code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def cacheResult(fn):
cache = {}
@functools.wraps(fn)
def wrapper(*args, **kwargs):
key = args + tuple(kwargs.items())
try:
if key in cache:
return cache[key]
except TypeError:
return fn(*args, **kwargs)
cache[key] = fn(*args, **kwargs)
return cache[key]
wrapper.cache = cache
return wrapper
|
Method decorator: calculate the value on first access, produce the cached value thereafter.
If the function takes arguments, the cache is a dictionary using all arguments as the key.
Args:
fn (method): function to decorate
Returns:
method: wrapper function with caching
|
juraj-google-style
|
def _FormatPackedIPv6Address(self, packed_ip_address):
octet_pairs = zip(packed_ip_address[0::2], packed_ip_address[1::2])
octet_pairs = [octet1 << 8 | octet2 for octet1, octet2 in octet_pairs]
return ':'.join([
'{0:04x}'.format(octet_pair) for octet_pair in octet_pairs])
|
Formats a packed IPv6 address as a human readable string.
Args:
packed_ip_address (list[int]): packed IPv6 address.
Returns:
str: human readable IPv6 address.
|
juraj-google-style
|
def _gen_ipython_string(func, args, defaults, original_doc):
magic_string = ('%s(' % func.__name__)
if defaults:
default_offset = (len(args) - len(defaults))
else:
default_offset = len(args)
for (i, value) in enumerate(args):
if (i >= default_offset):
magic_string += ('%s=%s, ' % (value, defaults[(i - default_offset)]))
else:
magic_string += ('%s, ' % value)
if args:
magic_string = magic_string[:(- 2)]
magic_string += ')\n\n'
if (original_doc is not None):
magic_string += original_doc
return magic_string
|
Provides auto-complete hint to ipython.
If the first line in a docstring is fn(arg1=, arg2=) then they are added to
auto-complete. This cannot be called on an instance method.
Args:
func: The function that will be modified.
args: The arguments that this function takes in order.
defaults: The default arguments corresponding the last arguments.
original_doc: Original docstring to assign after the magic string.
Returns:
The new doc string with the magic bit prepended.
|
codesearchnet
|
def register_for_auto_class(cls, auto_class='AutoTokenizer'):
if not isinstance(auto_class, str):
auto_class = auto_class.__name__
import transformers.models.auto as auto_module
if not hasattr(auto_module, auto_class):
raise ValueError(f'{auto_class} is not a valid auto class.')
cls._auto_class = auto_class
|
Register this class with a given auto class. This should only be used for custom tokenizers as the ones in the
library are already mapped with `AutoTokenizer`.
Args:
auto_class (`str` or `type`, *optional*, defaults to `"AutoTokenizer"`):
The auto class to register this new tokenizer with.
|
github-repos
|
def pre_verify(method):
@wraps(method)
def wrapper(self, *args, **kwargs):
self._verify_page()
return method(self, *args, **kwargs)
return wrapper
|
Decorator that calls self._verify_page() before executing the decorated method
Args:
method (callable): The method to decorate.
Returns:
Decorated method
|
juraj-google-style
|
def evaluate_extracted_tokens(gold_content, extr_content):
if isinstance(gold_content, string_):
gold_content = simple_tokenizer(gold_content)
if isinstance(extr_content, string_):
extr_content = simple_tokenizer(extr_content)
gold_set = set(gold_content)
extr_set = set(extr_content)
jaccard = (len((gold_set & extr_set)) / len((gold_set | extr_set)))
levenshtein = dameraulevenshtein(gold_content, extr_content)
return {'jaccard': jaccard, 'levenshtein': levenshtein}
|
Evaluate the similarity between gold-standard and extracted content,
typically for a single HTML document, as another way of evaluating the
performance of an extractor model.
Args:
gold_content (str or Sequence[str]): Gold-standard content, either as a
string or as an already-tokenized list of tokens.
extr_content (str or Sequence[str]): Extracted content, either as a
string or as an already-tokenized list of tokens.
Returns:
Dict[str, float]
|
codesearchnet
|
def camelize(word):
return ''.join(((w[0].upper() + w[1:]) for w in re.sub('[^A-Z^a-z^0-9^:]+', ' ', word).split(' ')))
|
Convert a word from lower_with_underscores to CamelCase.
Args:
word: The string to convert.
Returns:
The modified string.
|
codesearchnet
|
def is_common(schema):
if isinstance(schema, StreamSchema):
return schema.schema() in _SCHEMA_COMMON
if isinstance(schema, CommonSchema):
return True
if isinstance(schema, basestring):
return is_common(StreamSchema(schema))
return False
|
Is `schema` an common schema.
Args:
schema: Scheme to test.
Returns:
bool: ``True`` if schema is a common schema, otherwise ``False``.
|
juraj-google-style
|
def get_config(self):
return {}
|
Returns a Python dict of the object config.
A constraint config is a Python dictionary (JSON-serializable) that can
be used to reinstantiate the same object.
Returns:
Python dict containing the configuration of the constraint object.
|
github-repos
|
def tpu_model_inference_fn(features):
def custom_getter(getter, name, *args, **kwargs):
with tf.control_dependencies(None):
return tf.guarantee_const(getter(name, *args, **kwargs), name=(name + '/GuaranteeConst'))
with tf.variable_scope('', custom_getter=custom_getter):
t = int(time.time())
epoch_time = tf.constant(t, name=('epoch_time_%d' % t))
with tf.control_dependencies([epoch_time]):
return model_inference_fn(features, False, FLAGS.flag_values_dict())
|
Builds the model graph suitable for running on TPU.
It does two things:
1) Mark all weights as constant, which improves TPU inference performance
because it prevents the weights being transferred to the TPU every call
to Session.run().
2) Adds constant to the graph with a unique value and marks it as a
dependency on the rest of the model. This works around a TensorFlow bug
that prevents multiple models being run on a single TPU.
Returns:
(policy_output, value_output, logits) tuple of tensors.
|
codesearchnet
|
def compose_full_url(pub, uuid_url=False):
url = compose_path(pub, uuid_url)
if WEB_PORT == 80:
return "%s:
return "%s:
|
Compose full url for given `pub`, with protocol, server's address and port.
Args:
pub (obj): :class:`.DBPublication` instance.
uuid_url (bool, default False): Compose URL using UUID.
Returns:
str: Absolute url of the publication.
Raises:
PrivatePublicationError: When the `pub` is private publication.
|
juraj-google-style
|
def cast(self, dtype: tf.DType) -> 'TensorFluent':
if (self.dtype == dtype):
return self
t = tf.cast(self.tensor, dtype)
scope = self.scope.as_list()
batch = self.batch
return TensorFluent(t, scope, batch=batch)
|
Returns a TensorFluent for the cast operation with given `dtype`.
Args:
dtype: The output's data type.
Returns:
A TensorFluent wrapping the cast operation.
|
codesearchnet
|
def match_as_dict(self, film_sl_vectors, substrate_sl_vectors, film_vectors, substrate_vectors, match_area):
d = {}
d["film_sl_vecs"] = np.asarray(film_sl_vectors)
d["sub_sl_vecs"] = np.asarray(substrate_sl_vectors)
d["match_area"] = match_area
d["film_vecs"] = np.asarray(film_vectors)
d["sub_vecs"] = np.asarray(substrate_vectors)
return d
|
Returns dict which contains ZSL match
Args:
film_miller(array)
substrate_miller(array)
|
juraj-google-style
|
def mutate(self, dna: pg.DNA, global_state: pg.geno.AttributeDict, step: int=0) -> typing.Union[pg.DNA, List[pg.DNA]]:
raise NotImplementedError()
|
Mutates the DNA at a given step.
User should override this method or `mutate_list` method with optional
keyword arguments 'global_state' and 'step'.
Args:
dna: DNA to mutate.
global_state: An `AttributeDict` object as the container of global states.
step: Number of examples historically proposed, which can be used for
determining a mutation schedule.
Returns:
A new DNA or a DNA list as the result of the mutation.
|
github-repos
|
def migration_exchange(self, *, users: List[str], **kwargs) -> SlackResponse:
kwargs.update({'users': users})
return self.api_call('migration.exchange', http_verb='GET', params=kwargs)
|
For Enterprise Grid workspaces, map local user IDs to global user IDs
Args:
users (list): A list of user ids, up to 400 per request.
e.g. ['W1234567890', 'U2345678901', 'U3456789012']
|
codesearchnet
|
def search(self):
safeEnvDict = {'freeSearch': self.freeSearch, 'extentSearch': self.extentSearch, 'indexSearch': self.indexSearch}
for col in self._dataFrame.columns:
safeEnvDict[col] = self._dataFrame[col]
try:
searchIndex = eval(self._filterString, {'__builtins__': None}, safeEnvDict)
except NameError:
return ([], False)
except SyntaxError:
return ([], False)
except ValueError:
return ([], False)
except TypeError:
return ([], False)
return (searchIndex, True)
|
Applies the filter to the stored dataframe.
A safe environment dictionary will be created, which stores all allowed
functions and attributes, which may be used for the filter.
If any object in the given `filterString` could not be found in the
dictionary, the filter does not apply and returns `False`.
Returns:
tuple: A (indexes, success)-tuple, which indicates identified objects
by applying the filter and if the operation was successful in
general.
|
codesearchnet
|
def generate_state_data(means, weights):
x_true = np.dot(means, weights)
sample = np.random.poisson(x_true)
return sample.astype(float)
|
Generates data according to the Poisson Convex Mixture Model.
Args:
means (array): Cell types- genes x clusters
weights (array): Cell cluster assignments- clusters x cells
Returns:
data matrix - genes x cells
|
codesearchnet
|
def disasm(code, addr=0, syntax=None, target=None):
if (target is None):
target = pwnypack.target.target
if (syntax is None):
if (target.arch is pwnypack.target.Target.Arch.x86):
syntax = AsmSyntax.nasm
else:
syntax = AsmSyntax.att
if (syntax is AsmSyntax.nasm):
if (target.arch is not pwnypack.target.Target.Arch.x86):
raise NotImplementedError('nasm only supports x86.')
p = subprocess.Popen(['ndisasm', '-b', str(target.bits.value), '-o', str(addr), '-'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
(stdout, stderr) = p.communicate(code)
if p.returncode:
raise RuntimeError(stderr.decode('utf-8'))
return [line.split(None, 2)[2] for line in stdout.decode('utf-8').split('\n') if (line and (not line.startswith(' ')))]
elif (syntax in (AsmSyntax.intel, AsmSyntax.att)):
md = prepare_capstone(syntax, target)
statements = []
total_size = 0
for (_, size, mnemonic, op_str) in md.disasm_lite(code, addr):
statements.append(((mnemonic + ' ') + op_str).strip())
total_size += size
return statements
else:
raise NotImplementedError('Unsupported syntax for host platform.')
|
Disassemble machine readable code into human readable statements.
Args:
code(bytes): The machine code that is to be disassembled.
addr(int): The memory address of the code (used for relative
references).
syntax(AsmSyntax): The output assembler syntax. This defaults to
nasm on x86 architectures, AT&T on all other architectures.
target(~pwnypack.target.Target): The architecture for which the code
was written. The global target is used if this argument is
``None``.
Returns:
list of str: The disassembled machine code.
Raises:
NotImplementedError: In an unsupported target platform is specified.
RuntimeError: If ndisasm encounters an error.
Example:
>>> from pwny import *
>>> disasm(b'_\\xc3', target=Target(arch=Target.Arch.x86, bits=64))
['pop rdi', 'ret']
|
codesearchnet
|
def from_json(cls, data):
required_keys = ('hum_type', 'hum_value')
optional_keys = {'barometric_pressure': 101325, 'schedule': '', 'wet_bulb_range': ''}
for key in required_keys:
assert (key in data), 'Required key "{}" is missing!'.format(key)
for (key, val) in optional_keys.items():
if (key not in data):
data[key] = val
return cls(data['hum_type'], data['hum_value'], data['barometric_pressure'], data['schedule'], data['wet_bulb_range'])
|
Create a Humidity Condition from a dictionary.
Args:
data = {
"hum_type": string,
"hum_value": float,
"barometric_pressure": float,
"schedule": string,
"wet_bulb_range": string}
|
codesearchnet
|
def _get_resized_lm_head_decoder(self, old_lm_head_decoder, new_num_tokens):
new_lm_head_decoder = old_lm_head_decoder
is_input_output_equals = tf.reduce_any(self._get_word_embedding_weight(self.get_input_embeddings()) == old_lm_head_decoder)
if old_lm_head_decoder is not None and (not is_input_output_equals):
old_embedding_dim = shape_list(old_lm_head_decoder)[1]
decoder_mask, current_decoder = init_copy_embeddings(old_lm_head_decoder, new_num_tokens)
new_lm_head_decoder = self.add_weight(shape=(new_num_tokens, old_embedding_dim), initializer='zeros', trainable=True, name=old_lm_head_decoder.name.split(':')[0])
init_decoder = tf.where(decoder_mask, current_decoder, new_lm_head_decoder.value())
new_lm_head_decoder.assign(init_decoder)
return new_lm_head_decoder
|
Build a resized decoder from the old ones. Increasing the size will add newly initialized vectors at the end.
Reducing the size will remove vectors from the end
Args:
old_lm_head_decoder (`tf.Variable`):
Old lm head decoder to be resized.
new_num_tokens (`int`, *optional*):
New number of tokens in the linear matrix.
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
vectors from the end. If not provided or `None`, just returns None
Return:
`tf.Variable`: Pointer to the resized decoder or None if the output embeddings are different from the input
ones.
|
github-repos
|
def __init__(self, initializer: tf.keras.initializers.Initializer=tf.keras.initializers.RandomUniform()):
super().__init__()
self._initializer = initializer
|
Initializes a VariableDot layer.
Args:
initializer: A `tf.keras.initializers.Initializer` which specifies how to
initialize the values of the parameters.
|
github-repos
|
def _standardize_and_copy_config(config):
kwargs = config.copy()
for k, v in kwargs.items():
if isinstance(v, list):
kwargs[k] = tuple(v)
return kwargs
|
Returns a shallow copy of config with lists turned to tuples.
Keras serialization uses nest to listify everything.
This causes problems with the NumericColumn shape, which becomes
unhashable. We could try to solve this on the Keras side, but that
would require lots of tracking to avoid changing existing behavior.
Instead, we ensure here that we revive correctly.
Args:
config: dict that will be used to revive a Feature Column
Returns:
Shallow copy of config with lists turned to tuples.
|
github-repos
|
def _RunOsLoginNssCache(self):
try:
return subprocess.call([constants.OSLOGIN_NSS_CACHE_SCRIPT])
except OSError as e:
if (e.errno == errno.ENOENT):
return None
else:
raise
|
Run the OS Login NSS cache binary.
Returns:
int, the return code from the call, or None if the script is not found.
|
codesearchnet
|
def validate(self, nanopub: Mapping[(str, Any)]) -> Tuple[(bool, List[Tuple[(str, str)]])]:
(is_valid, messages) = validate_to_schema(nanopub, self.nanopub_schema)
if (not is_valid):
return messages
if (nanopub['nanopub']['type']['name'].upper() == 'BEL'):
bel_version = nanopub['nanopub']['type']['version']
else:
is_valid = False
return (is_valid, f"Not a BEL Nanopub according to nanopub.type.name: {nanopub['nanopub']['type']['name']}")
all_messages = []
bel_obj = bel.lang.belobj.BEL(bel_version, self.endpoint)
for edge in nanopub['nanopub']['edges']:
bel_statement = f"{edge['subject']} {edge['relation']} {edge['object']}"
parse_obj = bel_obj.parse(bel_statement)
if (not parse_obj.valid):
all_messages.extend(('ERROR', f'BEL statement parse error {parse_obj.error}, {parse_obj.err_visual}'))
for context in nanopub['nanopub']['context']:
(is_valid, messages) = self.validate_context(context)
all_messages.extend(messages)
is_valid = True
for (_type, msg) in all_messages:
if (_type == 'ERROR'):
is_valid = False
return (is_valid, all_messages)
|
Validates using the nanopub schema
Args:
nanopub (Mapping[str, Any]): nanopub dict
Returns:
Tuple[bool, List[Tuple[str, str]]]:
bool: Is valid? Yes = True, No = False
List[Tuple[str, str]]: Validation issues, empty if valid, tuple is ('ERROR|WARNING', msg)
e.g. [('WARNING', "Context ID not found")]
|
codesearchnet
|
def expand(self, pcoll: beam.PCollection[Chunk]) -> beam.PTransform[Chunk, Any]:
write_transform = self.database_config.create_write_transform()
return pcoll | write_transform
|
Creates and applies the database-specific write transform.
Args:
pcoll: PCollection of Chunks with embeddings to write to the
vector database. Each Chunk must have:
- An embedding
- An ID
- Metadata used to filter results as specified by database config
Returns:
Result of writing to database (implementation specific).
|
github-repos
|
def _set_avg_session_metrics(session_group):
assert session_group.sessions, 'SessionGroup cannot be empty.'
metric_stats = collections.defaultdict(_MetricStats)
for session in session_group.sessions:
for metric_value in session.metric_values:
metric_name = _MetricIdentifier(group=metric_value.name.group, tag=metric_value.name.tag)
stats = metric_stats[metric_name]
stats.total += metric_value.value
stats.count += 1
stats.total_step += metric_value.training_step
stats.total_wall_time_secs += metric_value.wall_time_secs
del session_group.metric_values[:]
for (metric_name, stats) in six.iteritems(metric_stats):
session_group.metric_values.add(name=api_pb2.MetricName(group=metric_name.group, tag=metric_name.tag), value=(float(stats.total) / float(stats.count)), training_step=(stats.total_step
|
Sets the metrics for the group to be the average of its sessions.
The resulting session group metrics consist of the union of metrics across
the group's sessions. The value of each session group metric is the average
of that metric values across the sessions in the group. The 'step' and
'wall_time_secs' fields of the resulting MetricValue field in the session
group are populated with the corresponding averages (truncated for 'step')
as well.
Args:
session_group: A SessionGroup protobuffer.
|
codesearchnet
|
def rprint(sep='\n', end='\n', file=sys.stdout, flush=False):
try:
first_item = (yield)
file.write(str(first_item))
if flush:
file.flush()
while True:
item = (yield)
file.write(sep)
file.write(str(item))
if flush:
file.flush()
except GeneratorExit:
file.write(end)
if flush:
file.flush()
|
A coroutine sink which prints received items stdout
Args:
sep: Optional separator to be printed between received items.
end: Optional terminator to be printed after the last item.
file: Optional stream to which to print.
flush: Optional flag to force flushing after each item.
|
juraj-google-style
|
def upload(self, file_path, uri=None, timeout=(- 1)):
if (not uri):
uri = self._uri
upload_file_name = os.path.basename(file_path)
(task, entity) = self._connection.post_multipart_with_response_handling(uri, file_path, upload_file_name)
if (not task):
return entity
return self._task_monitor.wait_for_task(task, timeout)
|
Makes a multipart request.
Args:
file_path:
File to upload.
uri:
A specific URI (optional).
timeout:
Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation
in OneView; it just stops waiting for its completion.
Returns:
dict: Response body.
|
codesearchnet
|
def to_grayscale(img, num_output_channels=1):
if (not _is_pil_image(img)):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
if (num_output_channels == 1):
img = img.convert('L')
elif (num_output_channels == 3):
img = img.convert('L')
np_img = np.array(img, dtype=np.uint8)
np_img = np.dstack([np_img, np_img, np_img])
img = Image.fromarray(np_img, 'RGB')
else:
raise ValueError('num_output_channels should be either 1 or 3')
return img
|
Convert image to grayscale version of image.
Args:
img (PIL Image): Image to be converted to grayscale.
Returns:
PIL Image: Grayscale version of the image.
if num_output_channels = 1 : returned image is single channel
if num_output_channels = 3 : returned image is 3 channel with r = g = b
|
codesearchnet
|
def usufyToXlsExport(d, fPath):
from pyexcel_xls import get_data
try:
oldData = {'OSRFramework': get_data(fPath)}
except:
oldData = {'OSRFramework': []}
tabularData = _generateTabularData(d, oldData)
from pyexcel_xls import save_data
save_data(fPath, tabularData)
|
Workaround to export to a .xls file.
Args:
-----
d: Data to export.
fPath: File path for the output file.
|
codesearchnet
|
def stack(list_or_tensor, element_dtype=None, strict=True):
if strict:
def raise_error(x):
raise ValueError('%s must be stackable when strict=True' % x)
original_call = raise_error
else:
original_call = lambda x: x
return data_structures.list_stack(list_or_tensor, data_structures.ListStackOpts(element_dtype=element_dtype, original_call=original_call))
|
Stacks the input, if it admits the notion of stacking.
For example, a list of tensors can be stacked into a larger tensor. This
function is similar to tf.stack, but it accepts non-lists and lists of
non-tensors as arguments. In the latter case, the function does nothing.
Args:
list_or_tensor: Any
element_dtype: tf.DType, optional dtypedtype for the elements in the list.
Required if the input is stackable, and the list is untyped.
strict: bool, if True an error is raised if the input is not stackable.
Otherwise the function is a no-op.
Returns:
Any, if the input is stackable, the result will be a tf.Tensor. Otherwise,
if strict=False, the result will be list_or_tensor.
Raises:
ValueError: if strict=True and the input is not stackable.
|
github-repos
|
def save(self, path, compressed=True, exist_ok=False):
path = os.path.expandvars(os.path.expanduser(path))
if (os.path.isfile(path) and (not exist_ok)):
raise OSError(17, os.strerror(17), path)
if os.path.isdir(path):
path = os.path.join(path, 'out.gdg')
if compressed:
bytes_written = cgaddag.gdg_save_compressed(self.gdg, path.encode('ascii'))
else:
bytes_written = cgaddag.gdg_save(self.gdg, path.encode('ascii'))
if (bytes_written == (- 1)):
errno = ctypes.c_int.in_dll(ctypes.pythonapi, 'errno').value
raise OSError(errno, os.strerror(errno), path)
return bytes_written
|
Save the GADDAG to file.
Args:
path: path to save the GADDAG to.
compressed: compress the saved GADDAG using gzip.
exist_ok: overwrite existing file at `path`.
|
codesearchnet
|
def arg_types(parsed: Parsed, errors: Errors) -> Tuple[Parsed, Errors]:
func_pattern = re.compile(r"\s*[a-zA-Z]+\(")
nsarg_pattern = re.compile(r"^\s*([A-Z]+):(.*?)\s*$")
for span in parsed:
if parsed[span]["type"] != "Function" or "parens_span" not in parsed[span]:
continue
for i, arg in enumerate(parsed[span]["args"]):
nsarg_matches = nsarg_pattern.match(arg["arg"])
if func_pattern.match(arg["arg"]):
parsed[span]["args"][i].update({"type": "Function"})
elif nsarg_matches:
(start, end) = arg["span"]
ns = nsarg_matches.group(1)
ns_val = nsarg_matches.group(2)
ns_span = nsarg_matches.span(1)
ns_span = (ns_span[0] + start, ns_span[1] + start - 1)
ns_val_span = nsarg_matches.span(2)
ns_val_span = (ns_val_span[0] + start, ns_val_span[1] + start - 1)
parsed[span]["args"][i].update(
{
"type": "NSArg",
"ns": ns,
"ns_span": ns_span,
"ns_val": ns_val,
"ns_val_span": ns_val_span,
}
)
else:
parsed[span]["args"][i].update({"type": "StrArg"})
return parsed, errors
|
Add argument types to parsed function data structure
Args:
parsed: function and arg locations in BEL string
errors: error messages
Returns:
(parsed, errors): parsed, arguments with arg types plus error messages
|
juraj-google-style
|
def gpu(self: EagerTensorType, gpu_index=0) -> EagerTensorType:
return self._copy(context.context(), 'GPU:' + str(gpu_index))
|
A copy of this Tensor with contents backed by memory on the GPU.
Args:
gpu_index: Identifies which GPU to place the contents on the returned
Tensor in.
Returns:
A GPU-memory backed Tensor object initialized with the same contents
as this Tensor.
|
github-repos
|
def _get_password_url(self):
password_url = None
if (self._settings['user'] or self._settings['authorization']):
if self._settings['url']:
password_url = self._settings['url']
elif self._settings['base_url']:
password_url = self._settings['base_url']
return password_url
|
Get URL used for authentication
Returns:
string: URL
|
codesearchnet
|
def get_structure_seqs(self, model):
dont_overwrite = []
chains = list(model.get_chains())
for x in chains:
if self.chains.has_id(x.id):
if self.chains.get_by_id(x.id).seq_record:
dont_overwrite.append(x.id)
if len(dont_overwrite) == len(chains):
log.debug('Not writing structure sequences, already stored')
return
structure_seqs = ssbio.protein.structure.properties.residues.get_structure_seqrecords(model)
log.debug('{}: gathered chain sequences'.format(self.id))
for seq_record in structure_seqs:
log.debug('{}: adding chain sequence to ChainProp'.format(seq_record.id))
my_chain = self.chains.get_by_id(seq_record.id)
my_chain.seq_record = seq_record
|
Gather chain sequences and store in their corresponding ``ChainProp`` objects in the ``chains`` attribute.
Args:
model (Model): Biopython Model object of the structure you would like to parse
|
juraj-google-style
|
def _compute_args(self, data=dict(), **kwargs):
for name, remote_attribute in self._attributes.items():
default_value = BambouConfig.get_default_attribute_value(self.__class__, name, remote_attribute.attribute_type)
setattr(self, name, default_value)
if len(data) > 0:
self.from_dict(data)
for key, value in kwargs.items():
if hasattr(self, key):
setattr(self, key, value)
|
Compute the arguments
Try to import attributes from data.
Otherwise compute kwargs arguments.
Args:
data: a dict()
kwargs: a list of arguments
|
juraj-google-style
|
def contextmanager(target: Callable[..., Iterator[_T]]) -> Callable[..., ContextManager[_T]]:
context_manager = _contextlib.contextmanager(target)
return tf_decorator.make_decorator(target, context_manager, 'contextmanager')
|
A tf_decorator-aware wrapper for `contextlib.contextmanager`.
Usage is identical to `contextlib.contextmanager`.
Args:
target: A callable to be wrapped in a contextmanager.
Returns:
A callable that can be used inside of a `with` statement.
|
github-repos
|
def __init__(self, given, enum_type, options):
super(InvalidEnumValue, self).__init__('Could not parse [{0}] into a valid {1}. Valid values are [{2}]'.format(given, enum_type, ', '.join(options)))
|
Constructs a new exception.
Args:
given: str, The given string that could not be parsed.
enum_type: str, The human readable name of the enum you were trying to
parse.
options: list(str), The valid values for this enum.
|
github-repos
|
def infer_pyarrow_schema(data):
column_data = OrderedDict()
for row in data:
for key, value in row.items():
column_data.setdefault(key, []).append(value)
column_types = OrderedDict([(key, pa.array(value).type) for key, value in column_data.items()])
return pa.schema(list(column_types.items()))
|
For internal use only; no backwards-compatibility guarantees.
Infer PyArrow schema for tabular data.
Args:
data (List[dict]): A list of dictionaries representing rows in a table.
Returns:
A PyArrow schema object.
|
github-repos
|
def _flatten_location_translations(location_translations):
sources_to_process = set(six.iterkeys(location_translations))
def _update_translation(source):
'Return the proper (fully-flattened) translation for the given location.'
destination = location_translations[source]
if (destination not in location_translations):
return destination
else:
sources_to_process.discard(destination)
final_destination = _update_translation(destination)
location_translations[source] = final_destination
return final_destination
while sources_to_process:
_update_translation(sources_to_process.pop())
|
If location A translates to B, and B to C, then make A translate directly to C.
Args:
location_translations: dict of Location -> Location, where the key translates to the value.
Mutated in place for efficiency and simplicity of implementation.
|
codesearchnet
|
def Reformat(llines, lines=None):
final_lines = []
prev_line = None
indent_width = style.Get('INDENT_WIDTH')
for lline in _SingleOrMergedLines(llines):
first_token = lline.first
_FormatFirstToken(first_token, lline.depth, prev_line, final_lines)
indent_amt = indent_width * lline.depth
state = format_decision_state.FormatDecisionState(lline, indent_amt)
state.MoveStateToNextToken()
if not lline.disable:
if lline.first.is_comment:
lline.first.value = lline.first.value.rstrip()
elif lline.last.is_comment:
lline.last.value = lline.last.value.rstrip()
if prev_line and prev_line.disable:
_RetainRequiredVerticalSpacingBetweenTokens(lline.first, prev_line.last, lines)
if any((tok.is_comment for tok in lline.tokens)):
_RetainVerticalSpacingBeforeComments(lline)
if lline.disable or _LineHasContinuationMarkers(lline):
_RetainHorizontalSpacing(lline)
_RetainRequiredVerticalSpacing(lline, prev_line, lines)
_EmitLineUnformatted(state)
elif _LineContainsPylintDisableLineTooLong(lline) or _LineContainsI18n(lline):
_RetainRequiredVerticalSpacing(lline, prev_line, lines)
_EmitLineUnformatted(state)
elif _CanPlaceOnSingleLine(lline) and (not any((tok.must_break_before for tok in lline.tokens))):
while state.next_token:
state.AddTokenToState(newline=False, dry_run=False)
elif not _AnalyzeSolutionSpace(state):
state = format_decision_state.FormatDecisionState(lline, indent_amt)
state.MoveStateToNextToken()
_RetainHorizontalSpacing(lline)
_RetainRequiredVerticalSpacing(lline, prev_line, None)
_EmitLineUnformatted(state)
final_lines.append(lline)
prev_line = lline
_AlignTrailingComments(final_lines)
return _FormatFinalLines(final_lines)
|
Reformat the logical lines.
Arguments:
llines: (list of logical_line.LogicalLine) Lines we want to format.
lines: (set of int) The lines which can be modified or None if there is no
line range restriction.
Returns:
A string representing the reformatted code.
|
github-repos
|
def assembly(self, value):
if value == self._defaults['assembly'] and 'assembly' in self._values:
del self._values['assembly']
else:
self._values['assembly'] = value
|
The assembly property.
Args:
value (string). the property value.
|
juraj-google-style
|
def make_report_table(fp, title, reports):
reports.sort(key=lambda x: x[1]['tflite_converter'], reverse=False)
reports.sort(key=lambda x: x[1]['tf'], reverse=True)
def result_cell(x, row, col):
s = html.escape(repr(x), quote=True)
color = '
handler = 'ShowLog(%d, %d)' % (row, col)
fp.write("<td style='background-color: %s' onclick='%s'>%s</td>\n" % (color, handler, s))
fp.write('<html>\n<head>\n<title>tflite report</title>\n<style>\nbody { font-family: Arial; }\nth { background-color:
fp.write('<script> \n')
fp.write('\nfunction ShowLog(row, col) {\n\nvar log = document.getElementById("log");\nlog.innerHTML = "<pre>" + data[row][col] + "</pre>";\n}\n')
fp.write('var data = \n')
logs = json.dumps([[escape_and_normalize(x[1]['tf_log']), escape_and_normalize(x[1]['tflite_converter_log'])] for x in reports])
fp.write(logs)
fp.write(';</script>\n')
fp.write('\n<body>\n<h1>TensorFlow Lite Conversion</h1>\n<h2>%s</h2>\n' % title)
param_keys = {}
for params, _ in reports:
for k in params.keys():
param_keys[k] = True
fp.write('<table>\n')
fp.write("<tr><td class='horiz'>\n")
fp.write("<div style='height:1000px; overflow:auto'>\n")
fp.write('<table>\n')
fp.write('<tr>\n')
for p in param_keys:
fp.write('<th>%s</th>\n' % html.escape(p, quote=True))
fp.write('<th>TensorFlow</th>\n')
fp.write('<th>TensorFlow Lite Converter</th>\n')
fp.write('</tr>\n')
for idx, (params, vals) in enumerate(reports):
fp.write('<tr>\n')
for p in param_keys:
fp.write(' <td>%s</td>\n' % html.escape(repr(params.get(p, None)), quote=True))
result_cell(vals['tf'], idx, 0)
result_cell(vals['tflite_converter'], idx, 1)
fp.write('</tr>\n')
fp.write('</table>\n')
fp.write('</div>\n')
fp.write('</td>\n')
fp.write("<td class='horiz' id='log'></td></tr>\n")
fp.write('</table>\n')
fp.write('<script>\n')
fp.write('</script>\n')
fp.write('\n </body>\n </html>\n ')
|
Make an HTML report of the success/failure reports.
Args:
fp: File-like object in which to put the html.
title: "Title of the zip file this pertains to."
reports: a list of conversion attempts. (report_args, report_vals) i.e.
({"shape": [1,2,3], "type": "tf.float32"},
{"tf": "SUCCESS", "tflite_converter": "FAILURE",
"tf_log": "", "tflite_converter_log": "Unsupported type."})
|
github-repos
|
def env(mounts):
f_mounts = [m.strip('/') for m in mounts]
root = local.path('/')
ld_libs = [((root / m) / 'lib') for m in f_mounts]
ld_libs.extend([((root / m) / 'lib64') for m in f_mounts])
paths = [((root / m) / 'bin') for m in f_mounts]
paths.extend([((root / m) / 'sbin') for m in f_mounts])
paths.extend([(root / m) for m in f_mounts])
return (paths, ld_libs)
|
Compute the environment of the change root for the user.
Args:
mounts: The mountpoints of the current user.
Return:
paths
ld_libs
|
codesearchnet
|
def get_point_index(self, point):
for (i, segment) in enumerate(self.segments):
idx = segment.getPointIndex(point)
if (idx != (- 1)):
return (i, idx)
return ((- 1), (- 1))
|
Gets of the closest first point
Args:
point (:obj:`Point`)
Returns:
(int, int): Segment id and point index in that segment
|
codesearchnet
|
def set_default_by_index(self, index):
if index >= len(self._datasets):
raise DataInvalidIndex('A dataset with index {} does not exist'.format(index))
self._default_index = index
|
Set the default dataset by its index.
After changing the default dataset, all calls without explicitly specifying the
dataset by index or alias will be redirected to this dataset.
Args:
index (int): The index of the dataset that should be made the default.
Raises:
DataInvalidIndex: If the index does not represent a valid dataset.
|
juraj-google-style
|
def setup_modules(self, args):
def _setup_module_thread(module_description):
new_args = utils.import_args_from_dict(
module_description['args'], vars(args), self.config)
module = self._module_pool[module_description['name']]
try:
module.setup(**new_args)
except Exception as error:
self.add_error(
'An unknown error occurred: {0!s}\nFull traceback:\n{1:s}'.format(
error, traceback.format_exc()),
critical=True)
self.events[module_description['name']] = threading.Event()
self.cleanup()
threads = []
for module_description in self.recipe['modules']:
t = threading.Thread(
target=_setup_module_thread,
args=(module_description, )
)
threads.append(t)
t.start()
for t in threads:
t.join()
self.check_errors(is_global=True)
|
Performs setup tasks for each module in the module pool.
Threads declared modules' setup() functions. Takes CLI arguments into
account when replacing recipe parameters for each module.
Args:
args: Command line arguments that will be used to replace the parameters
declared in the recipe.
|
juraj-google-style
|
def from_encoder_decoder_configs(cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs) -> PretrainedConfig:
logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config')
decoder_config.is_decoder = True
decoder_config.add_cross_attention = True
return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs)
|
Instantiate a [`VisionEncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model
configuration and decoder model configuration.
Returns:
[`VisionEncoderDecoderConfig`]: An instance of a configuration object
|
github-repos
|
def check_version(self, node_id=None, timeout=2, strict=False):
self._lock.acquire()
end = (time.time() + timeout)
while (time.time() < end):
try_node = (node_id or self.least_loaded_node())
if (try_node is None):
self._lock.release()
raise Errors.NoBrokersAvailable()
self._maybe_connect(try_node)
conn = self._conns[try_node]
self._refresh_on_disconnects = False
try:
remaining = (end - time.time())
version = conn.check_version(timeout=remaining, strict=strict, topics=list(self.config['bootstrap_topics_filter']))
if (version >= (0, 10, 0)):
self._api_versions = conn.get_api_versions()
self._lock.release()
return version
except Errors.NodeNotReadyError:
if (node_id is not None):
self._lock.release()
raise
finally:
self._refresh_on_disconnects = True
else:
self._lock.release()
raise Errors.NoBrokersAvailable()
|
Attempt to guess the version of a Kafka broker.
Note: It is possible that this method blocks longer than the
specified timeout. This can happen if the entire cluster
is down and the client enters a bootstrap backoff sleep.
This is only possible if node_id is None.
Returns: version tuple, i.e. (0, 10), (0, 9), (0, 8, 2), ...
Raises:
NodeNotReadyError (if node_id is provided)
NoBrokersAvailable (if node_id is None)
UnrecognizedBrokerVersion: please file bug if seen!
AssertionError (if strict=True): please file bug if seen!
|
codesearchnet
|
def send(self, response):
self._connection.connection.set('{}:{}'.format(SIGNAL_REDIS_PREFIX, response.uid), pickle.dumps(response))
|
Send a response back to the client that issued a request.
Args:
response (Response): Reference to the response object that should be sent.
|
codesearchnet
|
def get_config_parameter_boolean(config: ConfigParser,
section: str,
param: str,
default: bool) -> bool:
try:
value = config.getboolean(section, param)
except (TypeError, ValueError, NoOptionError):
log.warning(
"Configuration variable {} not found or improper in section [{}]; "
"using default of {!r}", param, section, default)
value = default
return value
|
Get Boolean parameter from ``configparser`` ``.INI`` file.
Args:
config: :class:`ConfigParser` object
section: section name within config file
param: name of parameter within section
default: default value
Returns:
parameter value, or default
|
juraj-google-style
|
def is_github_task(task):
return any(((task.get('schedulerId') == 'taskcluster-github'), task.get('extra', {}).get('tasks_for', '').startswith('github-'), is_github_url(task.get('metadata', {}).get('source', ''))))
|
Determine if a task is related to GitHub.
This function currently looks into the ``schedulerId``, ``extra.tasks_for``, and
``metadata.source``.
Args:
task (dict): the task definition to check.
Returns:
bool: True if a piece of data refers to GitHub
|
codesearchnet
|
def __init__(self, base_object=None, query=None):
if not query:
raise errors.FormatError('Missing query value.')
super(WMIQuerySourceType, self).__init__()
self.base_object = base_object
self.query = query
|
Initializes a source type.
Args:
base_object (Optional[str]): WMI base object.
query (Optional[str]): WMI query.
Raises:
FormatError: when query is not set.
|
juraj-google-style
|
def save_to_file(self, filename, remap_dim0=None, remap_dim1=None):
with open(filename, 'w') as fobj:
columns = list(sorted(self._dim1))
for col in columns:
fobj.write(',')
fobj.write(str((remap_dim1[col] if remap_dim1 else col)))
fobj.write('\n')
for row in sorted(self._dim0):
fobj.write(str((remap_dim0[row] if remap_dim0 else row)))
for col in columns:
fobj.write(',')
fobj.write(str(self[(row, col)]))
fobj.write('\n')
|
Saves matrix to the file.
Args:
filename: name of the file where to save matrix
remap_dim0: dictionary with mapping row indices to row names which should
be saved to file. If none then indices will be used as names.
remap_dim1: dictionary with mapping column indices to column names which
should be saved to file. If none then indices will be used as names.
|
codesearchnet
|
def __getitem__(self, key):
if not isinstance(key, basestring):
raise Exception("LRU cache can only be indexed by strings (%s has type %s)" %
(str(key), str(type(key))))
if key in self._cache:
entry = self._cache[key]
entry['last_used'] = datetime.datetime.now()
return entry['value']
else:
raise KeyError(key)
|
Get an item from the cache.
Args:
key: a string used as the lookup key.
Returns:
The cached item, if any.
Raises:
Exception if the key is not a string.
KeyError if the key is not found.
|
juraj-google-style
|
def GetEntries(
self, parser_mediator, cookie_data=None, url=None, **kwargs):
fields = cookie_data.split('.')
number_of_fields = len(fields)
if number_of_fields > 5:
variables = '.'.join(fields[4:])
fields = fields[0:4]
fields.append(variables)
number_of_fields = len(fields)
if number_of_fields not in (1, 5):
parser_mediator.ProduceExtractionWarning(
'unsupported number of fields: {0:d} in cookie: {1:s}'.format(
number_of_fields, self.COOKIE_NAME))
return
if number_of_fields == 1:
domain_hash = None
try:
last_visit_posix_time = int(fields[0], 10) / 10000000
except ValueError:
last_visit_posix_time = None
number_of_sessions = None
number_of_sources = None
extra_attributes = {}
elif number_of_fields == 5:
domain_hash = fields[0]
try:
last_visit_posix_time = int(fields[1], 10)
except ValueError:
last_visit_posix_time = None
try:
number_of_sessions = int(fields[2], 10)
except ValueError:
number_of_sessions = None
try:
number_of_sources = int(fields[3], 10)
except ValueError:
number_of_sources = None
extra_variables = fields[4].split('|')
extra_attributes = {}
for variable in extra_variables:
key, _, value = variable.partition('=')
if isinstance(value, py2to3.UNICODE_TYPE) and py2to3.PY_2:
try:
value = codecs.decode(value, 'ascii')
except UnicodeEncodeError:
value = codecs.decode(value, 'ascii', errors='replace')
parser_mediator.ProduceExtractionWarning(
'Cookie contains non 7-bit ASCII characters, which have been '
'replaced with a "?".')
value = urlparse.unquote(value)
if py2to3.PY_2:
try:
value = codecs.encode(value, 'utf-8')
except UnicodeDecodeError:
value = codecs.encode(value, 'utf-8', errors='replace')
parser_mediator.ProduceExtractionWarning(
'Cookie value did not contain a Unicode string. Non UTF-8 '
'characters have been replaced.')
extra_attributes[key] = value
if last_visit_posix_time is not None:
date_time = dfdatetime_posix_time.PosixTime(
timestamp=last_visit_posix_time)
timestamp_description = definitions.TIME_DESCRIPTION_LAST_VISITED
else:
date_time = dfdatetime_semantic_time.SemanticTime('Not set')
timestamp_description = definitions.TIME_DESCRIPTION_NOT_A_TIME
event_data = GoogleAnalyticsEventData('utmz')
event_data.cookie_name = self.COOKIE_NAME
event_data.domain_hash = domain_hash
event_data.sessions = number_of_sessions
event_data.sources = number_of_sources
event_data.url = url
for key, value in iter(extra_attributes.items()):
setattr(event_data, key, value)
event = time_events.DateTimeValuesEvent(date_time, timestamp_description)
parser_mediator.ProduceEventWithEventData(event, event_data)
|
Extracts event objects from the cookie.
Args:
parser_mediator (ParserMediator): parser mediator.
cookie_data (str): cookie data.
url (str): URL or path where the cookie got set.
|
juraj-google-style
|
def gnuplot(script_name, args_dict={}, data=[], silent=True):
gnuplot_command = 'gnuplot'
if data:
assert ('data' not in args_dict), "Can't use 'data' variable twice."
data_temp = _GnuplotDataTemp(*data)
args_dict['data'] = data_temp.name
if args_dict:
gnuplot_command += ' -e "'
for arg in args_dict.items():
gnuplot_command += (arg[0] + '=')
if isinstance(arg[1], str):
gnuplot_command += (("'" + arg[1]) + "'")
elif isinstance(arg[1], bool):
if (arg[1] is True):
gnuplot_command += '1'
else:
gnuplot_command += '0'
elif hasattr(arg[1], '__iter__'):
gnuplot_command += (("'" + ' '.join([str(v) for v in arg[1]])) + "'")
else:
gnuplot_command += str(arg[1])
gnuplot_command += '; '
gnuplot_command = gnuplot_command[:(- 1)]
gnuplot_command += '"'
gnuplot_command += (' ' + script_name)
if silent:
gnuplot_command += ' > /dev/null 2>&1'
os.system(gnuplot_command)
return gnuplot_command
|
Call a Gnuplot script, passing it arguments and
datasets.
Args:
scipt_name(str): The name of the Gnuplot script.
args_dict(dict): A dictionary of parameters to pass
to the script. The `key` is the name of the variable
that the `item` will be passed to the Gnuplot script
with.
data(list): A list of lists containing lists to be plotted.
The lists can be accessed by plotting the variable
`data` in the Gnuplot script. The first list in the
list of lists corresponds to the first column in data,
and so on.
silent (bool): `True` if Gnuplot stdout should be silenced,
`False` if not.
Returns:
str: The Gnuplot command used to call the script.
|
codesearchnet
|
def MakeJoint(pmf1, pmf2):
joint = Joint()
for v1, p1 in pmf1.Items():
for v2, p2 in pmf2.Items():
joint.Set((v1, v2), p1 * p2)
return joint
|
Joint distribution of values from pmf1 and pmf2.
Args:
pmf1: Pmf object
pmf2: Pmf object
Returns:
Joint pmf of value pairs
|
juraj-google-style
|
def case_study_social_link_facebook(value):
parsed = parse.urlparse(value.lower())
if not parsed.netloc.endswith('facebook.com'):
raise ValidationError(MESSAGE_NOT_FACEBOOK)
|
Confirms that the social media url is pointed at the correct domain.
Args:
value (string): The url to check.
Raises:
django.forms.ValidationError
|
juraj-google-style
|
def get_file_path(self, digest):
relPath = Fsdb.generate_tree_path(digest, self._conf['depth'])
return os.path.join(self.fsdbRoot, relPath)
|
Retrieve the absolute path to the file with the given digest
Args:
digest -- digest of the file
Returns:
String rapresenting the absolute path of the file
|
codesearchnet
|
def instrument(self, package, options=None, runner=None, handler=None):
if (runner is None):
runner = DEFAULT_INSTRUMENTATION_RUNNER
if (options is None):
options = {}
options_list = []
for (option_key, option_value) in options.items():
options_list.append(('-e %s %s' % (option_key, option_value)))
options_string = ' '.join(options_list)
instrumentation_command = ('am instrument -r -w %s %s/%s' % (options_string, package, runner))
logging.info('AndroidDevice|%s: Executing adb shell %s', self.serial, instrumentation_command)
if (handler is None):
self._exec_adb_cmd('shell', instrumentation_command, shell=False, timeout=None, stderr=None)
else:
return self._execute_adb_and_process_stdout('shell', instrumentation_command, shell=False, handler=handler)
|
Runs an instrumentation command on the device.
This is a convenience wrapper to avoid parameter formatting.
Example:
.. code-block:: python
device.instrument(
'com.my.package.test',
options = {
'class': 'com.my.package.test.TestSuite',
},
)
Args:
package: string, the package of the instrumentation tests.
options: dict, the instrumentation options including the test
class.
runner: string, the test runner name, which defaults to
DEFAULT_INSTRUMENTATION_RUNNER.
handler: optional func, when specified the function is used to parse
the instrumentation stdout line by line as the output is
generated; otherwise, the stdout is simply returned once the
instrumentation is finished.
Returns:
The stdout of instrumentation command or the stderr if the handler
is set.
|
codesearchnet
|
def _list(self, dir_or_prefix):
try:
for path, (size, updated) in self._blobstorageIO().list_files(dir_or_prefix, with_metadata=True):
yield FileMetadata(path, size, updated)
except Exception as e:
raise BeamIOError('List operation failed', {dir_or_prefix: e})
|
List files in a location.
Listing is non-recursive (for filesystems that support directories).
Args:
dir_or_prefix: (string) A directory or location prefix (for filesystems
that don't have directories).
Returns:
Generator of ``FileMetadata`` objects.
Raises:
``BeamIOError``: if listing fails, but not if no files were found.
|
github-repos
|
def contacts(self, *args, **kwargs):
n = Contacts.read_cellframe(self, prune_neighbors=True)
if ('measured_regions' in kwargs):
n.measured_regions = kwargs['measured_regions']
else:
n.measured_regions = self.get_measured_regions()
if ('measured_phenotypes' in kwargs):
n.measured_phenotypes = kwargs['measured_phenotypes']
else:
n.measured_phenotypes = self.phenotypes
n.microns_per_pixel = self.microns_per_pixel
return n
|
Use assess the cell-to-cell contacts recorded in the celldataframe
Returns:
Contacts: returns a class that holds cell-to-cell contact information for whatever phenotypes were in the CellDataFrame before execution.
|
codesearchnet
|
def load_config(self, config):
for (k, v) in config.items():
if hasattr(self, k):
raise DeviceError(self, ('Attribute %s already exists with value %s, cannot set again.' % (k, getattr(self, k))))
setattr(self, k, v)
|
Add attributes to the AndroidDevice object based on config.
Args:
config: A dictionary representing the configs.
Raises:
Error: The config is trying to overwrite an existing attribute.
|
codesearchnet
|
def _detect(self):
results = []
self.results = []
self.visited_all_paths = {}
for contract in self.slither.contracts:
for function in contract.functions:
if function.is_implemented:
uninitialized_storage_variables = [v for v in function.local_variables if (v.is_storage and v.uninitialized)]
function.entry_point.context[self.key] = uninitialized_storage_variables
self._detect_uninitialized(function, function.entry_point, [])
for (function, uninitialized_storage_variable) in self.results:
var_name = uninitialized_storage_variable.name
info = '{} in {}.{} ({}) is a storage variable never initialiazed\n'
info = info.format(var_name, function.contract.name, function.name, uninitialized_storage_variable.source_mapping_str)
json = self.generate_json_result(info)
self.add_variable_to_json(uninitialized_storage_variable, json)
self.add_function_to_json(function, json)
results.append(json)
return results
|
Detect uninitialized storage variables
Recursively visit the calls
Returns:
dict: [contract name] = set(storage variable uninitialized)
|
codesearchnet
|
def _Execute(statements, context, callback, trace):
if trace:
trace.exec_depth += 1
for i, statement in enumerate(statements):
if isinstance(statement, six.string_types):
callback(statement)
else:
try:
func, args = statement
func(args, context, callback, trace)
except UndefinedVariable as e:
start = max(0, i - 3)
end = i + 3
e.near = statements[start:end]
e.trace = trace
raise
|
Execute a bunch of template statements in a ScopedContext.
Args:
callback: Strings are "written" to this callback function.
trace: Trace object, or None
This is called in a mutually recursive fashion.
|
juraj-google-style
|
def update_variant_compounds(self, variant, variant_objs=None):
compound_objs = []
for compound in variant.get('compounds', []):
not_loaded = True
gene_objs = []
if variant_objs:
variant_obj = variant_objs.get(compound['variant'])
else:
variant_obj = self.variant_collection.find_one({'_id': compound['variant']})
if variant_obj:
not_loaded = False
compound['rank_score'] = variant_obj['rank_score']
for gene in variant_obj.get('genes', []):
gene_obj = {'hgnc_id': gene['hgnc_id'], 'hgnc_symbol': gene.get('hgnc_symbol'), 'region_annotation': gene.get('region_annotation'), 'functional_annotation': gene.get('functional_annotation')}
gene_objs.append(gene_obj)
compound['genes'] = gene_objs
compound['not_loaded'] = not_loaded
compound_objs.append(compound)
return compound_objs
|
Update compounds for a variant.
This will add all the necessary information of a variant on a compound object.
Args:
variant(scout.models.Variant)
variant_objs(dict): A dictionary with _ids as keys and variant objs as values.
Returns:
compound_objs(list(dict)): A dictionary with updated compound objects.
|
codesearchnet
|
def image_needs_building(image):
d = docker_client()
try:
d.images.get(image)
except docker.errors.ImageNotFound:
pass
else:
return False
return image_needs_pushing(image)
|
Return whether an image needs building
Checks if the image exists (ignores commit range),
either locally or on the registry.
Args:
image (str): the `repository:tag` image to be build.
Returns:
True: if image needs to be built
False: if not (image already exists)
|
codesearchnet
|
def set_hostname(hostname=None, deploy=False):
if not hostname:
raise CommandExecutionError("Hostname option must not be none.")
ret = {}
query = {'type': 'config',
'action': 'set',
'xpath': '/config/devices/entry[@name=\'localhost.localdomain\']/deviceconfig/system',
'element': '<hostname>{0}</hostname>'.format(hostname)}
ret.update(__proxy__['panos.call'](query))
if deploy is True:
ret.update(commit())
return ret
|
Set the hostname of the Palo Alto proxy minion. A commit will be required before this is processed.
CLI Example:
Args:
hostname (str): The hostname to set
deploy (bool): If true then commit the full candidate configuration, if false only set pending change.
.. code-block:: bash
salt '*' panos.set_hostname newhostname
salt '*' panos.set_hostname newhostname deploy=True
|
juraj-google-style
|
def create_software_renderer(self, surface):
renderer = object.__new__(Renderer)
renderer._ptr = self._ptr = check_ptr_err(lib.SDL_CreateSoftwareRenderer(surface._ptr))
return renderer
|
Create a 2D software rendering context for a surface.
Args:
surface (Surface): The surface where rendering is done.
Returns:
Renderer: A 2D software rendering context.
Raises:
SDLError: If there was an error creating the renderer.
|
codesearchnet
|
def delete(self, *args, **kwargs):
api = Api()
api.authenticate()
api.delete_video(self.video_id)
return super(Video, self).delete(*args, **kwargs)
|
Deletes the video from youtube
Raises:
OperationError
|
codesearchnet
|
def SetDecryptedStreamSize(self, decrypted_stream_size):
if self._is_open:
raise IOError('Already open.')
if (decrypted_stream_size < 0):
raise ValueError('Invalid decrypted stream size: {0:d} value out of bounds.'.format(decrypted_stream_size))
self._decrypted_stream_size = decrypted_stream_size
|
Sets the decrypted stream size.
This function is used to set the decrypted stream size if it can be
determined separately.
Args:
decrypted_stream_size (int): size of the decrypted stream in bytes.
Raises:
IOError: if the file-like object is already open.
OSError: if the file-like object is already open.
ValueError: if the decrypted stream size is invalid.
|
codesearchnet
|
def range(cls, start=None, stop=None, step=None, inclusive=False):
def sign(x):
'Inner function for determining the sign of a float\n '
return ((- 1), 1)[(x >= 0)]
if (not step):
raise ValueError('Null step')
if isinstance(stop, timedelta):
stop = (start + stop)
if (sign((stop - start).total_seconds()) != sign(step.total_seconds())):
raise ValueError('start/stop order not coherent with step')
date = start
if (step.total_seconds() > 0):
oper = ('__le__' if inclusive else '__lt__')
else:
oper = ('__ge__' if inclusive else '__gt__')
while getattr(date, oper)(stop):
(yield date)
date += step
|
Generator of a date range
Args:
start (Date):
stop (Date or datetime.timedelta)!
step (timedelta):
Keyword Args:
inclusive (bool): If ``False``, the stopping date is not included.
This is the same behavior as the built-in :py:func:`range`.
Yield:
Date:
|
codesearchnet
|
def _buckets(data, bucket_count=None):
import tensorflow.compat.v1 as tf
if bucket_count is None:
bucket_count = summary_v2.DEFAULT_BUCKET_COUNT
with tf.name_scope('buckets', values=[data, bucket_count]), \
tf.control_dependencies([tf.assert_scalar(bucket_count),
tf.assert_type(bucket_count, tf.int32)]):
data = tf.reshape(data, shape=[-1])
data = tf.cast(data, tf.float64)
is_empty = tf.equal(tf.size(input=data), 0)
def when_empty():
return tf.constant([], shape=(0, 3), dtype=tf.float64)
def when_nonempty():
min_ = tf.reduce_min(input_tensor=data)
max_ = tf.reduce_max(input_tensor=data)
range_ = max_ - min_
is_singular = tf.equal(range_, 0)
def when_nonsingular():
bucket_width = range_ / tf.cast(bucket_count, tf.float64)
offsets = data - min_
bucket_indices = tf.cast(tf.floor(offsets / bucket_width),
dtype=tf.int32)
clamped_indices = tf.minimum(bucket_indices, bucket_count - 1)
one_hots = tf.one_hot(clamped_indices, depth=bucket_count)
bucket_counts = tf.cast(tf.reduce_sum(input_tensor=one_hots, axis=0),
dtype=tf.float64)
edges = tf.linspace(min_, max_, bucket_count + 1)
left_edges = edges[:-1]
right_edges = edges[1:]
return tf.transpose(a=tf.stack(
[left_edges, right_edges, bucket_counts]))
def when_singular():
center = min_
bucket_starts = tf.stack([center - 0.5])
bucket_ends = tf.stack([center + 0.5])
bucket_counts = tf.stack([tf.cast(tf.size(input=data), tf.float64)])
return tf.transpose(
a=tf.stack([bucket_starts, bucket_ends, bucket_counts]))
return tf.cond(is_singular, when_singular, when_nonsingular)
return tf.cond(is_empty, when_empty, when_nonempty)
|
Create a TensorFlow op to group data into histogram buckets.
Arguments:
data: A `Tensor` of any shape. Must be castable to `float64`.
bucket_count: Optional positive `int` or scalar `int32` `Tensor`.
Returns:
A `Tensor` of shape `[k, 3]` and type `float64`. The `i`th row is
a triple `[left_edge, right_edge, count]` for a single bucket.
The value of `k` is either `bucket_count` or `1` or `0`.
|
juraj-google-style
|
def get_header(vcf_file_path):
logger.info("Parsing header of file {0}".format(vcf_file_path))
head = HeaderParser()
handle = get_vcf_handle(infile=vcf_file_path)
for line in handle:
line = line.rstrip()
if line.startswith('
if line.startswith('
head.parse_meta_data(line)
else:
head.parse_header_line(line)
else:
break
handle.close()
return head
|
Parse the header and return a header object
Args:
vcf_file_path(str): Path to vcf
Returns:
head: A HeaderParser object
|
juraj-google-style
|
def set_tensor_shapes(tensors, shapes):
if shapes:
tensor_names_to_tensor = {get_tensor_name(tensor): tensor for tensor in tensors}
for name, shape in shapes.items():
if name not in tensor_names_to_tensor:
raise ValueError("Invalid tensor '{}' found in tensor shapes map.".format(name))
if shape is not None:
tensor = tensor_names_to_tensor[name]
try:
tensor.set_shape(shape)
except ValueError as error:
message = "The shape of tensor '{0}' cannot be changed from {1} to {2}. {3}".format(name, tensor.shape, shape, str(error))
raise ValueError(message)
|
Sets Tensor shape for each tensor if the shape is defined.
Args:
tensors: TensorFlow tensor.Tensor.
shapes: Dict of strings representing input tensor names to list of
integers representing input shapes (e.g., {"foo": : [1, 16, 16, 3]}).
Raises:
ValueError:
`shapes` contains an invalid tensor.
`shapes` contains an invalid shape for a valid tensor.
|
github-repos
|
def iter_variants(self):
for variant in self.repository.iter_variants(self.resource):
(yield Variant(variant, context=self.context, parent=self))
|
Iterate over the variants within this package, in index order.
Returns:
`Variant` iterator.
|
codesearchnet
|
def _on_notification_received(self, success, result, failure_reason):
if not success:
self._logger.info("Notification received with failure failure_reason=%s", failure_reason)
notification_id = (result['connection_handle'], result['attribute_handle'])
callback = None
with self.notification_callbacks_lock:
if notification_id in self.notification_callbacks:
callback, once = self.notification_callbacks[notification_id]
if once:
del self.notification_callbacks[notification_id]
if callback is not None:
callback(result['value'])
|
Callback function called when a notification has been received.
It is executed in the baBLE working thread: should not be blocking.
Args:
success (bool): A bool indicating that the operation is successful or not
result (dict): The notification information
- value (bytes): Data notified
failure_reason (any): An object indicating the reason why the operation is not successful (else None)
|
juraj-google-style
|
def ParseRecord(self, parser_mediator, key, structure):
if (key != 'log_entry'):
raise errors.ParseError('Unable to parse record, unknown structure: {0:s}'.format(key))
event_data = BashHistoryEventData()
event_data.command = structure.command
date_time = dfdatetime_posix_time.PosixTime(timestamp=structure.timestamp)
event = time_events.DateTimeValuesEvent(date_time, definitions.TIME_DESCRIPTION_MODIFICATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
|
Parses a record and produces a Bash history event.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
key (str): name of the parsed structure.
structure (pyparsing.ParseResults): elements parsed from the file.
Raises:
ParseError: when the structure type is unknown.
|
codesearchnet
|
def complete(self, default_output=None):
if not self.async:
raise UnexpectedPipelineError(
'May only call complete() method for asynchronous pipelines.')
self._context.fill_slot(
self._pipeline_key, self.outputs.default, default_output)
|
Marks this asynchronous Pipeline as complete.
Args:
default_output: What value the 'default' output slot should be assigned.
Raises:
UnexpectedPipelineError if the slot no longer exists or this method was
called for a pipeline that is not async.
|
juraj-google-style
|
def delete(self, filething=None):
self.tags.clear()
self.save(filething, padding=lambda x: 0)
|
delete(filething=None)
Args:
filething (filething)
Raises:
mutagen.MutagenError
|
juraj-google-style
|
def handleresult(self, r):
if r.status_code >= 400 and r.status_code < 500:
msg = r.json()
raise AuthenticationError(str(msg["code"]) + ": " + msg["msg"] +
" (" + msg["ref"] + ")")
elif r.status_code > 300:
err = None
try:
msg = r.json()
err = ServerError(str(msg["code"]) + ": " + msg["msg"] + " (" +
msg["ref"] + ")")
except:
raise ServerError(
"Server returned error, but did not give a valid error message")
raise err
return r
|
Handles HTTP error codes for the given request
Raises:
AuthenticationError on the appropriate 4** errors
ServerError if the response is not an ok (2**)
Arguments:
r -- The request result
|
juraj-google-style
|
def _ExtractRequestSummaryFields(self, request, error=None):
headers = request.headers
summary_fields = {'server': request.get_full_url(), 'contentRange': headers['Content-range'], 'contentLength': headers['Content-length']}
if error:
summary_fields['isError'] = True
summary_fields['errorMessage'] = error.reason
else:
summary_fields['isError'] = False
return summary_fields
|
Extract fields used in the summary logs.
Args:
request: a urllib2.Request instance configured to make the request.
[optional]
error: a urllib2.HttpError instance used to retrieve error details.
Returns:
A dict containing the fields to be output in the summary logs.
|
codesearchnet
|
def cap17(msg):
allbds = ['05', '06', '07', '08', '09', '0A', '20', '21', '40', '41', '42', '43', '44', '45', '48', '50', '51', '52', '53', '54', '55', '56', '5F', '60', 'NA', 'NA', 'E1', 'E2']
d = hex2bin(data(msg))
idx = [i for (i, v) in enumerate(d[:28]) if (v == '1')]
capacity = [('BDS' + allbds[i]) for i in idx if (allbds[i] is not 'NA')]
return capacity
|
Extract capacities from BDS 1,7 message
Args:
msg (String): 28 bytes hexadecimal message string
Returns:
list: list of suport BDS codes
|
codesearchnet
|
def cancel(self, **kwargs):
path = '%s/%s/cancel' % (self.manager.path, self.get_id())
self.manager.gitlab.http_post(path)
|
Cancel the job.
Args:
**kwargs: Extra options to send to the server (e.g. sudo)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabJobCancelError: If the job could not be canceled
|
juraj-google-style
|
def put(cls, obj):
return PyarrowOnRayFramePartition(ray.put(pyarrow.Table.from_pandas(obj)))
|
Put an object in the Plasma store and wrap it in this object.
Args:
obj: The object to be put.
Returns:
A `RayRemotePartition` object.
|
codesearchnet
|
def set_bias(self, bias):
self.x_offset += (bias - self._bias)
self._bias = bias
self._build_cdict()
|
Adjusts the image bias.
Bias determines where the color changes start. At low bias, low
intensities (i.e., low pixel values) will have non-zero color
differences, while at high bias only high pixel values will have
non-zero differences
Args:
bias: float
A number between 0 and 1. Note that upon initialization the
colormap has a default bias of 0.5.
Returns: void
|
juraj-google-style
|
def set_key(self, structure_prefix, key_line):
self._empty = False
key_value = self._remove_structure_prefix(structure_prefix, key_line)
if '=' in key_value:
key, value = key_value.split('=', 1)
self.current_key = key
if key in self.known_keys:
self.known_keys[key].append(value)
else:
self.unknown_keys[key].append(key_value)
|
Sets the current key for the instrumentation block.
For unknown keys, the key is added to the value list in order to
better contextualize the value in the output.
Args:
structure_prefix: string, the structure prefix that was matched
and that needs to be removed.
key_line: string, the raw instrumentation output line that contains
the key-value pair.
|
github-repos
|
def _splitGenoSlidingWindow(self,size=5e4,step=None,minSnps=1.,maxSnps=SP.inf):
if step is None: step = 0.5*size
chroms = SP.unique(self.chrom)
wnd_pos = []
idx_wnd_start = []
nSnps = []
wnd_i = 0
nSnps = []
for chrom_i in chroms:
start = 0
Ichrom = self.chrom==chrom_i
idx_chrom_start = SP.where(Ichrom)[0][0]
pos_chr = self.pos[Ichrom]
pos_chr_max = pos_chr.max()
while 1:
if start>pos_chr_max: break
end = start+size
Ir = (self.pos>=start)*(self.pos<end)
_nSnps = Ir.sum()
if _nSnps>minSnps and _nSnps<maxSnps:
wnd_pos.append([chrom_i,start,start+size])
nSnps.append(_nSnps)
idx_wnd_start.append(idx_chrom_start+SP.where(Ir)[0][0])
wnd_i+=1
start += step
self._wnd_pos = SP.array(wnd_pos)
self._idx_wnd_start = SP.array(idx_wnd_start)
self._nSnps = SP.array(nSnps)
|
split into windows using a slide criterion
Args:
size: window size
step: moving step (default: 0.5*size)
minSnps: only windows with nSnps>=minSnps are considered
maxSnps: only windows with nSnps>=maxSnps are considered
|
juraj-google-style
|
def global_horizontal_radiation(self, value=9999.0):
if (value is not None):
try:
value = float(value)
except ValueError:
raise ValueError('value {} need to be of type float for field `global_horizontal_radiation`'.format(value))
if (value < 0.0):
raise ValueError('value need to be greater or equal 0.0 for field `global_horizontal_radiation`')
self._global_horizontal_radiation = value
|
Corresponds to IDD Field `global_horizontal_radiation`
Args:
value (float): value for IDD Field `global_horizontal_radiation`
Unit: Wh/m2
value >= 0.0
Missing value: 9999.0
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value
|
codesearchnet
|
def JoinPath(stem='', *parts):
parts = [SmartUnicode(path) for path in parts]
result = (stem + NormalizePath(u'/'.join(parts))).replace('
result = result.rstrip('/')
return (result or '/')
|
A sane version of os.path.join.
The intention here is to append the stem to the path. The standard module
removes the path if the stem begins with a /.
Args:
stem: The stem to join to.
*parts: parts of the path to join. The first arg is always the root and
directory traversal is not allowed.
Returns:
a normalized path.
|
codesearchnet
|
def conv2d_transpose(x, kernel, output_shape, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1)):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ' + str(data_format))
if data_format == 'channels_first' and dilation_rate != (1, 1):
force_transpose = True
else:
force_transpose = False
x, tf_data_format = _preprocess_conv2d_input(x, data_format, force_transpose)
if data_format == 'channels_first' and tf_data_format == 'NHWC':
output_shape = (output_shape[0], output_shape[2], output_shape[3], output_shape[1])
if output_shape[0] is None:
output_shape = (shape(x)[0],) + tuple(output_shape[1:])
if isinstance(output_shape, (tuple, list)):
output_shape = array_ops_stack.stack(list(output_shape))
padding = _preprocess_padding(padding)
if tf_data_format == 'NHWC':
strides = (1,) + strides + (1,)
else:
strides = (1, 1) + strides
if dilation_rate == (1, 1):
x = nn.conv2d_transpose(x, kernel, output_shape, strides, padding=padding, data_format=tf_data_format)
else:
assert dilation_rate[0] == dilation_rate[1]
x = nn.atrous_conv2d_transpose(x, kernel, output_shape, rate=dilation_rate[0], padding=padding)
if data_format == 'channels_first' and tf_data_format == 'NHWC':
x = array_ops.transpose(x, (0, 3, 1, 2))
return x
|
2D deconvolution (i.e.
transposed convolution).
Args:
x: Tensor or variable.
kernel: kernel tensor.
output_shape: 1D int tensor for the output shape.
strides: strides tuple.
padding: string, `"same"` or `"valid"`.
data_format: string, `"channels_last"` or `"channels_first"`.
dilation_rate: Tuple of 2 integers.
Returns:
A tensor, result of transposed 2D convolution.
Raises:
ValueError: if `data_format` is neither `channels_last` or
`channels_first`.
|
github-repos
|
def map_creative_and_association_feeds(self, creative_feed, creative_association_feed):
for creative in creative_feed:
creative['associations'] = [association for association in creative_association_feed if self._assignment_matches(creative, association)]
|
Maps creative association feed to the corresponding creative.
Creative association is a child object to the creative, and there is a 1
creative to many creative association relationship. In Bulkdozer they are
represented by two separate tab in the feed, and this method maps the
creatives to their respective creative association based on the creative ID.
Args:
creative_feed: Creative feed.
creative_association_feed: Creative association feed.
|
github-repos
|
def get_read_write_resource_inputs(op):
reads = object_identity.ObjectIdentitySet()
writes = object_identity.ObjectIdentitySet()
if op.type in RESOURCE_READ_OPS:
reads.update((t for t in op.inputs if t.dtype == dtypes.resource))
return (reads, writes)
try:
read_only_input_indices = op.get_attr(READ_ONLY_RESOURCE_INPUTS_ATTR)
except ValueError:
writes.update((t for t in op.inputs if t.dtype == dtypes.resource))
return (reads, writes)
read_only_index = 0
for i, t in enumerate(op.inputs):
if op.inputs[i].dtype != dtypes.resource:
continue
if read_only_index < len(read_only_input_indices) and i == read_only_input_indices[read_only_index]:
reads.add(op.inputs[i])
read_only_index += 1
else:
writes.add(op.inputs[i])
return (reads, writes)
|
Returns a tuple of resource reads, writes in op.inputs.
Args:
op: Operation
Returns:
A 2-tuple of ObjectIdentitySets, the first entry containing read-only
resource handles and the second containing read-write resource handles in
`op.inputs`.
|
github-repos
|
def refer(self, text):
data = self.reply(text)
data['refer_key'] = self['key']
return data
|
Refers current message and replys a new message
Args:
text(str): message content
Returns:
RTMMessage
|
juraj-google-style
|
def get_optional_artifacts_per_task_id(upstream_artifacts):
optional_artifacts_per_task_id = {}
for artifact_definition in upstream_artifacts:
if (artifact_definition.get('optional', False) is True):
task_id = artifact_definition['taskId']
artifacts_paths = artifact_definition['paths']
add_enumerable_item_to_dict(dict_=optional_artifacts_per_task_id, key=task_id, item=artifacts_paths)
return optional_artifacts_per_task_id
|
Return every optional artifact defined in ``upstream_artifacts``, ordered by taskId.
Args:
upstream_artifacts: the list of upstream artifact definitions
Returns:
dict: list of paths to downloaded artifacts ordered by taskId
|
codesearchnet
|
def check_satpy(readers=None, writers=None, extras=None):
from satpy.readers import configs_for_reader
from satpy.writers import configs_for_writer
print('Readers')
print('=======')
for (reader, res) in sorted(check_yaml_configs(configs_for_reader(reader=readers), 'reader').items()):
print((reader + ': '), res)
print()
print('Writers')
print('=======')
for (writer, res) in sorted(check_yaml_configs(configs_for_writer(writer=writers), 'writer').items()):
print((writer + ': '), res)
print()
print('Extras')
print('======')
module_names = (extras if (extras is not None) else ('cartopy', 'geoviews'))
for (module_name, res) in sorted(_check_import(module_names).items()):
print((module_name + ': '), res)
print()
|
Check the satpy readers and writers for correct installation.
Args:
readers (list or None): Limit readers checked to those specified
writers (list or None): Limit writers checked to those specified
extras (list or None): Limit extras checked to those specified
Returns: bool
True if all specified features were successfully loaded.
|
codesearchnet
|
def cluster_spec(self):
task_list = []
self._gpu_allocation = []
self._cluster_allocation = {}
for host, num_tasks in sorted(self._task_configuration.items()):
for port_offset, gpu_offset in zip(range(num_tasks), range(0, self._gpus_per_node, self._gpus_per_task)):
host_addr = '%s:%d' % (host, self._port_base + port_offset)
task_list.append(host_addr)
gpu_id_list = []
for gpu_id in range(gpu_offset, gpu_offset + self._gpus_per_task):
gpu_id_list.append(str(gpu_id))
self._gpu_allocation.append(','.join(gpu_id_list))
cluster_rank_offset_start = 0
cluster_rank_offset_end = 0
for task_type, num_tasks in sorted(self._jobs.items()):
cluster_rank_offset_end = cluster_rank_offset_start + num_tasks
self._cluster_allocation[task_type] = task_list[cluster_rank_offset_start:cluster_rank_offset_end]
if cluster_rank_offset_start <= self._rank < cluster_rank_offset_end:
self.task_type = task_type
self.task_id = self._rank - cluster_rank_offset_start
cluster_rank_offset_start = cluster_rank_offset_end
if self._auto_set_gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = self._gpu_allocation[self._rank]
return ClusterSpec(self._cluster_allocation)
|
Returns a ClusterSpec object based on the latest instance group info.
This returns a ClusterSpec object for use based on information from the
specified initialization parameters and Slurm environment variables. The
cluster specification is resolved each time this function is called. The
resolver extract hostnames of nodes by scontrol and pack tasks in that
order until a node a has number of tasks that is equal to specification.
GPUs on nodes are allocated to tasks by specification through setting
CUDA_VISIBLE_DEVICES environment variable.
Returns:
A ClusterSpec containing host information retrieved from Slurm's
environment variables.
|
github-repos
|
def create_keyvault(access_token, subscription_id, rgname, vault_name, location, template_deployment=True, tenant_id=None, object_id=None):
endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/resourcegroups/', rgname, '/providers/Microsoft.KeyVault/vaults/', vault_name, '?api-version=', KEYVAULT_API])
if (tenant_id is None):
ret = list_tenants(access_token)
tenant_id = ret['value'][0]['tenantId']
access_policies = [{'tenantId': tenant_id, 'objectId': object_id, 'permissions': {'keys': ['get', 'create', 'delete', 'list', 'update', 'import', 'backup', 'restore', 'recover'], 'secrets': ['get', 'list', 'set', 'delete', 'backup', 'restore', 'recover'], 'certificates': ['get', 'list', 'delete', 'create', 'import', 'update', 'managecontacts', 'getissuers', 'listissuers', 'setissuers', 'deleteissuers', 'manageissuers', 'recover'], 'storage': ['get', 'list', 'delete', 'set', 'update', 'regeneratekey', 'setsas', 'listsas', 'getsas', 'deletesas']}}]
vault_properties = {'tenantId': tenant_id, 'sku': {'family': 'A', 'name': 'standard'}, 'enabledForTemplateDeployment': template_deployment, 'accessPolicies': access_policies}
vault_body = {'location': location, 'properties': vault_properties}
body = json.dumps(vault_body)
return do_put(endpoint, body, access_token)
|
Create a new key vault in the named resource group.
Args:
access_token (str): A valid Azure authentication token.
subscription_id (str): Azure subscription id.
rgname (str): Azure resource group name.
vault_name (str): Name of the new key vault.
location (str): Azure data center location. E.g. westus2.
template_deployment (boolean): Whether to allow deployment from template.
tenant_id (str): Optionally specify a tenant ID (otherwise picks first response) from
ist_tenants().
object_id (str): Optionally specify an object ID representing user or principal for the
access policy.
Returns:
HTTP response. JSON body of key vault properties.
|
codesearchnet
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.