outfile (FileHandle): An opened file_handle
silent (bool): Bool. If nothing should be printed.
|
juraj-google-style
|
def id_to_int(cls, _id: Union[int, ObjectId]) -> int:
if isinstance(_id, int):
return _id
ints = struct.unpack('>III', _id.binary)
return (ints[0] << 64) + (ints[1] << 32) + ints[2]
|
Args:
_id: ObjectId required for each MongoDB document _id field.
Returns: Converted integer value of ObjectId's 12 bytes binary value.
|
github-repos
|
def drop_dimension(self, dimensions):
dimensions = [dimensions] if np.isscalar(dimensions) else dimensions
dims = [d for d in self.kdims if d not in dimensions]
dim_inds = [self.get_dimension_index(d) for d in dims]
key_getter = itemgetter(*dim_inds)
return self.clone([(key_getter(k), v) for k, v in self.data.items()],
kdims=dims)
|
Drops dimension(s) from keys
Args:
dimensions: Dimension(s) to drop
Returns:
Clone of object with with dropped dimension(s)
|
juraj-google-style
|
def normalize(x, axis=-1, order=2, epsilon=None):
if any_symbolic_tensors((x,)):
return Normalize(axis=axis, order=order, epsilon=epsilon).symbolic_call(x)
return _normalize(x, axis=axis, order=order, epsilon=epsilon)
|
Normalizes `x` over the specified axis.
It is defined as: `normalize(x) = x / max(norm(x), epsilon)`.
Args:
x: Input tensor.
axis: The axis or axes along which to perform normalization.
Default to -1.
order: The exponent value in the norm formulation.
Defaults to 2.
epsilon: A lower bound value for the norm.
Defaults to `backend.epsilon()`.
Returns:
The normalized array.
Example:
>>> x = keras.ops.convert_to_tensor([[1, 2, 3], [4, 5, 6]])
>>> x_norm = keras.ops.math.normalize(x)
>>> print(x_norm)
array([[0.26726124 0.5345225 0.8017837 ]
[0.45584232 0.5698029 0.68376344]], shape=(2, 3), dtype=float32)
|
github-repos
|
def bundle_apps(self, bundle_name, bundle_apps):
bundle_file = os.path.join(
self.app_path, self.args.outdir, '{}-bundle.zip'.format(bundle_name)
)
z = zipfile.ZipFile(bundle_file, 'w')
for app in bundle_apps:
self.package_data['bundle'].append(
{'action': 'Adding App:', 'output': os.path.basename(app)}
)
z.write(app, os.path.basename(app))
self.package_data['bundle'].append(
{'action': 'Created Bundle:', 'output': os.path.basename(bundle_file)}
)
z.close()
|
Bundle multiple Job or Playbook Apps (.tcx files) into a single zip file.
Args:
bundle_name (str): The output name of the bundle zip file.
bundle_apps (list): A list of Apps to include in the bundle.
|
juraj-google-style
|
def get_numpy_to_framework_fn(arr) -> Callable:
if isinstance(arr, np.ndarray):
return np.array
if is_tf_available() and is_tf_tensor(arr):
import tensorflow as tf
return tf.convert_to_tensor
if is_torch_available() and is_torch_tensor(arr):
import torch
return torch.tensor
if is_flax_available() and is_jax_tensor(arr):
import jax.numpy as jnp
return jnp.array
raise ValueError(f'Cannot convert arrays of type {type(arr)}')
|
Returns a function that converts a numpy array to the framework of the input array.
Args:
arr (`np.ndarray`): The array to convert.
|
github-repos
|
def _jvp_helper_wrapper(op_name, attr_tuple, inputs, outputs, tangents, use_batch):
if use_batch:
for primal, tangent in zip(inputs, tangents):
if not tangent.shape.is_compatible_with([None] + primal.shape):
raise ValueError('Tangent {} was expected to be of shape {} but is instead of shape {}'.format(tangent, [None] + primal.shape, tangent.shape))
return control_flow_ops.vectorized_map(functools.partial(_jvp_helper, op_name, attr_tuple, inputs, outputs), tangents)
return _jvp_helper(op_name, attr_tuple, inputs, outputs, tangents)
|
Computes a batch of Jacobian-vector product for an op.
Args:
op_name: A string, the type of operation being executed.
attr_tuple: Attributes of the operation.
inputs: A flat list of input Tensors to the operation.
outputs: A flat list of output Tensors from the operation.
tangents: A flat list of Tensors, compatible with shape `[None] +
input_shape`.
use_batch: A bool, True to vetorize over batch of tangents of shape `[None]
+ input_shape`.
Returns:
A flat list of tangents compatible with `outputs`
or `[None] + output_shape`.
Raises:
ValueError: if tangent shapes are not compatible with input shapes.
|
github-repos
|
def full_like(x, fill_value, dtype=None):
if any_symbolic_tensors((x, fill_value)):
return FullLike(dtype=dtype).symbolic_call(x, fill_value)
return backend.numpy.full_like(x, fill_value, dtype=dtype)
|
Return a full tensor with the same shape and type as the given tensor.
Args:
x: Input tensor.
fill_value: Fill value.
dtype: Overrides data type of the result.
Returns:
Tensor of `fill_value` with the same shape and type as `x`.
|
github-repos
|
def _view_options(self):
return {'window_mapping_fn': self._window_mapping_fn, 'coder': self._windowed_coder()}
|
Internal options corresponding to specific view.
Intended for internal use by runner implementations.
Returns:
Tuple of options for the given view.
|
github-repos
|
def merge_sites(self, tol=0.01, mode="sum"):
mode = mode.lower()[0]
from scipy.spatial.distance import squareform
from scipy.cluster.hierarchy import fcluster, linkage
d = self.distance_matrix
np.fill_diagonal(d, 0)
clusters = fcluster(linkage(squareform((d + d.T) / 2)),
tol, 'distance')
sites = []
for c in np.unique(clusters):
inds = np.where(clusters == c)[0]
species = self[inds[0]].species
coords = self[inds[0]].frac_coords
props = self[inds[0]].properties
for n, i in enumerate(inds[1:]):
sp = self[i].species
if mode == "s":
species += sp
offset = self[i].frac_coords - coords
coords = coords + ((offset - np.round(offset)) / (n + 2)).astype(
coords.dtype)
for key in props.keys():
if props[key] is not None and self[i].properties[key] != props[key]:
if mode == 'a' and isinstance(props[key], float):
props[key] = props[key]*(n+1)/(n+2) + self[i].properties[key]/(n+2)
else:
props[key] = None
warnings.warn("Sites with different site property %s are merged. "
"So property is set to none" % key)
sites.append(PeriodicSite(species, coords, self.lattice, properties=props))
self._sites = sites
|
Merges sites (adding occupancies) within tol of each other.
Removes site properties.
Args:
tol (float): Tolerance for distance to merge sites.
mode (str): Three modes supported. "delete" means duplicate sites are
deleted. "sum" means the occupancies are summed for the sites.
"average" means that the site is deleted but the properties are averaged
Only first letter is considered.
|
juraj-google-style
|
def buckets_delete(self, bucket):
url = Api._ENDPOINT + (Api._BUCKET_PATH % bucket)
google.datalab.utils.Http.request(url, method='DELETE', credentials=self._credentials,
raw_response=True)
|
Issues a request to delete a bucket.
Args:
bucket: the name of the bucket.
Raises:
Exception if there is an error performing the operation.
|
juraj-google-style
|
def _get_validation_labels(val_path):
labels_path = tfds.core.get_tfds_path(_VALIDATION_LABELS_FNAME)
with tf.io.gfile.GFile(labels_path) as labels_f:
labels = labels_f.read().strip().split('\n')
with tf.io.gfile.GFile(val_path, 'rb') as tar_f_obj:
tar = tarfile.open(mode='r:', fileobj=tar_f_obj)
images = sorted(tar.getnames())
return dict(zip(images, labels))
|
Returns labels for validation.
Args:
val_path: path to TAR file containing validation images. It is used to
retrieve the name of pictures and associate them to labels.
Returns:
dict, mapping from image name (str) to label (str).
|
codesearchnet
|
def apply_grad_processors(opt, gradprocs):
assert isinstance(gradprocs, (list, tuple)), gradprocs
for gp in gradprocs:
assert isinstance(gp, GradientProcessor), gp
class _ApplyGradientProcessor(ProxyOptimizer):
def __init__(self, opt, gradprocs):
self._gradprocs = gradprocs[:]
super(_ApplyGradientProcessor, self).__init__(opt)
def apply_gradients(self, grads_and_vars,
global_step=None, name=None):
g = self._apply(grads_and_vars)
return self._opt.apply_gradients(g, global_step, name)
def _apply(self, g):
for proc in self._gradprocs:
g = proc.process(g)
return g
return _ApplyGradientProcessor(opt, gradprocs)
|
Wrapper around optimizers to apply gradient processors.
Args:
opt (tf.train.Optimizer):
gradprocs (list[GradientProcessor]): gradient processors to add to the
optimizer.
Returns:
a :class:`tf.train.Optimizer` instance which runs the gradient
processors before updating the variables.
|
juraj-google-style
|
def get_intersection(self, range_):
result = []
for entry in self.entries:
package, value = entry
if value is None:
continue
if package.version not in range_:
continue
if isinstance(value, list):
variants = value
entry_ = _PackageEntry(package, variants, self.solver)
result.append(entry_)
continue
if self.solver.package_filter:
rule = self.solver.package_filter.excludes(package)
if rule:
if config.debug_package_exclusions:
print_debug("Package '%s' was excluded by rule '%s'"
% (package.qualified_name, str(rule)))
entry[1] = None
continue
if self.solver.package_load_callback:
self.solver.package_load_callback(package)
variants_ = []
for var in package.iter_variants():
variant = PackageVariant(var, self.solver.building)
variants_.append(variant)
entry[1] = variants_
entry_ = _PackageEntry(package, variants_, self.solver)
result.append(entry_)
return result or None
|
Get a list of variants that intersect with the given range.
Args:
range_ (`VersionRange`): Package version range.
Returns:
List of `_PackageEntry` objects.
|
juraj-google-style
|
def convert_adaptive_max_pool2d(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting adaptive_avg_pool2d...')
if names == 'short':
tf_name = 'APOL' + random_string(4)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
global_pool = keras.layers.GlobalMaxPooling2D(data_format='channels_first', name=tf_name)
layers[scope_name] = global_pool(layers[inputs[0]])
def target_layer(x):
import keras
return keras.backend.expand_dims(x)
lambda_layer = keras.layers.Lambda(target_layer, name=tf_name + 'E')
layers[scope_name] = lambda_layer(layers[scope_name])
layers[scope_name] = lambda_layer(layers[scope_name])
|
Convert convert_adaptive_max_pool2d layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
juraj-google-style
|
def get_optimizer_group(self, param: Optional[Union[str, torch.nn.parameter.Parameter]]=None):
if self.optimizer is None:
raise ValueError('Trainer optimizer is None, please make sure you have setup the optimizer before.')
if param is not None:
for group in self.optimizer.param_groups:
if param in group['params']:
return group
return [group['params'] for group in self.optimizer.param_groups]
|
Returns optimizer group for a parameter if given, else returns all optimizer groups for params.
Args:
param (`str` or `torch.nn.parameter.Parameter`, *optional*):
The parameter for which optimizer group needs to be returned.
|
github-repos
|
def __init__(self, api, path, options):
self._init(api, path, options)
|
Initialize.
Args:
api: storage_api instance.
path: bucket path of form '/bucket'.
options: a dict of listbucket options. Please see listbucket doc.
|
juraj-google-style
|
def _MultipleModulesFoundError(path, candidates):
assert len(candidates) > 1
params = [path] + _StripCommonPathPrefix(candidates[:2])
if len(candidates) == 2:
fmt = ERROR_LOCATION_MULTIPLE_MODULES_3
else:
fmt = ERROR_LOCATION_MULTIPLE_MODULES_4
params.append(str(len(candidates) - 2))
return fmt, params
|
Generates an error message to be used when multiple matches are found.
Args:
path: The breakpoint location path that the user provided.
candidates: List of paths that match the user provided path. Must
contain at least 2 entries (throws AssertionError otherwise).
Returns:
A (format, parameters) tuple that should be used in the description
field of the breakpoint error status.
|
juraj-google-style
|
def save_aggregate_reports_to_kafka(self, aggregate_reports,
aggregate_topic):
if (type(aggregate_reports) == dict or
type(aggregate_reports) == OrderedDict):
aggregate_reports = [aggregate_reports]
if len(aggregate_reports) < 1:
return
for report in aggregate_reports:
report['date_range'] = self.generate_daterange(report)
report = self.strip_metadata(report)
for slice in report['records']:
slice['date_range'] = report['date_range']
slice['org_name'] = report['org_name']
slice['org_email'] = report['org_email']
slice['policy_published'] = report['policy_published']
slice['report_id'] = report['report_id']
logger.debug("Sending slice.")
try:
logger.debug("Saving aggregate report to Kafka")
self.producer.send(aggregate_topic, slice)
except UnknownTopicOrPartitionError:
raise KafkaError(
"Kafka error: Unknown topic or partition on broker")
except Exception as e:
raise KafkaError(
"Kafka error: {0}".format(e.__str__()))
try:
self.producer.flush()
except Exception as e:
raise KafkaError(
"Kafka error: {0}".format(e.__str__()))
|
Saves aggregate DMARC reports to Kafka
Args:
aggregate_reports (list): A list of aggregate report dictionaries
to save to Kafka
aggregate_topic (str): The name of the Kafka topic
|
juraj-google-style
|
def _isbn_pairing(items):
NameWrapper = namedtuple('NameWrapper', ['name', 'obj'])
metas = map((lambda x: NameWrapper(_just_name(x.filename), x)), filter((lambda x: isinstance(x, MetadataFile)), items))
ebooks = map((lambda x: NameWrapper(_just_name(x.filename), x)), filter((lambda x: isinstance(x, EbookFile)), items))
metas = sorted(metas, key=(lambda x: x.name))
ebooks = sorted(ebooks, key=(lambda x: x.name), reverse=True)
while metas:
meta = metas.pop()
if (not isbn_validator.is_valid_isbn(meta.name)):
continue
if (not ebooks):
break
ebook_index = _index(ebooks, meta.name, key=(lambda x: x.name))
if (ebook_index >= 0):
logger.debug(("Pairing '%s' and '%s'." % (meta.obj.filename, ebooks[ebook_index].obj.filename)))
items.append(DataPair(metadata_file=meta.obj, ebook_file=ebooks[ebook_index].obj))
items.remove(meta.obj)
items.remove(ebooks[ebook_index].obj)
ebooks = ebooks[(ebook_index + 1):]
return items
|
Pair `items` with same ISBN into `DataPair` objects.
Args:
items (list): list of items, which will be searched.
Returns:
list: list with paired items. Paired items are removed, `DataPair` is \
added instead.
|
codesearchnet
|
def main(args=None):
parser = get_parser()
args = parser.parse_args(args=args)
if not (args.matrix or args.dependencies or args.treemap or args.graph):
args.matrix = True
packages = []
for arg in args.packages:
if ',' in arg:
for package in arg.split(','):
if package not in packages:
packages.append(package)
elif arg not in packages:
packages.append(arg)
depth = args.depth
if depth is None:
depth = guess_depth(packages)
output = args.output
if isinstance(output, str):
output = open(output, 'w')
dsm = DSM(*packages, build_tree=True, build_dependencies=True,
enforce_init=not args.greedy)
if dsm.empty:
return 1
indent = args.indent
if indent is None:
if args.format == CSV:
indent = 0
else:
indent = 2
elif indent < 0 and args.format == JSON:
indent = None
try:
if args.dependencies:
dsm.print(format=args.format, output=output, indent=indent)
elif args.matrix:
dsm.print_matrix(format=args.format, output=output,
depth=depth, indent=indent)
elif args.treemap:
dsm.print_treemap(format=args.format, output=output)
elif args.graph:
dsm.print_graph(format=args.format, output=output,
depth=depth, indent=indent)
except BrokenPipeError:
return 2
return 0
|
Main function.
This function is the command line entry point.
Args:
args (list of str): the arguments passed to the program.
Returns:
int: return code being 0 (OK), 1 (dsm empty) or 2 (error).
|
juraj-google-style
|
def authenticate(self, request, username=None, password=None):
if not isinstance(username, str):
return None
username = re.sub(r'\W', '', username)
krb_ticket = self.get_kerberos_ticket(username, password)
if krb_ticket == "reset":
user, status = User.objects.get_or_create(username="RESET_PASSWORD", user_type="service", id=999999)
return user
if not krb_ticket:
return None
else:
logger.debug("Authentication successful")
try:
user = User.objects.get(username__iexact=username)
except User.DoesNotExist:
return None
return user
|
Authenticate a username-password pair.
Creates a new user if one is not already in the database.
Args:
username
The username of the `User` to authenticate.
password
The password of the `User` to authenticate.
Returns:
`User`
|
juraj-google-style
|
def graphviz_imshow(self, ax=None, figsize=None, dpi=300, fmt="png", **kwargs):
graph = self.get_graphviz(**kwargs)
graph.format = fmt
graph.attr(dpi=str(dpi))
_, tmpname = tempfile.mkstemp()
path = graph.render(tmpname, view=False, cleanup=True)
ax, fig, _ = get_ax_fig_plt(ax=ax, figsize=figsize, dpi=dpi)
import matplotlib.image as mpimg
ax.imshow(mpimg.imread(path, format="png"))
ax.axis("off")
return fig
|
Generate flow graph in the DOT language and plot it with matplotlib.
Args:
ax: matplotlib :class:`Axes` or None if a new figure should be created.
figsize: matplotlib figure size (None to use default)
dpi: DPI value.
fmt: Select format for output image
Return: matplotlib Figure
|
juraj-google-style
|
def start_after(self, document_fields):
query = query_mod.Query(self)
return query.start_after(document_fields)
|
Start query after a cursor with this collection as parent.
See
:meth:`~.firestore_v1beta1.query.Query.start_after` for
more information on this method.
Args:
document_fields (Union[~.firestore_v1beta1.\
document.DocumentSnapshot, dict, list, tuple]): a document
snapshot or a dictionary/list/tuple of fields representing a
query results cursor. A cursor is a collection of values that
represent a position in a query result set.
Returns:
~.firestore_v1beta1.query.Query: A query with cursor.
|
codesearchnet
|
def _AddCampaignsToGroup(client, campaign_group_id, campaign_ids):
campaign_service = client.GetService('CampaignService', version='v201809')
operations = [{
'operator': 'SET',
'operand': {
'id': campaign_id,
'campaignGroupId': campaign_group_id
}
} for campaign_id in campaign_ids]
campaign_service.mutate(operations)
print ('The following campaign IDs were added to the campaign group with ID '
'"%d":\n\t%s' % (campaign_group_id, campaign_ids))
|
Adds multiple campaigns to a campaign group.
Args:
client: an AdWordsClient instance.
campaign_group_id: an integer ID for the campaign group.
campaign_ids: a list of integer IDs for campaigns.
|
juraj-google-style
|
def auto_plot_array(*, video_min_num_frames: int=15, height: None | int | tuple[int, int]=(100, 250), show_images_kwargs: Optional[dict[str, Any]]=None, show_videos_kwargs: Optional[dict[str, Any]]=None) -> None:
ipython = IPython.get_ipython()
if ipython is None:
return
array_repr_html_fn = functools.partial(array_repr_html, video_min_num_frames=video_min_num_frames, height=height, show_images_kwargs=show_images_kwargs, show_videos_kwargs=show_videos_kwargs)
print('Display big np/tf/jax arrays as image for nicer IPython display')
formatter = ipython.display_formatter.formatters['text/html']
try:
jnp = enp.lazy.jnp
except ImportError:
pass
else:
jax_array_cls = type(jnp.zeros(shape=()))
formatter.for_type(jax_array_cls, array_repr_html_fn)
try:
tf = enp.lazy.tf
except ImportError:
pass
else:
formatter.for_type(tf.Tensor, array_repr_html_fn)
try:
torch = enp.lazy.torch
except ImportError:
pass
else:
formatter.for_type(torch.Tensor, array_repr_html_fn)
formatter.for_type(enp.lazy.np.ndarray, array_repr_html_fn)
|
If called, 2d/3d imgage arrays will be plotted as images in colab/jupyter.
Usage:
>>> ecolab.auto_plot_array()
>>> np.zeros((28, 28, 3)) # Displayed as image
Args:
video_min_num_frames: Video `(num_frames, h, w, c)` with less than this
number of frames will be displayed as individual images
height: `(min, max)` image height in pixels. Images smaller/larger will be
reshaped. `None` to disable. If a single number, assume `min == max`.
show_images_kwargs: Kwargs forwarded to `mediapy.show_images`
show_videos_kwargs: Kwargs forwarded to `mediapy.show_videos`
|
github-repos
|
def from_key(cls, *args):
key = (args if (len(args) > 1) else args[0])
return cls._instances.get(key, None)
|
Return flyweight object with specified key, if it has already been created.
Returns:
cls or None: Previously constructed flyweight object with given
key or None if key not found
|
codesearchnet
|
def fix_variables(self, fixed):
for (v, val) in fixed.items():
self.fix_variable(v, val)
|
Fix the value of the variables and remove it from a binary quadratic model.
Args:
fixed (dict):
A dictionary of variable assignments.
Examples:
>>> bqm = dimod.BinaryQuadraticModel({'a': -.5, 'b': 0., 'c': 5}, {('a', 'b'): -1}, 0.0, dimod.SPIN)
>>> bqm.fix_variables({'a': -1, 'b': +1})
|
codesearchnet
|
def resolve_type(arg):
arg_type = type(arg)
if (arg_type == list):
assert isinstance(arg, list)
sample = arg[:min(4, len(arg))]
tentative_type = TentativeType()
for sample_item in sample:
tentative_type.add(resolve_type(sample_item))
return ListType(tentative_type)
elif (arg_type == set):
assert isinstance(arg, set)
sample = []
iterator = iter(arg)
for i in range(0, min(4, len(arg))):
sample.append(next(iterator))
tentative_type = TentativeType()
for sample_item in sample:
tentative_type.add(resolve_type(sample_item))
return SetType(tentative_type)
elif (arg_type == FakeIterator):
assert isinstance(arg, FakeIterator)
sample = []
iterator = iter(arg)
for i in range(0, min(4, len(arg))):
sample.append(next(iterator))
tentative_type = TentativeType()
for sample_item in sample:
tentative_type.add(resolve_type(sample_item))
return IteratorType(tentative_type)
elif (arg_type == tuple):
assert isinstance(arg, tuple)
sample = list(arg[:min(10, len(arg))])
return TupleType([resolve_type(sample_item) for sample_item in sample])
elif (arg_type == dict):
assert isinstance(arg, dict)
key_tt = TentativeType()
val_tt = TentativeType()
for (i, (k, v)) in enumerate(iteritems(arg)):
if (i > 4):
break
key_tt.add(resolve_type(k))
val_tt.add(resolve_type(v))
return DictType(key_tt, val_tt)
else:
return type(arg)
|
Resolve object to one of our internal collection types or generic built-in type.
Args:
arg: object to resolve
|
codesearchnet
|
def to_obj(self, wd=False, pack=False, relpath=None):
obj = CommentedMap()
if pack:
obj['run'] = self.orig
elif (relpath is not None):
if self.from_url:
obj['run'] = self.run
else:
obj['run'] = os.path.relpath(self.run, relpath)
elif wd:
if self.from_url:
obj['run'] = self.run
else:
obj['run'] = os.path.basename(self.run)
else:
obj['run'] = self.run
obj['in'] = self.step_inputs
obj['out'] = self.output_names
if self.is_scattered:
obj['scatter'] = self.scattered_inputs
if (self.scatter_method is not None):
obj['scatterMethod'] = self.scatter_method
return obj
|
Return the step as an dict that can be written to a yaml file.
Returns:
dict: yaml representation of the step.
|
codesearchnet
|
def artifact_bundles(self):
if (not self.__artifact_bundles):
self.__artifact_bundles = ArtifactBundles(self.__connection)
return self.__artifact_bundles
|
Gets the Artifact Bundles API client.
Returns:
ArtifactBundles:
|
codesearchnet
|
def enclosure_groups(self):
if (not self.__enclosure_groups):
self.__enclosure_groups = EnclosureGroups(self.__connection)
return self.__enclosure_groups
|
Gets the EnclosureGroups API client.
Returns:
EnclosureGroups:
|
codesearchnet
|
def step(self, action):
observ, reward, done, info = self._env.step(action)
observ = self._convert_observ(observ)
reward = self._convert_reward(reward)
return observ, reward, done, info
|
Forward action to the wrapped environment.
Args:
action: Action to apply to the environment.
Raises:
ValueError: Invalid action.
Returns:
Converted observation, converted reward, done flag, and info object.
|
juraj-google-style
|
def set_weight_collections(self, weight_collections):
self._weight_collections = weight_collections
|
Sets the weight collections for the layer.
Args:
weight_collections: A list of collection names to which the Variable will
be added.
|
github-repos
|
def find_all(container):
if isinstance(container, dict):
names = container.keys()
else:
names = dir(container)
built_context = BasicContext()
for name in names:
if name.startswith('_'):
continue
if isinstance(container, dict):
obj = container[name]
else:
obj = getattr(container, name)
if (isinstance(container, dict) and isinstance(obj, str)):
built_context[name] = obj
elif (hasattr(obj, 'metadata') and isinstance(getattr(obj, 'metadata'), AnnotatedMetadata)):
built_context[name] = obj
return built_context
|
Find all annotated function inside of a container.
Annotated functions are identified as those that:
- do not start with a _ character
- are either annotated with metadata
- or strings that point to lazily loaded modules
Args:
container (object): The container to search for annotated functions.
Returns:
dict: A dict with all of the found functions in it.
|
codesearchnet
|
def complete(command_line, current_token, position, shell: arg(choices=('bash', 'fish'))):
position = int(position)
tokens = shlex.split(command_line[:position])
(all_argv, run_argv, command_argv) = run.partition_argv(tokens[1:])
run_args = run.parse_args(run_argv)
module = run_args.get('commands_module')
module = (module or DEFAULT_COMMANDS_MODULE)
module = normalize_path(module)
try:
collection = Collection.load_from_module(module)
except Exception:
collection = {}
found_command = (find_command(collection, tokens) or run)
if current_token:
if current_token.startswith('-'):
if (current_token not in found_command.option_map):
print_command_options(found_command, current_token)
else:
print_commands(collection, shell)
path = os.path.expanduser(current_token)
path = os.path.expandvars(path)
paths = glob.glob(('%s*' % path))
if paths:
for entry in paths:
if os.path.isdir(entry):
print(('%s/' % entry))
else:
print(entry)
else:
option = found_command.option_map.get(tokens[(- 1)])
if (option and option.takes_value):
if option.choices:
for choice in option.choices:
print(choice)
else:
for entry in os.listdir():
if os.path.isdir(entry):
print(('%s/' % entry))
else:
print(entry)
else:
print_command_options(found_command)
print_commands(collection, shell)
|
Find completions for current command.
This assumes that we'll handle all completion logic here and that
the shell's automatic file name completion is disabled.
Args:
command_line: Command line
current_token: Token at cursor
position: Current cursor position
shell: Name of shell
|
codesearchnet
|
def check_against_mro(ctx: 'context.Context', target: '_base.BaseValue', class_spec: '_instance_base.SimpleValue') -> bool | None:
classes = []
ambiguous = flatten(class_spec, classes)
for c in classes:
if ctx.matcher(None).match_from_mro(target, c, allow_compat_builtins=False):
return True
return None if ambiguous else False
|
Check if any of the classes are in the target's MRO.
Args:
ctx: The abstract context.
target: A BaseValue whose MRO will be checked.
class_spec: A Class or PythonConstant tuple of classes (i.e. the second
argument to isinstance or issubclass).
Returns:
True if any class in classes is found in the target's MRO,
False if no match is found and None if it's ambiguous.
|
github-repos
|
def GetNewSessionID(self, **_):
return rdfvalue.SessionID(base='aff4:/hunts', queue=self.runner_args.queue)
|
Returns a random integer session ID for this hunt.
All hunts are created under the aff4:/hunts namespace.
Returns:
a formatted session id string.
|
codesearchnet
|
def set(self, context_id, address_value_list):
if (context_id not in self._contexts):
LOGGER.warning('Context_id not in contexts, %s', context_id)
return False
context = self._contexts.get(context_id)
add_value_dict = {}
for d in address_value_list:
for (add, val) in d.items():
if (not self.address_is_valid(address=add)):
raise AuthorizationException(address=add)
add_value_dict[add] = val
context.set_direct(add_value_dict)
return True
|
Within a context, sets addresses to a value.
Args:
context_id (str): the context id returned by create_context
address_value_list (list): list of {address: value} dicts
Returns:
(bool): True if the operation is successful, False if
the context_id doesn't reference a known context.
Raises:
AuthorizationException if an address is given in the
address_value_list that was not in the original
transaction's outputs, or was under a namespace but the
characters after the namespace are not valid address
characters.
|
codesearchnet
|
def __parse_tonodes(self, text, **kwargs):
n = self.options.get('nbest', 1)
try:
if self._KW_BOUNDARY in kwargs:
patt = kwargs.get(self._KW_BOUNDARY, '.')
tokens = list(self.__split_pattern(text, patt))
text = ''.join([t[0] for t in tokens])
btext = self.__str2bytes(text)
self.__mecab.mecab_lattice_set_sentence(self.lattice, btext)
bpos = 0
self.__mecab.mecab_lattice_set_boundary_constraint(
self.lattice, bpos, self.MECAB_TOKEN_BOUNDARY)
for (token, match) in tokens:
bpos += 1
if match:
mark = self.MECAB_INSIDE_TOKEN
else:
mark = self.MECAB_ANY_BOUNDARY
for _ in range(1, len(self.__str2bytes(token))):
self.__mecab.mecab_lattice_set_boundary_constraint(
self.lattice, bpos, mark)
bpos += 1
self.__mecab.mecab_lattice_set_boundary_constraint(
self.lattice, bpos, self.MECAB_TOKEN_BOUNDARY)
elif self._KW_FEATURE in kwargs:
features = kwargs.get(self._KW_FEATURE, ())
fd = {morph: self.__str2bytes(feat) for morph, feat in features}
tokens = self.__split_features(text, [e[0] for e in features])
text = ''.join([t[0] for t in tokens])
btext = self.__str2bytes(text)
self.__mecab.mecab_lattice_set_sentence(self.lattice, btext)
bpos = 0
for chunk, match in tokens:
c = len(self.__str2bytes(chunk))
if match:
self.__mecab.mecab_lattice_set_feature_constraint(
self.lattice, bpos, bpos+c, fd[chunk])
bpos += c
else:
btext = self.__str2bytes(text)
self.__mecab.mecab_lattice_set_sentence(self.lattice, btext)
self.__mecab.mecab_parse_lattice(self.tagger, self.lattice)
for _ in range(n):
check = self.__mecab.mecab_lattice_next(self.lattice)
if n == 1 or check:
nptr = self.__mecab.mecab_lattice_get_bos_node(self.lattice)
while nptr != self.__ffi.NULL:
if nptr.stat != MeCabNode.BOS_NODE:
raws = self.__ffi.string(
nptr.surface[0:nptr.length])
surf = self.__bytes2str(raws).strip()
if 'output_format_type' in self.options or \
'node_format' in self.options:
sp = self.__mecab.mecab_format_node(
self.tagger, nptr)
if sp != self.__ffi.NULL:
rawf = self.__ffi.string(sp)
else:
err = self.__mecab.mecab_strerror(
self.tagger)
err = self.__bytes2str(
self.__ffi.string(err))
msg = self._ERROR_NODEFORMAT.format(
surf, err)
raise MeCabError(msg)
else:
rawf = self.__ffi.string(nptr.feature)
feat = self.__bytes2str(rawf).strip()
mnode = MeCabNode(nptr, surf, feat)
yield mnode
nptr = getattr(nptr, 'next')
except GeneratorExit:
logger.debug('close invoked on generator')
except MeCabError:
raise
except:
err = self.__mecab.mecab_lattice_strerror(self.lattice)
logger.error(self.__bytes2str(self.__ffi.string(err)))
raise MeCabError(self.__bytes2str(self.__ffi.string(err)))
|
Builds and returns the MeCab function for parsing to nodes using
morpheme boundary constraints.
Args:
format_feature: flag indicating whether or not to format the feature
value for each node yielded.
Returns:
A function which returns a Generator, tailored to using boundary
constraints and parsing as nodes, using either the default or
N-best behavior.
|
juraj-google-style
|
def parse(self, stream, parser=None):
(force, parsers) = self._get_parsers(parser)
try:
stream.seek(0)
lookup = stream.read(1024)
stream.seek(0)
except (io.UnsupportedOperation, AttributeError):
lookup = None
for p in parsers:
if p.hook(path=self.path, force=force, lookup=lookup):
(self.meta, self.terms, self.imports, self.typedefs) = p.parse(stream)
self._parsed_by = p.__name__
break
|
Parse the given file using available `BaseParser` instances.
Raises:
TypeError: when the parser argument is not a string or None.
ValueError: when the parser argument is a string that does
not name a `BaseParser`.
|
codesearchnet
|
def run(self, data):
result_type = namedtuple('Result', 'code messages')
if self.passes is True:
result = result_type(Checker.Code.PASSED, '')
elif self.passes is False:
if self.allow_failure:
result = result_type(Checker.Code.IGNORED, '')
else:
result = result_type(Checker.Code.FAILED, '')
else:
try:
result = self.check(data, **self.arguments)
messages = ''
if isinstance(result, tuple):
result, messages = result
if result not in Checker.Code:
result = Checker.Code.PASSED if bool(result) else Checker.Code.FAILED
if result == Checker.Code.FAILED and self.allow_failure:
result = Checker.Code.IGNORED
result = result_type(result, messages)
except NotImplementedError:
result = result_type(Checker.Code.NOT_IMPLEMENTED, '')
self.result = result
|
Run the check method and format the result for analysis.
Args:
data (DSM/DMM/MDM): DSM/DMM/MDM instance to check.
Returns:
tuple (int, str): status constant from Checker class and messages.
|
juraj-google-style
|
def get_data_for_sensors(macs=[], search_duratio_sec=5, bt_device=''):
log.info('Get latest data for sensors. Stop with Ctrl+C.')
log.info('Stops automatically in %ss', search_duratio_sec)
log.info('MACs: %s', macs)
datas = dict()
for new_data in RuuviTagSensor._get_ruuvitag_datas(macs, search_duratio_sec, bt_device=bt_device):
datas[new_data[0]] = new_data[1]
return datas
|
Get lates data for sensors in the MAC's list.
Args:
macs (array): MAC addresses
search_duratio_sec (int): Search duration in seconds. Default 5
bt_device (string): Bluetooth device id
Returns:
dict: MAC and state of found sensors
|
codesearchnet
|
def log_run_info(self, model_name):
run_info = {
"model_name": model_name,
"machine_config": {},
"run_date": datetime.datetime.now().strftime(_DATE_TIME_FORMAT_PATTERN)}
_collect_tensorflow_info(run_info)
_collect_tensorflow_environment_variables(run_info)
_collect_cpu_info(run_info)
_collect_gpu_info(run_info)
_collect_memory_info(run_info)
with tf.gfile.GFile(os.path.join(
self._logging_dir, BENCHMARK_RUN_LOG_FILE_NAME), "w") as f:
try:
json.dump(run_info, f)
f.write("\n")
except (TypeError, ValueError) as e:
tf.logging.warning("Failed to dump benchmark run info to log file: %s",
e)
|
Collect most of the TF runtime information for the local env.
The schema of the run info follows official/benchmark/datastore/schema.
Args:
model_name: string, the name of the model.
|
juraj-google-style
|
def flatten_zip_dataset(*args):
flattened = tf.data.Dataset.from_tensors(args[0])
for ex in args[1:]:
flattened = flattened.concatenate(tf.data.Dataset.from_tensors(ex))
return flattened
|
A list of examples to a dataset containing mixed examples.
Given a list of `n` dataset examples, flatten them by converting
each element into a dataset and concatenating them to convert into a
single dataset.
Args:
*args: A list containing one example each from `n` different datasets.
Returns:
flattened: A new dataset containing the examples from the list as part
of a single dataset.
|
juraj-google-style
|
def determine_drift(self):
try:
response = self._cloud_formation.detect_stack_drift(StackName=self._stack_name)
drift_request_id = response.get('StackDriftDetectionId', None)
if drift_request_id:
logging.info('drift_request_id: %s - polling', drift_request_id)
drift_calc_done = False
while (not drift_calc_done):
time.sleep(self.nap_time)
response = self._cloud_formation.describe_stack_drift_detection_status(StackDriftDetectionId=drift_request_id)
current_state = response.get('DetectionStatus', None)
logging.info('describe_stack_drift_detection_status(): {}'.format(current_state))
drift_calc_done = (current_state in CALC_DONE_STATES)
drift_answer = response.get('StackDriftStatus', 'UNKNOWN')
logging.info('drift of {}: {}'.format(self._stack_name, drift_answer))
if (drift_answer == 'DRIFTED'):
if self._verbose:
self._print_drift_report()
return False
else:
return True
else:
logging.warning('drift_request_id is None')
return False
except Exception as wtf:
logging.error(wtf, exc_info=True)
return False
|
Determine the drift of the stack.
Args:
None
Returns:
Good or Bad; True or False
|
codesearchnet
|
def delete_jobs(self, user_ids, job_ids, task_ids, labels, create_time_min=None, create_time_max=None):
tasks = list(self.lookup_job_tasks({'RUNNING'}, user_ids=user_ids, job_ids=job_ids, task_ids=task_ids, labels=labels, create_time_min=create_time_min, create_time_max=create_time_max))
print(('Found %d tasks to delete.' % len(tasks)))
return google_base.cancel(self._service.new_batch_http_request, self._service.operations().cancel, tasks)
|
Kills the operations associated with the specified job or job.task.
Args:
user_ids: List of user ids who "own" the job(s) to cancel.
job_ids: List of job_ids to cancel.
task_ids: List of task-ids to cancel.
labels: List of LabelParam, each must match the job(s) to be canceled.
create_time_min: a timezone-aware datetime value for the earliest create
time of a task, inclusive.
create_time_max: a timezone-aware datetime value for the most recent
create time of a task, inclusive.
Returns:
A list of tasks canceled and a list of error messages.
|
codesearchnet
|
def ShlexSplit(string):
precondition.AssertType(string, Text)
if PY2:
string = string.encode("utf-8")
parts = shlex.split(string)
if PY2:
parts = [part.decode("utf-8") for part in parts]
return parts
|
A wrapper for `shlex.split` that works with unicode objects.
Args:
string: A unicode string to split.
Returns:
A list of unicode strings representing parts of the input string.
|
juraj-google-style
|
class ThresholdedReLU(Layer):
def __init__(self, theta=1.0, **kwargs):
super(ThresholdedReLU, self).__init__(**kwargs)
if theta is None:
raise ValueError('Theta of a Thresholded ReLU layer cannot be None, requires a float. Got %s' % theta)
if theta < 0:
raise ValueError('The theta value of a Thresholded ReLU layer should be >=0, got %s' % theta)
self.supports_masking = True
self.theta = backend.cast_to_floatx(theta)
def call(self, inputs):
theta = math_ops.cast(self.theta, inputs.dtype)
return inputs * math_ops.cast(math_ops.greater(inputs, theta), inputs.dtype)
def get_config(self):
config = {'theta': float(self.theta)}
base_config = super(ThresholdedReLU, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@tf_utils.shape_type_conversion
def compute_output_shape(self, input_shape):
return input_shape
|
Thresholded Rectified Linear Unit.
It follows:
```
f(x) = x for x > theta
f(x) = 0 otherwise`
```
Input shape:
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
Output shape:
Same shape as the input.
Args:
theta: Float >= 0. Threshold location of activation.
|
github-repos
|
def resize(self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling=PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]]=None, input_data_format: Optional[Union[str, ChannelDimension]]=None, **kwargs) -> np.ndarray:
size = get_size_dict(size, default_to_square=False)
output_size = get_resize_output_image_size(image, size=(size['height'], size['width']), default_to_square=False, input_data_format=input_data_format)
return resize(image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs)
|
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
resized to keep the input aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input
image.
|
github-repos
|
def event(self, **kwargs):
if (self.callback.noargs and (self.streams == [])):
self.param.warning('No streams declared. To update a DynamicMaps using generators (or callables without arguments) use streams=[Next()]')
return
if (self.streams == []):
self.param.warning('No streams on DynamicMap, calling event will have no effect')
return
stream_params = set(util.stream_parameters(self.streams))
invalid = [k for k in kwargs.keys() if (k not in stream_params)]
if invalid:
msg = 'Key(s) {invalid} do not correspond to stream parameters'
raise KeyError(msg.format(invalid=', '.join((('%r' % i) for i in invalid))))
streams = []
for stream in self.streams:
contents = stream.contents
applicable_kws = {k: v for (k, v) in kwargs.items() if (k in set(contents.keys()))}
if ((not applicable_kws) and contents):
continue
streams.append(stream)
rkwargs = util.rename_stream_kwargs(stream, applicable_kws, reverse=True)
stream.update(**rkwargs)
Stream.trigger(streams)
|
Updates attached streams and triggers events
Automatically find streams matching the supplied kwargs to
update and trigger events on them.
Args:
**kwargs: Events to update streams with
|
codesearchnet
|
def _build_url(self, path):
if (path.startswith('http:
return path
else:
return ('%s%s' % (self._url, path))
|
Returns the full url from path.
If path is already a url, return it unchanged. If it's a path, append
it to the stored url.
Returns:
str: The full URL
|
codesearchnet
|
def ReadDataAtOffset(self, file_offset, size):
self._file_object.seek(file_offset, os.SEEK_SET)
return self._file_object.read(size)
|
Reads a byte string from the file-like object at a specific offset.
Args:
file_offset (int): file offset.
size (int): number of bytes to read.
Returns:
bytes: data read.
Raises:
IOError: if the read failed.
OSError: if the read failed.
|
codesearchnet
|
def solve(a, b):
if any_symbolic_tensors((a, b)):
return Solve().symbolic_call(a, b)
return _solve(a, b)
|
Solves a linear system of equations given by `a x = b`.
Args:
a: A tensor of shape `(..., M, M)` representing the coefficients matrix.
b: A tensor of shape `(..., M)` or `(..., M, N)` representing the
right-hand side or "dependent variable" matrix.
Returns:
A tensor of shape `(..., M)` or `(..., M, N)` representing the solution
of the linear system. Returned shape is identical to `b`.
|
github-repos
|
def minmax(self, minimum=None, maximum=None):
if minimum is None and maximum is None:
return {"minimum": self._minimum, "maximum": self._maximum};
if minimum != None:
if self._type in ['base64', 'date', 'datetime', 'ip', 'time']:
if not isinstance(minimum, basestring) \
or not _typeToRegex[self._type].match(minimum):
raise ValueError('__minimum__')
elif self._type in ['int', 'string', 'timestamp', 'uint']:
if not isinstance(minimum, (int, long)):
if isinstance(minimum, basestring) \
and _typeToRegex['int'].match(minimum):
minimum = int(minimum, 0)
else:
raise ValueError('__minimum__')
if self._type in ['base64', 'string', 'timestamp', 'uint']:
if minimum < 0:
raise ValueError('__minimum__')
elif self._type == 'decimal':
try:
minimum = Decimal(minimum)
except ValueError:
raise ValueError('__minimum__')
elif self._type == 'float':
try:
minimum = float(minimum)
except ValueError:
raise ValueError('__minimum__')
elif self._type == 'price':
if not isinstance(minimum, basestring) or not _typeToRegex['price'].match(minimum):
raise ValueError('__minimum__')
minimum = Decimal(minimum)
else:
raise TypeError('can not set __minimum__ for ' + self._type)
self._minimum = minimum
if maximum != None:
if self._type in ['date', 'datetime', 'ip', 'time']:
if not isinstance(maximum, basestring) \
or not _typeToRegex[self._type].match(maximum):
raise ValueError('__maximum__')
elif self._type in ['int', 'string', 'timestamp', 'uint']:
if not isinstance(maximum, (int, long)):
if isinstance(maximum, basestring) \
and _typeToRegex['int'].match(maximum):
maximum = int(maximum, 0)
else:
raise ValueError('__minimum__')
if self._type in ['string', 'timestamp', 'uint']:
if maximum < 0:
raise ValueError('__maximum__')
elif self._type == 'decimal':
try:
maximum = Decimal(maximum)
except ValueError:
raise ValueError('__maximum__')
elif self._type == 'float':
try:
minimum = float(minimum)
except ValueError:
raise ValueError('__maximum__')
elif self._type == 'price':
if not isinstance(maximum, basestring) or not _typeToRegex['price'].match(maximum):
raise ValueError('__maximum__')
maximum = Decimal(maximum)
else:
raise TypeError('can not set __maximum__ for ' + self._type)
if self._minimum is not None:
if self._type == 'ip':
if self.__compare_ips(self._minimum, maximum) == 1:
raise ValueError('__maximum__')
else:
if self._minimum > maximum:
raise ValueError('__maximum__')
self._maximum = maximum
|
Min/Max
Sets or gets the minimum and/or maximum values for the Node. For
getting, returns {"minimum":mixed,"maximum":mixed}
Arguments:
minimum {mixed} -- The minimum value
maximum {mixed} -- The maximum value
Raises:
TypeError, ValueError
Returns:
None | dict
|
juraj-google-style
|
def _restart(self, downtime_secs, job):
self._cluster.kill_task(job, 0)
time.sleep(downtime_secs)
self.assertFalse(context.check_alive('/job:%s/replica:0/task:0' % job))
self._cluster.start_task(job, 0)
while not context.check_alive('/job:%s/replica:0/task:0' % job):
time.sleep(1)
|
Kills `job` (index: 0) and restarts it after `downtime_secs`.
Args:
downtime_secs: secs before restarting the job.
job: a string specifying the job to restart.
|
github-repos
|
def eval_from_json(json):
closes = poloniex.get_attribute(json, 'close')
volumes = poloniex.get_attribute(json, 'volume')
obv = 0
for date in range(1, len(json)):
curr = {'close': closes[date], 'volume': volumes[date]}
prev = {'close': closes[date - 1], 'obv': obv}
obv = OBV.eval_algorithm(curr, prev)
return obv
|
Evaluates OBV from JSON (typically Poloniex API response)
Args:
json: List of dates where each entry is a dict of raw market data.
Returns:
Float of OBV
|
juraj-google-style
|
def _Execute(self, funcname, *args, **kwargs):
wait_for_completion = kwargs.get('wait_for_completion', False)
rpc_dict = {'func': funcname, 'args': args}
self._Send(json.dumps(rpc_dict))
timeout = (TIMEOUT_FOREVER if wait_for_completion else TIMEOUT_DEFAULT)
result_string = self._Recv(timeout)
try:
result = json.loads(result_string, object_hook=self._JsonDecodeDict)
if isinstance(result, unicode):
result = self._TryStr(result)
elif isinstance(result, list):
result = self._JsonDecodeList(result)
except ValueError:
raise ValueError(('Response JSON invalid: ' + str(result_string)))
except TypeError:
raise ValueError(('Response JSON invalid: ' + str(result_string)))
return result
|
Send an RPC request to the gdb-internal python.
Blocks for 3 seconds by default and returns any results.
Args:
funcname: the name of the function to call.
*args: the function's arguments.
**kwargs: Only the key 'wait_for_completion' is inspected, which decides
whether to wait forever for completion or just 3 seconds.
Returns:
The result of the function call.
|
codesearchnet
|
def route(cls, route, config=None):
def decorator(wrapped_class, **kwds):
cls._routes.append(dict(url=route, request_handler=wrapped_class))
return wrapped_class
return decorator
|
This method provides a decorator for adding endpoints to the
http server.
Args:
route (str): The url to be handled by the RequestHandled
config (dict): Configuration for the request handler
Example:
.. code-block:: python
import nautilus
from nauilus.network.http import RequestHandler
class MyService(nautilus.Service):
# ...
@MyService.route('/')
class HelloWorld(RequestHandler):
def get(self):
return self.finish('hello world')
|
codesearchnet
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.