code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def __init__(self, model_file, input_arrays=None, input_shapes=None, output_arrays=None, custom_objects=None): super(TFLiteKerasModelConverter, self).__init__(experimental_debug_info_func=None) if context.executing_eagerly(): if input_arrays or output_arrays: raise ValueError('`input_arrays` and `output_arrays` are unsupported with Eager mode. If your model requires any of these parameters, please use disable_eager_execution().') keras_model = keras_deps.get_load_model_function()(model_file, custom_objects) function = _trace_model_call(keras_model) concrete_func = function.get_concrete_function() frozen_func = _convert_to_constants.convert_variables_to_constants_v2(concrete_func, lower_control_flow=False) _set_tensor_shapes(frozen_func.inputs, input_shapes) self._keras_model = keras_model self._graph_def = frozen_func.graph.as_graph_def() self._input_tensors = frozen_func.inputs self._output_tensors = frozen_func.outputs self._debug_info_func = _build_debug_info_func(frozen_func.graph) return keras_deps.get_clear_session_function()() keras_model = keras_deps.get_load_model_function()(model_file, custom_objects) sess = keras_deps.get_get_session_function()() if input_arrays: input_tensors = _get_tensors_from_tensor_names(sess.graph, input_arrays) else: input_tensors = keras_model.inputs if output_arrays: output_tensors = _get_tensors_from_tensor_names(sess.graph, output_arrays) else: output_tensors = keras_model.outputs _set_tensor_shapes(input_tensors, input_shapes) graph_def = _freeze_graph(sess, input_tensors, output_tensors) self._keras_model = keras_model self._graph_def = graph_def self._input_tensors = input_tensors self._output_tensors = output_tensors self._debug_info_func = _build_debug_info_func(sess.graph)
Constructor for TFLiteConverter. Args: model_file: Full filepath of HDF5 file containing the tf.keras model. input_arrays: List of input tensors to freeze graph with. Uses input arrays from SignatureDef when none are provided. (default None) input_shapes: Dict of strings representing input tensor names to list of integers representing input shapes (e.g., {"foo" : [1, 16, 16, 3]}). Automatically determined when input shapes is None (e.g., {"foo" : None}). (default None) output_arrays: List of output tensors to freeze graph with. Uses output arrays from SignatureDef when none are provided. (default None) custom_objects: Dict mapping names (strings) to custom classes or functions to be considered during model deserialization. (default None) Raises: ValueError: Invalid arguments.
github-repos
def set_storage(self, storage): if isinstance(storage, BaseStorage): self.storage = storage elif isinstance(storage, dict): if 'backend' not in storage and 'root_dir' in storage: storage['backend'] = 'FileSystem' try: backend_cls = getattr(storage_package, storage['backend']) except AttributeError: try: backend_cls = import_module(storage['backend']) except ImportError: self.logger.error('cannot find backend module %s', storage['backend']) sys.exit() kwargs = storage.copy() del kwargs['backend'] self.storage = backend_cls(**kwargs) else: raise TypeError('"storage" must be a storage object or dict')
Set storage backend for downloader For full list of storage backend supported, please see :mod:`storage`. Args: storage (dict or BaseStorage): storage backend configuration or instance
juraj-google-style
def _projected_entity_to_message(ent, message_type): msg = message_type() analyzed = _analyze_indexed_fields(ent._projection) for name, sublist in analyzed.iteritems(): prop = ent._properties[name] val = prop._get_value(ent) assert isinstance(prop, model.StructuredProperty) == bool(sublist) if sublist: field = message_type.field_by_name(name) assert isinstance(field, messages.MessageField) assert prop._repeated == field.repeated if prop._repeated: assert isinstance(val, list) val = [_projected_entity_to_message(v, field.type) for v in val] else: assert isinstance(val, prop._modelclass) val = _projected_entity_to_message(val, field.type) setattr(msg, name, val) return msg
Recursive helper for _from_base_type() to convert an entity to a message. Args: ent: A Model instance. message_type: A Message subclass. Returns: An instance of message_type.
juraj-google-style
def call(self, hidden_states: tf.Tensor, attention_mask: Optional[tf.Tensor]=None, image_hidden_states: Optional[tf.Tensor]=None, image_attention_mask: Optional[tf.Tensor]=None, cross_attention_gate: Optional[tf.Tensor]=None, output_attentions: Optional[bool]=False, use_cache: Optional[bool]=False, past_key_value: Optional[Tuple[tf.Tensor]]=None) -> Tuple[tf.Tensor, Optional[Tuple[tf.Tensor, tf.Tensor]]]: if image_hidden_states is None: raise ValueError('`image_hidden_states` is required for Idefics cross attention module which are visual features to be conditioned on.') if cross_attention_gate is None: raise ValueError('`cross_attention_gate` is required for Idefics cross attention module to zero-out the cross-attention hidden_states attending to no images.') if past_key_value is not None: raise NotImplementedError('Past key value states are not implemented for Idefics cross attention module.') residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states, self_attn_weights, present_key_value = self.cross_attn(hidden_states=hidden_states, key_value_states=image_hidden_states, attention_mask=image_attention_mask, output_attentions=output_attentions) hidden_states = tf.nn.dropout(hidden_states, rate=self.config) mask = tf.cast(cross_attention_gate == 0, dtype=hidden_states.dtype) mask = tf.expand_dims(mask, -1) hidden_states = tf.where(tf.broadcast_to(mask, tf.shape(hidden_states)) == 1, tf.zeros_like(hidden_states), hidden_states) hidden_states = residual + self.act_cross_attn(self.alpha_cross_attn) * hidden_states residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = tf.nn.dropout(hidden_states, rate=self.config) hidden_states = residual + self.act_dense(self.alpha_dense) * hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs
Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(tf.Tensor)`, *optional*): cached past key and value projection states no_images (`bool`, *optional*, defaults to `False`): If `True` the vision part is ignored
github-repos
def assertNotAllClose(self, a, b, rtol=1e-06, atol=1e-06, msg=None): try: self.assertAllClose(a, b, rtol=rtol, atol=atol, msg=msg) except AssertionError: return msg = msg or '' raise AssertionError('The two values are close at all elements. %s' % msg)
Assert that two numpy arrays, or Tensors, do not have near values. Args: a: The expected numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor), or any arbitrarily nested of structure of these. b: The actual numpy `ndarray`, or anything that can be converted into a numpy `ndarray` (including Tensor), or any arbitrarily nested of structure of these. rtol: relative tolerance. atol: absolute tolerance. msg: Optional message to report on failure. Raises: AssertionError: If `a` and `b` are unexpectedly close at all elements.
github-repos
def iter(self, keyed=False, extended=False): if self.closed: message = 'Stream is closed. Please call "stream.open()" first.' raise exceptions.TabulatorException(message) iterator = chain(self.__sample_extended_rows, self.__parser.extended_rows) iterator = self.__apply_processors(iterator) for (row_number, headers, row) in iterator: if (row_number > self.__row_number): self.__row_number = row_number if extended: (yield (row_number, headers, row)) elif keyed: (yield dict(zip(headers, row))) else: (yield row)
Iterate over the rows. Each row is returned in a format that depends on the arguments `keyed` and `extended`. By default, each row is returned as list of their values. Args: keyed (bool, optional): When True, each returned row will be a `dict` mapping the header name to its value in the current row. For example, `[{'name': 'J Smith', 'value': '10'}]`. Ignored if ``extended`` is True. Defaults to False. extended (bool, optional): When True, returns each row as a tuple with row number (starts at 1), list of headers, and list of row values. For example, `(1, ['name', 'value'], ['J Smith', '10'])`. Defaults to False. Returns: Iterator[Union[List[Any], Dict[str, Any], Tuple[int, List[str], List[Any]]]]: The row itself. The format depends on the values of `keyed` and `extended` arguments. Raises: exceptions.TabulatorException: If the stream is closed.
codesearchnet
def has_error(self): return next((True for cr in self.component_results if cr.has_error()), False)
Returns whether there was a business logic error when fetching data for any components for this property. Returns: boolean
codesearchnet
def match(self, patterns, limits=None): if limits is None: limits = [None] * len(patterns) else: err_msg = 'Patterns and limits should be equal in length' assert len(patterns) == len(limits), err_msg def _match(pattern, limit): if pattern.endswith('/') or pattern.endswith('\\'): pattern += '*' prefix_or_dir = re.match('^[^[*?]*', pattern).group(0) file_metadatas = [] if prefix_or_dir == pattern: if self.exists(pattern): file_metadatas = [self.metadata(pattern)] else: if self.has_dirs(): prefix_dirname = self._url_dirname(prefix_or_dir) if not prefix_dirname == prefix_or_dir: logger.debug('Changed prefix_or_dir %r -> %r', prefix_or_dir, prefix_dirname) prefix_or_dir = prefix_dirname logger.debug('Listing files in %r', prefix_or_dir) file_metadatas = self._list(prefix_or_dir) metadata_list = [] for file_metadata in self.match_files(file_metadatas, pattern): if limit is not None and len(metadata_list) >= limit: break metadata_list.append(file_metadata) return MatchResult(pattern, metadata_list) exceptions = {} result = [] for pattern, limit in zip(patterns, limits): try: result.append(_match(pattern, limit)) except Exception as e: exceptions[pattern] = e if exceptions: raise BeamIOError('Match operation failed', exceptions) return result
Find all matching paths to the patterns provided. See Also: :meth:`translate_pattern` Patterns ending with '/' or '\' will be appended with '*'. Args: patterns: list of string for the file path pattern to match against limits: list of maximum number of responses that need to be fetched Returns: list of ``MatchResult`` objects. Raises: ``BeamIOError``: if any of the pattern match operations fail
github-repos
def AddDateTimeRange(self, time_value, start_time_string=None, end_time_string=None): if (not isinstance(time_value, py2to3.STRING_TYPES)): raise ValueError('Filter type must be a string.') if ((start_time_string is None) and (end_time_string is None)): raise ValueError('Filter must have either a start or an end date time value.') time_value_lower = time_value.lower() if (time_value_lower not in self._SUPPORTED_TIME_VALUES): raise ValueError('Unsupported time value: {0:s}.'.format(time_value)) start_date_time = None if start_time_string: start_date_time = time_elements.TimeElementsInMicroseconds() start_date_time.CopyFromDateTimeString(start_time_string) end_date_time = None if end_time_string: end_date_time = time_elements.TimeElementsInMicroseconds() end_date_time.CopyFromDateTimeString(end_time_string) if ((None not in (start_date_time, end_date_time)) and (start_date_time > end_date_time)): raise ValueError('Invalid date time value start must be earlier than end.') self._date_time_ranges.append(self._DATE_TIME_RANGE_TUPLE(time_value_lower, start_date_time, end_date_time))
Adds a date time filter range. The time strings are formatted as: YYYY-MM-DD hh:mm:ss.######[+-]##:## Where # are numeric digits ranging from 0 to 9 and the seconds fraction can be either 3 or 6 digits. The time of day, seconds fraction and timezone offset are optional. The default timezone is UTC. Args: time_value (str): time value, such as, atime, ctime, crtime, dtime, bkup and mtime. start_time_string (str): start date and time value string. end_time_string (str): end date and time value string. Raises: ValueError: If the filter is badly formed.
codesearchnet
def Unregister(self, name): precondition.AssertType(name, Text) try: del self._constructors[name] except KeyError: raise ValueError("Constructor with name '%s' is not registered" % name)
Unregisters a constructor. Args: name: A name of the constructor to unregister. Raises: ValueError: If constructor with specified name has never been registered.
juraj-google-style
def _construct_linebreak_token(self, d: Dict) -> List[Dict]: result = [] num_break = int(d["length"][0]) if d["length"] else 1 if num_break: s = '' for i in range(num_break): s += '\n' this_token = {attrs.LOWER: s} result.append(this_token) s += ' ' this_token = {attrs.LOWER: s} result.append(this_token) result = self._add_common_constrain(result, d) return result
Construct a shape token Args: d: Dict Returns: List[Dict]
juraj-google-style
def frombase(path1, path2): if (not isparent(path1, path2)): raise ValueError('path1 must be a prefix of path2') return path2[len(path1):]
Get the final path of ``path2`` that isn't in ``path1``. Arguments: path1 (str): A PyFilesytem path. path2 (str): A PyFilesytem path. Returns: str: the final part of ``path2``. Example: >>> frombase('foo/bar/', 'foo/bar/baz/egg') 'baz/egg'
codesearchnet
def singleOrPair(obj): if len(list(obj.__class__.__mro__)) <= 2: return 'Neither' else: if ancestorJr(obj) is Pair: return 'Pair' elif ancestor(obj) is Single: return 'Single' else: return 'Neither'
Chech an object is single or pair or neither. Of course,, all pairs are single, so what the function is really detecting is whether an object is only single or at the same time a pair. Args: obj (object): Literally anything. Returns: str: 'Single', or 'Pair', or 'Neither'
juraj-google-style
def coarse_grain(G, ncg): if (ncg <= 1): return G G = numpy.asarray(G) (nbin, remainder) = divmod(G.shape[(- 1)], ncg) if (remainder != 0): nbin += 1 return numpy.transpose([(numpy.sum(G[(..., i:(i + ncg))], axis=(- 1)) / G[(..., i:(i + ncg))].shape[(- 1)]) for i in numpy.arange(0, (ncg * nbin), ncg)])
Coarse-grain last index of array ``G``. Bin the last index of array ``G`` in bins of width ``ncg``, and replace each bin by its average. Return the binned results. Args: G: Array to be coarse-grained. ncg: Bin width for coarse-graining.
codesearchnet
def match(self, request): if (self._times <= 0): raise PookExpiredMock('Mock expired') for test in self.filters: if (not test(request, self)): return (False, []) for mapper in self.mappers: request = mapper(request, self) if (not request): raise ValueError('map function must return a request object') (matches, errors) = self.matchers.match(request) if (not matches): return (False, errors) self._calls.append(request) self._matches += 1 if (not self._persist): self._times -= 1 if self._error: raise self._error for callback in self.callbacks: callback(request, self) return (True, [])
Matches an outgoing HTTP request against the current mock matchers. This method acts like a delegator to `pook.MatcherEngine`. Arguments: request (pook.Request): request instance to match. Raises: Exception: if the mock has an exception defined. Returns: tuple(bool, list[Exception]): ``True`` if the mock matches the outgoing HTTP request, otherwise ``False``. Also returns an optional list of error exceptions.
codesearchnet
def get_content_field(self, name): fields = self._content.findall(name) if not fields: return None elif len(fields) == 1: return etree_to_dict(fields[0])[name] else: return [etree_to_dict(field)[name] for field in fields]
Get the contents of a specific subtag from Clusterpoint Storage's response's content tag. Args: name -- A name string of the content's subtag to be returned. Returns: A dict representing the contents of the specified field or a list of dicts if there are multiple fields with that tag name. Returns None if no field found.
juraj-google-style
def cs20(msg): chars = ' d = hex2bin(data(msg)) cs = '' cs += chars[bin2int(d[8:14])] cs += chars[bin2int(d[14:20])] cs += chars[bin2int(d[20:26])] cs += chars[bin2int(d[26:32])] cs += chars[bin2int(d[32:38])] cs += chars[bin2int(d[38:44])] cs += chars[bin2int(d[44:50])] cs += chars[bin2int(d[50:56])] return cs
Aircraft callsign Args: msg (String): 28 bytes hexadecimal message (BDS40) string Returns: string: callsign, max. 8 chars
juraj-google-style
def _DictToListOfStrings(self, data_dict): ret_list = [] for (key, value) in iter(data_dict.items()): if (key in ('body', 'datetime', 'type', 'room', 'rooms', 'id')): continue ret_list.append('{0:s} = {1!s}'.format(key, value)) return ret_list
Converts a dictionary into a list of strings. Args: data_dict (dict[str, object]): dictionary to convert. Returns: list[str]: list of strings.
codesearchnet
def average_datetimes(dt_list): if (sys.version_info < (3, 3)): import time def timestamp_func(dt): return time.mktime(dt.timetuple()) else: timestamp_func = datetime.timestamp total = [timestamp_func(dt) for dt in dt_list] return datetime.fromtimestamp((sum(total) / len(total)))
Average a series of datetime objects. .. note:: This function assumes all datetime objects are naive and in the same time zone (UTC). Args: dt_list (iterable): Datetime objects to average Returns: Average datetime as a datetime object
codesearchnet
def MapByteStream( self, byte_stream, byte_offset=0, context=None, **unused_kwargs): data_type_size = self._data_type_definition.GetByteSize() self._CheckByteStreamSize(byte_stream, byte_offset, data_type_size) try: struct_tuple = self._operation.ReadFrom(byte_stream[byte_offset:]) mapped_value = self.MapValue(*struct_tuple) except Exception as exception: error_string = ( 'Unable to read: {0:s} from byte stream at offset: {1:d} ' 'with error: {2!s}').format( self._data_type_definition.name, byte_offset, exception) raise errors.MappingError(error_string) if context: context.byte_size = data_type_size return mapped_value
Maps the data type on a byte stream. Args: byte_stream (bytes): byte stream. byte_offset (Optional[int]): offset into the byte stream where to start. context (Optional[DataTypeMapContext]): data type map context. Returns: object: mapped value. Raises: MappingError: if the data type definition cannot be mapped on the byte stream.
juraj-google-style
def constant_time_string_compare(a, b): try: return hmac.compare_digest(a, b) except AttributeError: if len(a) != len(b): return False result = 0 for x, y in zip(a, b): result |= ord(x) ^ ord(y) return result == 0
Helper for comparing string in constant time, independent of the python version being used. Args: a (str): A string to compare b (str): A string to compare
juraj-google-style
def show_history(self, status=None, nids=None, full_history=False, metadata=False): (nrows, ncols) = get_terminal_size() works_done = [] for task in self.iflat_tasks(status=status, nids=nids): work = task.work if (work not in works_done): works_done.append(work) if (work.history or full_history): cprint(make_banner(str(work), width=ncols, mark='='), **work.status.color_opts) print(work.history.to_string(metadata=metadata)) if (task.history or full_history): cprint(make_banner(str(task), width=ncols, mark='='), **task.status.color_opts) print(task.history.to_string(metadata=metadata)) if (self.history or full_history): cprint(make_banner(str(self), width=ncols, mark='='), **self.status.color_opts) print(self.history.to_string(metadata=metadata))
Print the history of the flow to stdout. Args: status: if not None, only the tasks with this status are select full_history: Print full info set, including nodes with an empty history. nids: optional list of node identifiers used to filter the tasks. metadata: print history metadata (experimental)
codesearchnet
def _extract_direct(self, *, stream): def normal_dct_rgb(): DEFAULT_CT_RGB = 1 ct = self.filter_decodeparms[0][1].get('/ColorTransform', DEFAULT_CT_RGB) return self.mode == 'RGB' and ct == DEFAULT_CT_RGB def normal_dct_cmyk(): DEFAULT_CT_CMYK = 0 ct = self.filter_decodeparms[0][1].get('/ColorTransform', DEFAULT_CT_CMYK) return self.mode == 'CMYK' and ct == DEFAULT_CT_CMYK if self.filters == ['/CCITTFaxDecode']: data = self.obj.read_raw_bytes() stream.write(self._generate_ccitt_header(data)) stream.write(data) return '.tif' elif self.filters == ['/DCTDecode'] and ( self.mode == 'L' or normal_dct_rgb() or normal_dct_cmyk() ): buffer = self.obj.get_raw_stream_buffer() stream.write(buffer) return '.jpg' raise UnsupportedImageTypeError()
Attempt to extract the image directly to a usable image file If there is no way to extract the image without decompressing or transcoding then raise an exception. The type and format of image generated will vary. Args: stream: Writable stream to write data to
juraj-google-style
def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int: if not hasattr(self, 'warnings_issued'): self.warnings_issued = {} if self.main_input_name in input_dict: return input_dict[self.main_input_name].numel() elif 'estimate_tokens' not in self.warnings_issued: logger.warning('Could not estimate the number of tokens of the input, floating-point operations will not be computed') self.warnings_issued['estimate_tokens'] = True return 0
Helper function to estimate the total number of tokens from the model inputs. Args: inputs (`dict`): The model inputs. Returns: `int`: The total number of tokens.
github-repos
def is_truthy(value, default=False): if value is None: return False if isinstance(value, bool): return value if isinstance(value, int): return value > 0 trues = ('1', 'true', 'y', 'yes', 'ok') falses = ('', '0', 'false', 'n', 'none', 'no') if value.lower().strip() in falses: return False elif value.lower().strip() in trues: return True else: if default: return default else: raise ValueError('Invalid argument given to truthy: {0}'.format(value))
Evaluate a value for truthiness >>> is_truthy('Yes') True >>> is_truthy('False') False >>> is_truthy(1) True Args: value (Any): Value to evaluate default (bool): Optional default value, if the input does not match the true or false values Returns: True if a truthy value is passed, else False
juraj-google-style
def Verify(self, mempool): if not super(ClaimTransaction, self).Verify(mempool): return False otherclaimTxs = [tx for tx in mempool if tx is ClaimTransaction and tx is not self] for other in otherclaimTxs: if len([list(filter(lambda x: x in self.Claims, otherClaims)) for otherClaims in other.Claims]): return False txResult = None for tx in self.GetTransactionResults(): if tx.AssetId == Blockchain.SystemCoin().Hash: txResult = tx break if txResult is None or txResult.Amount > Fixed8(0): return False try: return Blockchain.CalculateBonusIgnoreClaimed(self.Claims, False) == -txResult.Amount except Exception as e: logger.error('Could not calculate bonus: %s ' % e) return False
Verify the transaction. Args: mempool: Returns: bool: True if verified. False otherwise.
juraj-google-style
def __recv(self, size=4096): data = self.socket.recv(size) if (not data): raise NNTPError('Failed to read from socket') self.__buffer.write(data)
Reads data from the socket. Raises: NNTPError: When connection times out or read from socket fails.
codesearchnet
def categorize(values, categories, default=None): uniq_cats = list(unique_iterator(values)) cats = [] for c in values: if isinstance(categories, list): cat_ind = uniq_cats.index(c) if cat_ind < len(categories): cat = categories[cat_ind] else: cat = default else: cat = categories.get(c, default) cats.append(cat) return np.asarray(cats)
Maps discrete values to supplied categories. Replaces discrete values in input array with a fixed set of categories defined either as a list or dictionary. Args: values: Array of values to be categorized categories: List or dict of categories to map inputs to default: Default value to assign if value not in categories Returns: Array of categorized values
juraj-google-style
def content(self, request, id): gist = self.send(request, id).json() def convert(data): return base64.b64decode(data).decode('utf-8') content = {} for name, data in gist['files'].items(): content[name] = convert(data['content']) return content
Returns the content of the gist Arguments: request: an initial request object id: the gist identifier Returns: A dict containing the contents of each file in the gist
juraj-google-style
def from_structure(cls, structure, ff_elements=None, atom_style="charge"): s = structure.get_sorted_structure() box, symmop = lattice_2_lmpbox(s.lattice) coords = symmop.operate_multi(s.cart_coords) site_properties = s.site_properties if "velocities" in site_properties: velos = np.array(s.site_properties["velocities"]) rot = SymmOp.from_rotation_and_translation(symmop.rotation_matrix) rot_velos = rot.operate_multi(velos) site_properties.update({"velocities": rot_velos}) boxed_s = Structure(box.to_lattice(), s.species, coords, site_properties=site_properties, coords_are_cartesian=True) symbols = list(s.symbol_set) if ff_elements: symbols.extend(ff_elements) elements = sorted(Element(el) for el in set(symbols)) mass_info = [tuple([i.symbol] * 2) for i in elements] ff = ForceField(mass_info) topo = Topology(boxed_s) return cls.from_ff_and_topologies(box=box, ff=ff, topologies=[topo], atom_style=atom_style)
Simple constructor building LammpsData from a structure without force field parameters and topologies. Args: structure (Structure): Input structure. ff_elements ([str]): List of strings of elements that must be present due to force field settings but not necessarily in the structure. Default to None. atom_style (str): Choose between "atomic" (neutral) and "charge" (charged). Default to "charge".
juraj-google-style
def _apply_credentials(auto_refresh=True, credentials=None, headers=None): token = credentials.get_credentials().access_token if auto_refresh is True: if token is None: token = credentials.refresh( access_token=None, timeout=10) elif credentials.jwt_is_expired(): token = credentials.refresh(timeout=10) headers.update( {'Authorization': "Bearer {}".format(token)} )
Update Authorization header. Update request headers with latest `access_token`. Perform token `refresh` if token is ``None``. Args: auto_refresh (bool): Perform token refresh if access_token is ``None`` or expired. Defaults to ``True``. credentials (class): Read-only credentials. headers (class): Requests `CaseInsensitiveDict`.
juraj-google-style
def strace_data_access_event(self, operation, address, data, data_mask=None, access_width=4, address_range=0): cmd = enums.JLinkStraceCommand.TRACE_EVENT_SET event_info = structs.JLinkStraceEventInfo() event_info.Type = enums.JLinkStraceEvent.DATA_ACCESS event_info.Op = operation event_info.AccessSize = int(access_width) event_info.Addr = int(address) event_info.Data = int(data) event_info.DataMask = int((data_mask or 0)) event_info.AddrRangeSize = int(address_range) handle = self._dll.JLINK_STRACE_Control(cmd, ctypes.byref(event_info)) if (handle < 0): raise errors.JLinkException(handle) return handle
Sets an event to trigger trace logic when data access is made. Data access corresponds to either a read or write. Args: self (JLink): the ``JLink`` instance. operation (int): one of the operations in ``JLinkStraceOperation``. address (int): the address of the load/store data. data (int): the data to be compared the event data to. data_mask (int): optional bitmask specifying bits to ignore in comparison. acess_width (int): optional access width for the data. address_range (int): optional range of address to trigger event on. Returns: An integer specifying the trace event handle. This handle should be retained in order to clear the event at a later time. Raises: JLinkException: on error.
codesearchnet
def sg_any(tensor, opt): r return tf.reduce_any(tensor, axis=opt.axis, keep_dims=opt.keep_dims, name=opt.name)
r"""Computes the "logical or" of elements across axis of a tensor. See `tf.reduce_any()` in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: axis : A tuple/list of integers or an integer. The axis to reduce. keep_dims: If true, retains reduced dimensions with length 1. name: If provided, replace current tensor's name. Returns: A `Tensor`.
juraj-google-style
def _multi_worker_session(kwargs): strategy = None for _, v in kwargs.items(): if isinstance(v, distribute_lib.StrategyBase): if strategy is not None: logging.warning('The test uses multiple strategies. Skipping entering a session that is configured for the strategy.') return ops.NullContextmanager() strategy = v if context.executing_eagerly() or not isinstance(strategy, collective_all_reduce_strategy.CollectiveAllReduceStrategy): return ops.NullContextmanager() sess_config = copy.deepcopy(context.context().config) sess_config = strategy.update_config_proto(sess_config) target = strategy.cluster_resolver.master() return session.Session(config=sess_config, target=target).as_default()
Returns a context manager that enters a session that is configured for the MultiWorkerMirroredStrategy. Args: kwargs: a dict. Keyword arguments passed to the test. Returns: A context manager. If MultiWorkerMirroredStrategy is the one and only one strategy in kwargs and it's in graph mode, it's the session that is configured for that strategy. Otherwise, it's a no-op context manager.
github-repos
def _parse_mtu(self, config): match = re.search('mtu (\\d+)', config) return dict(mtu=int(match.group(1)))
Parses the config block and returns the configured IP MTU value The provided configuration block is scanned and the configured value for the IP MTU is returned as a dict object. The IP MTU value is expected to always be present in the provided config block Args: config (str): The interface configuration block to parse Return: dict: A dict object intended to be merged into the resource dict
codesearchnet
def print_schema_results(results, level=0): for error in results.errors: print_level(logger.error, _RED + "[X] %s", level, error)
Print JSON Schema validation errors to stdout. Args: results: An instance of ObjectValidationResults. level: The level at which to print the results.
juraj-google-style
def get_id_transcripts(self, hgnc_id, build='37'): transcripts = self.transcripts(build=build, hgnc_id=hgnc_id) identifier_transcripts = set() longest = None nr = [] xm = [] for tx in transcripts: enst_id = tx['transcript_id'] if not longest: longest = enst_id refseq_id = tx.get('refseq_id') if not refseq_id: continue if 'NM' in refseq_id: identifier_transcripts.add(enst_id) elif 'NR' in refseq_id: nr.append(enst_id) elif 'XM' in refseq_id: xm.append(enst_id) if identifier_transcripts: return identifier_transcripts if nr: return set([nr[0]]) if xm: return set([xm[0]]) return set([longest])
Return a set with identifier transcript(s) Choose all refseq transcripts with NM symbols, if none where found choose ONE with NR, if no NR choose ONE with XM. If there are no RefSeq transcripts identifiers choose the longest ensembl transcript. Args: hgnc_id(int) build(str) Returns: identifier_transcripts(set)
juraj-google-style
def _is_univariate_marginal(self, index_points): num_index_points = tf.compat.dimension_value(index_points.shape[(- (self.kernel.feature_ndims + 1))]) if (num_index_points is None): warnings.warn('Unable to detect statically whether the number of index_points is 1. As a result, defaulting to treating the marginal GP at `index_points` as a multivariate Gaussian. This makes some methods, like `cdf` unavailable.') return (num_index_points == 1)
True if the given index_points would yield a univariate marginal. Args: index_points: the set of index set locations at which to compute the marginal Gaussian distribution. If this set is of size 1, the marginal is univariate. Returns: is_univariate: Boolean indicating whether the marginal is univariate or multivariate. In the case of dynamic shape in the number of index points, defaults to "multivariate" since that's the best we can do.
codesearchnet
def get_interface(self): raise NotImplementedError('Base class should not be called directly!')
This function returns The interface used to configure the sniffer, e.g. 'wlan0'. Returns: The interface (string) used to configure the sniffer. Corresponds to the 'Interface' key of the sniffer configuration.
github-repos
def update_parser(self, parser): self._parser = parser ini_str = argparse_to_ini(parser) configp = configparser.ConfigParser(allow_no_value=True) configp.read_dict(self._config) configp.read_string(ini_str) self._config.update({s: dict(configp.items(s)) for s in configp.sections()})
Update config dictionary with declared arguments in an argparse.parser New variables will be created, and existing ones overridden. Args: parser (argparse.ArgumentParser): parser to read variables from
codesearchnet
def __init__(self, app, env, region, prop_path): self.app_name = app self.env = env self.region = region self.properties = get_properties(prop_path) generated = get_details(app=self.app_name) self.group = generated.data['project'] try: self.pipeline = self.properties['pipeline']['lambda'] except KeyError: raise RequiredKeyNotFound("Lambda key in pipeline.json is required.") self.runtime = self.pipeline['runtime'] self.description = self.pipeline['app_description'] self.handler = self.pipeline['handler'] self.vpc_enabled = self.pipeline['vpc_enabled'] self.settings = get_properties(prop_path, env=self.env, region=self.region) app = self.settings['app'] self.lambda_environment = app['lambda_environment'] self.memory = app['lambda_memory'] self.role = app.get('lambda_role') or generated.iam()['lambda_role'] self.timeout = app['lambda_timeout'] self.concurrency_limit = app.get('lambda_concurrency_limit') self.role_arn = get_role_arn(self.role, self.env, self.region) self.session = boto3.Session(profile_name=self.env, region_name=self.region) self.lambda_client = self.session.client('lambda')
Lambda function object. Args: app (str): Application name env (str): Environment/Account region (str): AWS Region prop_path (str): Path of environment property file
juraj-google-style
def _parse_deploy(self, deploy_values: dict, service_config: dict): mode = {} for d_value in deploy_values: if ('restart_policy' in d_value): restart_spec = docker.types.RestartPolicy(**deploy_values[d_value]) service_config['restart_policy'] = restart_spec if ('placement' in d_value): for (constraints_key, constraints_value) in deploy_values[d_value].items(): service_config[constraints_key] = constraints_value if ('mode' in d_value): mode[d_value] = deploy_values[d_value] if ('replicas' in d_value): mode[d_value] = deploy_values[d_value] if ('resources' in d_value): resource_spec = self._parse_resources(deploy_values, d_value) service_config['resources'] = resource_spec mode_spec = docker.types.ServiceMode(**mode) service_config['mode'] = mode_spec
Parse deploy key. Args: deploy_values (dict): deploy configuration values service_config (dict): Service configuration
codesearchnet
def drop(self, index=None, columns=None): if self._is_transposed: return self.transpose().drop(index=columns, columns=index).transpose() if (index is None): new_data = self.data new_index = self.index else: def delitem(df, internal_indices=[]): return df.drop(index=df.index[internal_indices]) numeric_indices = list(self.index.get_indexer_for(index)) new_data = self.data.apply_func_to_select_indices(1, delitem, numeric_indices, keep_remaining=True) new_index = self.index[(~ self.index.isin(index))] if (columns is None): new_columns = self.columns new_dtypes = self.dtypes else: def delitem(df, internal_indices=[]): return df.drop(columns=df.columns[internal_indices]) numeric_indices = list(self.columns.get_indexer_for(columns)) new_data = new_data.apply_func_to_select_indices(0, delitem, numeric_indices, keep_remaining=True) new_columns = self.columns[(~ self.columns.isin(columns))] new_dtypes = self.dtypes.drop(columns) return self.__constructor__(new_data, new_index, new_columns, new_dtypes)
Remove row data for target index and columns. Args: index: Target index to drop. columns: Target columns to drop. Returns: A new QueryCompiler.
codesearchnet
def zeros(shape, dtype=None, **kwargs): data = np.zeros(shape, dtype) return dc.array(data, **kwargs)
Create an array of given shape and type, filled with zeros. Args: shape (sequence of ints): 2D shape of the array. dtype (data-type, optional): Desired data-type for the array. kwargs (optional): Other arguments of the array (*coords, attrs, and name). Returns: array (decode.array): Decode array filled with zeros.
codesearchnet
def __init__(self, rate=None, burst_size=None, prec_level=None): super().__init__(MeterBandType.OFPMBT_DSCP_REMARK, rate, burst_size) self.prec_level = prec_level
Create a MeterBandDscpRemark with the optional parameters below. Args: rate (int): Rate for remarking packets. burst_size (int): Size of bursts. prec_level (int): Number of precendence level to substract.
juraj-google-style
def _create_config_proto(self) -> tpu_embedding_configuration_pb2.TPUEmbeddingConfiguration: config_proto = tpu_embedding_configuration_pb2.TPUEmbeddingConfiguration() learning_rate_index = {r: i for i, r in enumerate(self._dynamic_learning_rates)} for table in self._table_config: table._set_table_descriptor(config_proto.table_descriptor.add(), self._strategy.extended.num_hosts, learning_rate_index) table_to_id = {table: i for i, table in enumerate(self._table_config)} for feature, output_shape in zip(nest.flatten(self._feature_config), self._output_shapes): feature_descriptor = config_proto.feature_descriptor.add() if feature.name: feature_descriptor.name = feature.name feature_descriptor.table_id = table_to_id[feature.table] feature_descriptor.input_shape.extend(output_shape.as_list()) config_proto.mode = tpu_embedding_configuration_pb2.TPUEmbeddingConfiguration.TRAINING num_replica = self._strategy.num_replicas_in_sync num_cores_per_replica = self._num_cores_per_replica or 1 config_proto.num_hosts = self._strategy.extended.num_hosts config_proto.num_tensor_cores = num_replica * num_cores_per_replica config_proto.sharding_strategy = tpu_embedding_configuration_pb2.TPUEmbeddingConfiguration.DIV_DEFAULT config_proto.pipeline_execution_with_tensor_core = self._pipeline_execution_with_tensor_core if self._num_cores_per_replica: config_proto.spmd_sharding.enabled = True config_proto.spmd_sharding.num_cores_per_replica = self._num_cores_per_replica return config_proto
Creates the TPUEmbeddingConfiguration proto. This proto is used to initialize the TPU embedding engine. Returns: A TPUEmbeddingConfiguration proto.
github-repos
def load_dict_values(self, db_key: str, dict_keys: List[str], hierarchical: bool=False) -> List: result = [] if (not hierarchical): _values = self._db.hmget(db_key, *dict_keys) result = [ast.literal_eval(_value) for _value in _values] else: db_keys = self._db.keys(pattern=(db_key + '*')) for _db_key in db_keys: for name in _db_key.split(':')[1:]: if (name in dict_keys): _values = self._load_values(_db_key) result.append(_values) _values = self._db.hmget(_db_key, *dict_keys) for (i, value) in enumerate(_values): try: _values[i] = ast.literal_eval(value) except SyntaxError: pass except ValueError: pass result += [value for value in _values if (value is not None)] return result
Load values from a dictionary with the specified dict_keys. Args: db_key (str): Key where the dictionary is stored dict_keys (List[str]): Keys within the dictionary to load. hierarchical (bool): If True, expect the dictionary to have been stored hierarchically. If False, expect the dictionary to have been stored flat. Returns: object: The value stored at dict_key in the dictionary stored at key
codesearchnet
def _range_along_dimension(range_dim, shape): rank = len(shape) if (range_dim >= rank): raise ValueError('Cannot calculate range along non-existent index.') indices = tf.range(start=0, limit=shape[range_dim]) indices = tf.reshape(indices, shape=[(1 if (i != range_dim) else shape[range_dim]) for i in range(rank)]) return tf.tile(indices, [(shape[i] if (i != range_dim) else 1) for i in range(rank)])
Construct a Tensor whose values are the index along a dimension. Construct a Tensor that counts the distance along a single dimension. This is useful, for example, when constructing an identity matrix, >>> x = _range_along_dimension(0, [2, 2]).eval() >>> x array([[0, 0], [1, 1]], dtype=int32) >>> y = _range_along_dimension(1, [2, 2]).eval() >>> y array([[0, 1], [0, 1]], dtype=int32) >>> tf.cast(tf.equal(x, y), dtype=tf.int32).eval() array([[1, 0], [0, 1]], dtype=int32) Args: range_dim: int. Dimension to count indices on. shape: 1D Tensor of ints. Shape of Tensor to construct. Returns: A Tensor whose values are the same as the range along dimension range_dim. Raises: ValueError: If range_dim isn't a valid dimension.
codesearchnet
def write_to_hdf5(self, filename_out, *args, **kwargs): t0 = time.time() self.__update_header() if self.container.isheavy(): self.__write_to_hdf5_heavy(filename_out) else: self.__write_to_hdf5_light(filename_out) t1 = time.time() logger.info(('Conversion time: %2.2fsec' % (t1 - t0)))
Write data to HDF5 file. It check the file size then decides how to write the file. Args: filename_out (str): Name of output file
codesearchnet
def create_tree(profile, tree): resource = '/trees' payload = {'tree': tree} data = api.post_request(profile, resource, payload) return prepare(data)
Create a new tree. Args: profile A profile generated from ``simplygithub.authentication.profile``. Such profiles tell this module (i) the ``repo`` to connect to, and (ii) the ``token`` to connect with. tree A list of blob objects (each with a path, mode, type, and content or sha) to put in the tree. Returns: A dict with data about the tree.
codesearchnet
def EnableNetworkInterfaces( self, interfaces, logger, dhclient_script=None): if os.path.exists(self.network_path): self._DisableNetworkManager(interfaces, logger) helpers.CallDhclient(interfaces, logger)
Enable the list of network interfaces. Args: interfaces: list of string, the output device names to enable. logger: logger object, used to write to SysLog and serial port. dhclient_script: string, the path to a dhclient script used by dhclient.
juraj-google-style
def prefetch_users(persistent_course_grades): users = User.objects.filter(id__in=[grade.user_id for grade in persistent_course_grades]) return {user.id: user for user in users}
Prefetch Users from the list of user_ids present in the persistent_course_grades. Arguments: persistent_course_grades (list): A list of PersistentCourseGrade. Returns: (dict): A dictionary containing user_id to user mapping.
codesearchnet
def unique_array(arr): if not len(arr): return np.asarray(arr) elif pd: if isinstance(arr, np.ndarray) and arr.dtype.kind not in 'MO': return pd.unique(arr) values = [] for v in arr: if (isinstance(v, datetime_types) and not isinstance(v, cftime_types)): v = pd.Timestamp(v).to_datetime64() values.append(v) return pd.unique(values) else: arr = np.asarray(arr) _, uniq_inds = np.unique(arr, return_index=True) return arr[np.sort(uniq_inds)]
Returns an array of unique values in the input order. Args: arr (np.ndarray or list): The array to compute unique values on Returns: A new array of unique values
juraj-google-style
def _transform_binary_composition_to_expression(expression, node, context): if (expression.operator not in constants.SUPPORTED_OPERATORS): raise NotImplementedError(u'Filter operation "{}" is not supported by the SQL backend.'.format(expression.operator)) sql_operator = constants.SUPPORTED_OPERATORS[expression.operator] left = _expression_to_sql(expression.left, node, context) right = _expression_to_sql(expression.right, node, context) if (sql_operator.cardinality == constants.CARDINALITY_UNARY): (left, right) = _get_column_and_bindparam(left, right, sql_operator) clause = getattr(left, sql_operator.name)(right) return clause elif (sql_operator.cardinality == constants.CARDINALITY_BINARY): clause = getattr(sql_expressions, sql_operator.name)(left, right) return clause elif (sql_operator.cardinality == constants.CARDINALITY_LIST_VALUED): (left, right) = _get_column_and_bindparam(left, right, sql_operator) right.expanding = True clause = getattr(left, sql_operator.name)(right) return clause raise AssertionError(u'Unreachable, operator cardinality {} for compiler expression {} is unknown'.format(sql_operator.cardinality, expression))
Transform a BinaryComposition compiler expression into a SQLAlchemy expression. Recursively calls _expression_to_sql to convert its left and right sub-expressions. Args: expression: expression, BinaryComposition compiler expression. node: SqlNode, the SqlNode the expression applies to. context: CompilationContext, global compilation state and metadata. Returns: Expression, SQLAlchemy expression.
codesearchnet
def split_raster(rs, split_shp, field_name, temp_dir): UtilClass.rmmkdir(temp_dir) ds = ogr_Open(split_shp) lyr = ds.GetLayer(0) lyr.ResetReading() ft = lyr.GetNextFeature() while ft: cur_field_name = ft.GetFieldAsString(field_name) for r in rs: cur_file_name = r.split(os.sep)[-1] outraster = temp_dir + os.sep + \ cur_file_name.replace('.tif', '_%s.tif' % cur_field_name.replace(' ', '_')) subprocess.call(['gdalwarp', r, outraster, '-cutline', split_shp, '-crop_to_cutline', '-cwhere', "'%s'='%s'" % (field_name, cur_field_name), '-dstnodata', '-9999']) ft = lyr.GetNextFeature() ds = None
Split raster by given shapefile and field name. Args: rs: origin raster file. split_shp: boundary (ESRI Shapefile) used to spilt raster. field_name: field name identify the spilt value. temp_dir: directory to store the spilt rasters.
juraj-google-style
def _CreateRouteShapesFolder(self, schedule, parent, route, style_id=None, visible=True): shape_id_to_trips = {} for trip in route.trips: if trip.shape_id: shape_id_to_trips.setdefault(trip.shape_id, []).append(trip) if (not shape_id_to_trips): return None shape_id_to_trips_items = shape_id_to_trips.items() shape_id_to_trips_items.sort((lambda a, b: cmp(len(b[1]), len(a[1])))) folder = self._CreateFolder(parent, 'Shapes', visible) for (shape_id, trips) in shape_id_to_trips_items: trip_ids = [trip.trip_id for trip in trips] name = ('%s (trips: %d)' % (shape_id, len(trips))) description = ('Trips using this shape (%d in total): %s' % (len(trips), ', '.join(trip_ids))) placemark = self._CreatePlacemark(folder, name, style_id, visible, description) self._CreateLineStringForShape(placemark, schedule.GetShape(shape_id)) return folder
Create a KML Folder for the shapes of a route. The folder contains a placemark for each shape referenced by a trip in the route. If there are no such shapes, no folder is created and None is returned. Args: schedule: The transitfeed.Schedule instance. parent: The parent ElementTree.Element instance. route: The transitfeed.Route instance. style_id: The id of a style to use if not None. visible: Whether the placemark is initially visible or not. Returns: The Folder ElementTree.Element instance or None.
codesearchnet
def sendfrom(self, user_id, dest_address, amount, minconf=1): amount = Decimal(amount).quantize(self.quantum, rounding=ROUND_HALF_EVEN) txhash = self.rpc.call("sendfrom", user_id, dest_address, float(str(amount)), minconf ) self.logger.debug("Send %s %s from %s to %s" % (str(amount), self.coin, str(user_id), dest_address)) self.logger.debug("Transaction hash: %s" % txhash) return txhash
Send coins from user's account. Args: user_id (str): this user's unique identifier dest_address (str): address which is to receive coins amount (str or Decimal): amount to send (eight decimal points) minconf (int): ensure the account has a valid balance using this many confirmations (default=1) Returns: str: transaction ID
juraj-google-style
def garbage_collection(time_limit=YEAR/12.0): expired_request_infos = ( ri for ri in DATABASE.values() if ri.creation_ts + time_limit <= time.time() ) for ri in expired_request_infos: del DATABASE[ri.url]
Collect and remove all :class:`.RequestInfo` objects older than `time_limit` (in seconds). Args: time_limit (float, default YEAR / 2): Collect objects older than this limit.
juraj-google-style
def padding_to_length(padding): non_padding = (1.0 - padding) return tf.to_int32(tf.reduce_sum(non_padding, axis=(- 1)))
Calculate the length of mask based on padding. Args: padding: a Tensor with shape [..., length]. Returns: a Tensor with shape [...].
codesearchnet
def _init_request_logging(self, app): enabled = not app.config.get(CONF_DISABLE_REQUEST_LOGGING, False) if not enabled: return self._requests_middleware = WSGIApplication( self._key, app.wsgi_app, telemetry_channel=self._channel) app.wsgi_app = self._requests_middleware
Sets up request logging unless ``APPINSIGHTS_DISABLE_REQUEST_LOGGING`` is set in the Flask config. Args: app (flask.Flask). the Flask application for which to initialize the extension.
juraj-google-style
def residual_block_layer(inputs, hparams): kernel = (hparams.res_kernel_size, hparams.res_kernel_size) x = inputs for i in range(hparams.num_res_layers): with tf.variable_scope(('res_conv_%d' % i)): y = common_layers.conv_block(common_layers.layer_norm(x, hparams.hidden_size, name='lnorm'), hparams.hidden_size, [((1, 1), kernel)], strides=(1, 1), padding='SAME', name='residual_conv') y = common_layers.conv_block(y, hparams.hidden_size, [((1, 1), (1, 1))], strides=(1, 1), padding='SAME', name='residual_dense') x = common_layers.layer_postprocess(x, y, hparams) return x
Residual block over inputs. Runs a residual block consisting of conv: kernel_size x kernel_size conv: 1x1 dropout, add and normalize according to hparams.layer_postprocess_sequence. Args: inputs: Tensor of shape [batch, height, width, hparams.hidden_size]. hparams: HParams. Returns: Tensor of shape [batch, height, width, hparams.hidden_size].
codesearchnet
def NamedSelector(name, fields, description=None, type_attributes=DEFAULT_TYPE_ATTRIBUTES): check.str_param(name, 'name') check_user_facing_fields_dict(fields, 'NamedSelector named "{}"'.format(name)) class _NamedSelector(_ConfigSelector): def __init__(self): super(_NamedSelector, self).__init__( key=name, name=name, fields=fields, description=description, type_attributes=type_attributes, ) return _NamedSelector
A :py:class`Selector` with a name, allowing it to be referenced by that name. Args: name (str): fields (Dict[str, Field])
juraj-google-style
def call_each(seq): try: reduce(lambda _, y: y(), seq) except TypeError as e: if text_type(e) != "reduce() of empty sequence with no initial value": raise
Calls each element of sequence to invoke the side effect. Args: seq: Returns: None
juraj-google-style
def predict_features(self, df_features, df_target, nh=20, idx=0, dropout=0.0, activation_function=th.nn.ReLU, lr=0.01, l1=0.1, batch_size=(- 1), train_epochs=1000, test_epochs=1000, device=None, verbose=None, nb_runs=3): (device, verbose) = SETTINGS.get_default(('device', device), ('verbose', verbose)) x = th.FloatTensor(scale(df_features.values)).to(device) y = th.FloatTensor(scale(df_target.values)).to(device) out = [] for i in range(nb_runs): model = FSGNN_model([(x.size()[1] + 1), nh, 1], dropout=dropout, activation_function=activation_function).to(device) out.append(model.train(x, y, lr=0.01, l1=0.1, batch_size=(- 1), train_epochs=train_epochs, test_epochs=test_epochs, device=device, verbose=verbose)) return list(np.mean(np.array(out), axis=0))
For one variable, predict its neighbours. Args: df_features (pandas.DataFrame): df_target (pandas.Series): nh (int): number of hidden units idx (int): (optional) for printing purposes dropout (float): probability of dropout (between 0 and 1) activation_function (torch.nn.Module): activation function of the NN lr (float): learning rate of Adam l1 (float): L1 penalization coefficient batch_size (int): batch size, defaults to full-batch train_epochs (int): number of train epochs test_epochs (int): number of test epochs device (str): cuda or cpu device (defaults to ``cdt.SETTINGS.default_device``) verbose (bool): verbosity (defaults to ``cdt.SETTINGS.verbose``) nb_runs (int): number of bootstrap runs Returns: list: scores of each feature relatively to the target
codesearchnet
def update_vlan(self, name, vid, vni): cmd = ('vxlan vlan %s vni %s' % (vid, vni)) return self.configure_interface(name, cmd)
Adds a new vlan to vni mapping for the interface EosVersion: 4.13.7M Args: vlan (str, int): The vlan id to map to the vni vni (str, int): The vni value to use Returns: True if the command completes successfully
codesearchnet
def delete_vnet(access_token, subscription_id, resource_group, name): endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/resourceGroups/', resource_group, '/providers/Microsoft.Network/virtualNetworks/', name, '?api-version=', NETWORK_API]) return do_delete(endpoint, access_token)
Delete a virtual network. Args: access_token (str): A valid Azure authentication token. subscription_id (str): Azure subscription id. resource_group (str): Azure resource group name. name (str): Name of the VNet. Returns: HTTP response. VNet JSON body.
juraj-google-style
def __init__(self, target='', graph=None, config=None): _python_session_create_counter.get_cell().increase_by(1) if graph is None: self._graph = ops.get_default_graph() else: if not isinstance(graph, ops.Graph): raise TypeError(f'Argument `graph` must be a tf.Graph, but got "{type(graph).__name__}"') self._graph = graph self._closed = False if target is not None: try: self._target = compat.as_bytes(target) except TypeError: if isinstance(target, config_pb2.ConfigProto): raise TypeError(f'Argument `target` must be a string, but got "{type(target).__name__}". Did you do "Session(config)" instead of "Session(config=config)"?') raise TypeError(f'Argument `target` must be a string, but got "{type(target).__name__}"') else: self._target = None self._delete_lock = threading.Lock() self._dead_handles = [] if config is None: config = context.context().config if not isinstance(config, config_pb2.ConfigProto): raise TypeError(f'Argument `config` must be a tf.ConfigProto, but got "{type(config).__name__}"') if mixed_precision_global_state.is_mixed_precision_graph_rewrite_enabled() and config.graph_options.rewrite_options.auto_mixed_precision != rewriter_config_pb2.RewriterConfig.OFF: new_config = config_pb2.ConfigProto() new_config.CopyFrom(config) new_config.graph_options.rewrite_options.auto_mixed_precision = rewriter_config_pb2.RewriterConfig.ON config = new_config elif config.graph_options.rewrite_options.auto_mixed_precision != rewriter_config_pb2.RewriterConfig.ON: mixed_precision_global_state.set_non_mixed_precision_session_created(True) self._config = config self._add_shapes = config.graph_options.infer_shapes self._session = None opts = tf_session.TF_NewSessionOptions(target=self._target, config=config) try: with self._graph._c_graph.get() as c_graph: self._session = tf_session.TF_NewSessionRef(c_graph, opts) finally: tf_session.TF_DeleteSessionOptions(opts)
Constructs a new TensorFlow session. Args: target: (Optional) The TensorFlow execution engine to connect to. graph: (Optional) The graph to be used. If this argument is None, the default graph will be used. config: (Optional) ConfigProto proto used to configure the session. If no config is specified, the global default will be used. The global default can be configured via the tf.config APIs. Raises: tf.errors.OpError: Or one of its subclasses if an error occurs while creating the TensorFlow session. TypeError: If one of the arguments has the wrong type.
github-repos
def from_pymatgen_molecule(cls, molecule): new = cls(atoms=[el.value for el in molecule.species], coords=molecule.cart_coords) return new._to_numeric()
Create an instance of the own class from a pymatgen molecule Args: molecule (:class:`pymatgen.core.structure.Molecule`): Returns: Cartesian:
juraj-google-style
def StatEntryFromPath(path, pathspec, ext_attrs=True): try: stat = filesystem.Stat.FromPath(path) except (IOError, OSError) as error: logging.error("Failed to obtain stat for '%s': %s", pathspec, error) return rdf_client_fs.StatEntry(pathspec=pathspec) return StatEntryFromStat(stat, pathspec, ext_attrs=ext_attrs)
Builds a stat entry object from a given path. Args: path: A path (string value) to stat. pathspec: A `PathSpec` corresponding to the `path`. ext_attrs: Whether to include extended file attributes in the result. Returns: `StatEntry` object.
codesearchnet
def queuify_logger(logger, queue_handler, queue_listener): if isinstance(logger, str): logger = logging.getLogger(logger) handlers = [handler for handler in logger.handlers if handler not in queue_listener.handlers] if handlers: queue_listener.handlers = \ tuple(list(queue_listener.handlers) + handlers) del logger.handlers[:] logger.addHandler(queue_handler)
Replace logger's handlers with a queue handler while adding existing handlers to a queue listener. This is useful when you want to use a default logging config but then optionally add a logger's handlers to a queue during runtime. Args: logger (mixed): Logger instance or string name of logger to queue-ify handlers. queue_handler (QueueHandler): Instance of a ``QueueHandler``. queue_listener (QueueListener): Instance of a ``QueueListener``.
juraj-google-style
def Oem(self, command, timeout_ms=None, info_cb=DEFAULT_MESSAGE_CALLBACK): if not isinstance(command, bytes): command = command.encode('utf8') return self._SimpleCommand( b'oem %s' % command, timeout_ms=timeout_ms, info_cb=info_cb)
Executes an OEM command on the device. Args: command: Command to execute, such as 'poweroff' or 'bootconfig read'. timeout_ms: Optional timeout in milliseconds to wait for a response. info_cb: See Download. Messages vary based on command. Returns: The final response from the device.
juraj-google-style
def Sample(self, tasks_status): sample_time = time.time() sample = '{0:f}\t{1:d}\t{2:d}\t{3:d}\t{4:d}\t{5:d}\n'.format(sample_time, tasks_status.number_of_queued_tasks, tasks_status.number_of_tasks_processing, tasks_status.number_of_tasks_pending_merge, tasks_status.number_of_abandoned_tasks, tasks_status.total_number_of_tasks) self._WritesString(sample)
Takes a sample of the status of queued tasks for profiling. Args: tasks_status (TasksStatus): status information about tasks.
codesearchnet
def raster_reclassify(srcfile, v_dict, dstfile, gdaltype=GDT_Float32): src_r = RasterUtilClass.read_raster(srcfile) src_data = src_r.data dst_data = numpy.copy(src_data) if gdaltype == GDT_Float32 and src_r.dataType != GDT_Float32: gdaltype = src_r.dataType no_data = src_r.noDataValue new_no_data = DEFAULT_NODATA if gdaltype in [GDT_Unknown, GDT_Byte, GDT_UInt16, GDT_UInt32]: new_no_data = 0 if not MathClass.floatequal(new_no_data, src_r.noDataValue): if src_r.noDataValue not in v_dict: v_dict[src_r.noDataValue] = new_no_data no_data = new_no_data for (k, v) in iteritems(v_dict): dst_data[src_data == k] = v RasterUtilClass.write_gtiff_file(dstfile, src_r.nRows, src_r.nCols, dst_data, src_r.geotrans, src_r.srs, no_data, gdaltype)
Reclassify raster by given classifier dict. Args: srcfile: source raster file. v_dict: classifier dict. dstfile: destination file path. gdaltype (:obj:`pygeoc.raster.GDALDataType`): GDT_Float32 as default.
juraj-google-style
def _get_commands(dist ): py_files = (f for f in setuptools.findall() if os.path.splitext(f)[1].lower() == '.py') pkg_files = (f for f in py_files if _get_package_name(f) in dist.packages) commands = {} for file_name in pkg_files: with open(file_name) as py_file: module = typing.cast(ast.Module, ast.parse(py_file.read())) module_name = _get_module_name(file_name) _append_commands(commands, module_name, _get_module_commands(module)) _append_commands(commands, module_name, _get_class_commands(module)) _append_commands(commands, module_name, _get_function_commands(module)) return commands
Find all commands belonging to the given distribution. Args: dist: The Distribution to search for docopt-compatible docstrings that can be used to generate command entry points. Returns: A dictionary containing a mapping of primary commands to sets of subcommands.
juraj-google-style
def _GetAnalysisPlugins(self, analysis_plugins_string): if (not analysis_plugins_string): return [] analysis_plugins_list = [name.strip() for name in analysis_plugins_string.split(',')] analysis_plugins = self._analysis_manager.GetPluginObjects(analysis_plugins_list) return analysis_plugins.values()
Retrieves analysis plugins. Args: analysis_plugins_string (str): comma separated names of analysis plugins to enable. Returns: list[AnalysisPlugin]: analysis plugins.
codesearchnet
def getAll(self, event_name): raw_events = self.callEventGetAllRpc(self._id, event_name) return [callback_event.from_dict(msg) for msg in raw_events]
Gets all existing events in the server with the specified identifier. This is a non-blocking call. Args: event_name: str, the name of the event to get. Returns: A list of CallbackEvent, each representing an event from the Server side.
github-repos
def initialize_repository(path, spor_dir='.spor'): path = pathlib.Path(path) spor_path = (path / spor_dir) if spor_path.exists(): raise ValueError('spor directory already exists: {}'.format(spor_path)) spor_path.mkdir() return Repository(path, spor_dir)
Initialize a spor repository in `path` if one doesn't already exist. Args: path: Path to any file or directory within the repository. spor_dir: The name of the directory containing spor data. Returns: A `Repository` instance. Raises: ValueError: A repository already exists at `path`.
codesearchnet
def ns(self, value): if value == self._defaults['ns'] and 'ns' in self._values: del self._values['ns'] else: self._values['ns'] = value
The ns property. Args: value (string). the property value.
juraj-google-style
def __init__(self, feed_merger): self.feed_merger = feed_merger self._num_merged = 0 self._num_not_merged_a = 0 self._num_not_merged_b = 0
Initialise. Args: feed_merger: The FeedMerger.
juraj-google-style
def AddLabel(self, label): if (not isinstance(label, py2to3.STRING_TYPES)): raise TypeError('label is not a string type. Is {0:s}'.format(type(label))) if (not self._VALID_LABEL_REGEX.match(label)): raise ValueError('Unsupported label: "{0:s}". A label must only consist of alphanumeric characters or underscores.'.format(label)) if (label not in self.labels): self.labels.append(label)
Adds a label to the event tag. Args: label (str): label. Raises: TypeError: if the label provided is not a string. ValueError: if a label is malformed.
codesearchnet
def add_trial(self, trial): trial.set_verbose(self._verbose) self._trials.append(trial) with warn_if_slow("scheduler.on_trial_add"): self._scheduler_alg.on_trial_add(self, trial) self.trial_executor.try_checkpoint_metadata(trial)
Adds a new trial to this TrialRunner. Trials may be added at any time. Args: trial (Trial): Trial to queue.
juraj-google-style
def lookup_subclass(cls, d): try: typeid = d['typeid'] except KeyError: raise FieldError(('typeid not present in keys %s' % list(d))) subclass = cls._subcls_lookup.get(typeid, None) if (not subclass): raise FieldError(("'%s' not a valid typeid" % typeid)) else: return subclass
Look up a class based on a serialized dictionary containing a typeid Args: d (dict): Dictionary with key "typeid" Returns: Serializable subclass
codesearchnet
def process_resource(self, req, resp, resource, uri_kwargs=None): if 'user' in req.context: return identifier = self.identify(req, resp, resource, uri_kwargs) user = self.try_storage(identifier, req, resp, resource, uri_kwargs) if user is not None: req.context['user'] = user elif self.challenge is not None: req.context.setdefault( 'challenges', list() ).append(self.challenge)
Process resource after routing to it. This is basic falcon middleware handler. Args: req (falcon.Request): request object resp (falcon.Response): response object resource (object): resource object matched by falcon router uri_kwargs (dict): additional keyword argument from uri template. For ``falcon<1.0.0`` this is always ``None``
juraj-google-style
def __call__(self, index, s): if self.colorize: self._color_wrap(index, s) else: print(s)
Print the output, colorized or not, depending on the environment. Args: index (int): The instance number. s (str): The string to print.
juraj-google-style
def importGurobiSolution(self, grbmodel): self.eval(''.join( 'let {} := {};'.format(var.VarName, var.X) for var in grbmodel.getVars() if '$' not in var.VarName ))
Import the solution from a gurobipy.Model object. Args: grbmodel: A :class:`gurobipy.Model` object with the model solved.
juraj-google-style
def DecoderLayer(feature_depth, feedforward_depth, num_heads, dropout, mode): return layers.Serial(layers.Residual(layers.LayerNorm(), layers.Branch(), layers.Parallel(layers.Identity(), layers.CausalMask(axis=(- 2))), layers.MultiHeadedAttention(feature_depth, num_heads=num_heads, dropout=dropout, mode=mode), layers.Dropout(rate=dropout, mode=mode)), ResidualFeedForward(feature_depth, feedforward_depth, dropout, mode=mode))
Transformer decoder layer. Args: feature_depth: int: depth of embedding feedforward_depth: int: depth of feed-forward layer num_heads: int: number of attention heads dropout: float: dropout rate (how much to drop out) mode: str: 'train' or 'eval' Returns: the layer.
codesearchnet
def swo_stop(self): res = self._dll.JLINKARM_SWO_Control(enums.JLinkSWOCommands.STOP, 0) if res < 0: raise errors.JLinkException(res) return None
Stops collecting SWO data. Args: self (JLink): the ``JLink`` instance Returns: ``None`` Raises: JLinkException: on error
juraj-google-style
def check_streamers(self, blacklist=None): ready = [] selected = set() for (i, streamer) in enumerate(self.streamers): if ((blacklist is not None) and (i in blacklist)): continue if (i in selected): continue marked = False if (i in self._manually_triggered_streamers): marked = True self._manually_triggered_streamers.remove(i) if streamer.triggered(marked): self._logger.debug('Streamer %d triggered, manual=%s', i, marked) ready.append(streamer) selected.add(i) for (j, streamer2) in enumerate(self.streamers[i:]): if ((streamer2.with_other == i) and (j not in selected) and streamer2.triggered(True)): self._logger.debug('Streamer %d triggered due to with-other on %d', j, i) ready.append(streamer2) selected.add(j) return ready
Check if any streamers are ready to produce a report. You can limit what streamers are checked by passing a set-like object into blacklist. This method is the primary way to see when you should poll a given streamer for its next report. Note, this function is not idempotent. If a streamer is marked as manual and it is triggered from a node rule inside the sensor_graph, that trigger will only last as long as the next call to check_streamers() so you need to explicitly build a report on all ready streamers before calling check_streamers again. Args: blacklist (set): Optional set of streamer indices that should not be checked right now. Returns: list of DataStreamer: A list of the ready streamers.
codesearchnet
def FindChecks(cls, artifact=None, os_name=None, cpe=None, labels=None, restrict_checks=None): check_ids = set() conditions = list(cls.Conditions(artifact, os_name, cpe, labels)) for (chk_id, chk) in iteritems(cls.checks): if (restrict_checks and (chk_id not in restrict_checks)): continue for condition in conditions: if chk.triggers.Match(*condition): check_ids.add(chk_id) break return check_ids
Takes targeting info, identifies relevant checks. FindChecks will return results when a host has the conditions necessary for a check to occur. Conditions with partial results are not returned. For example, FindChecks will not return checks that if a check targets os_name=["Linux"], labels=["foo"] and a host only has the os_name=["Linux"] attribute. Args: artifact: 0+ artifact names. os_name: 0+ OS names. cpe: 0+ CPE identifiers. labels: 0+ GRR labels. restrict_checks: A list of check ids to restrict check processing to. Returns: the check_ids that apply.
codesearchnet
def to_pytd_def(self, val: abstract.BaseValue) -> pytd.Node: if isinstance(val, abstract.SimpleClass): return self._class_to_pytd_def(val) elif isinstance(val, abstract.BaseFunction): return self._function_to_pytd_def(val) else: raise NotImplementedError(f'to_pytd_def() not implemented for {val.__class__.__name__}: {val}')
Returns the pytd definition of the abstract value. For example, if the abstract value is: InterpreterClass(name='C', members={'x': PythonConstant(0)}) then to_pytd_def() produces: pytd.Class(name='C', constants=(pytd.Constant(name='x', type=pytd.NamedType(int)),)) Args: val: The abstract value.
github-repos
def _GetKeysDefaultEmpty(self, top_level, keys, depth=1): keys = set(keys) match = {} if depth == 1: for key in keys: value = top_level.get(key, None) if value is not None: match[key] = value else: for _, parsed_key, parsed_value in plist_interface.RecurseKey( top_level, depth=depth): if parsed_key in keys: match[parsed_key] = parsed_value if set(match.keys()) == keys: return match return match
Retrieves plist keys, defaulting to empty values. Args: top_level (plistlib._InternalDict): top level plist object. keys (set[str]): names of keys that should be returned. depth (int): depth within the plist, where 1 is top level. Returns: dict[str, str]: values of the requested keys.
juraj-google-style
def getValue(self, scalarExpression): return lock_and_call((lambda : Utils.castVariant(self._impl.getValue(scalarExpression))), self._lock)
Get a scalar value from the underlying AMPL interpreter, as a double or a string. Args: scalarExpression: An AMPL expression which evaluates to a scalar value. Returns: The value of the expression.
codesearchnet
def genUserCert(self, name, signas=None, outp=None, csr=None): (pkey, cert) = self._genBasePkeyCert(name, pkey=csr) cert.add_extensions([crypto.X509Extension(b'nsCertType', False, b'client'), crypto.X509Extension(b'keyUsage', False, b'digitalSignature'), crypto.X509Extension(b'extendedKeyUsage', False, b'clientAuth'), crypto.X509Extension(b'basicConstraints', False, b'CA:FALSE')]) if (signas is not None): self.signCertAs(cert, signas) else: self.selfSignCert(cert, pkey) crtpath = self._saveCertTo(cert, 'users', ('%s.crt' % name)) if (outp is not None): outp.printf(('cert saved: %s' % (crtpath,))) if (not pkey._only_public): keypath = self._savePkeyTo(pkey, 'users', ('%s.key' % name)) if (outp is not None): outp.printf(('key saved: %s' % (keypath,))) return (pkey, cert)
Generates a user keypair. Args: name (str): The name of the user keypair. signas (str): The CA keypair to sign the new user keypair with. outp (synapse.lib.output.Output): The output buffer. csr (OpenSSL.crypto.PKey): The CSR public key when generating the keypair from a CSR. Examples: Generate a user cert for the user "myuser": myuserkey, myusercert = cdir.genUserCert('myuser') Returns: ((OpenSSL.crypto.PKey, OpenSSL.crypto.X509)): Tuple containing the key and certificate objects.
codesearchnet
def getValue(self, scalarExpression): return lock_and_call( lambda: Utils.castVariant(self._impl.getValue(scalarExpression)), self._lock )
Get a scalar value from the underlying AMPL interpreter, as a double or a string. Args: scalarExpression: An AMPL expression which evaluates to a scalar value. Returns: The value of the expression.
juraj-google-style
def _Open(self, path_spec=None, mode='rb'): if not path_spec: raise ValueError('Missing path specification.') file_system = resolver.Resolver.OpenFileSystem( path_spec, resolver_context=self._resolver_context) file_entry = file_system.GetFileEntryByPathSpec(path_spec) if not file_entry: file_system.Close() raise IOError('Unable to retrieve file entry.') if not file_entry.IsFile(): file_system.Close() raise IOError('Not a regular file.') self._file_system = file_system self._zip_file = self._file_system.GetZipFile() self._zip_info = file_entry.GetZipInfo() self._current_offset = 0 self._uncompressed_stream_size = self._zip_info.file_size
Opens the file-like object defined by path specification. Args: path_spec (Optional[PathSpec]): path specification. mode (Optional[str]): file access mode. Raises: AccessError: if the access to open the file was denied. IOError: if the file-like object could not be opened. OSError: if the file-like object could not be opened. PathSpecError: if the path specification is incorrect. ValueError: if the path specification is invalid.
juraj-google-style
def convert_rgb(self, image): self._ensure_format_supported(image) if not isinstance(image, PIL.Image.Image): return image return image.convert('RGB')
Converts `PIL.Image.Image` to RGB format. Args: image (`PIL.Image.Image`): The image to convert.
github-repos
def _format_variant(self, case_id, gemini_variant, individual_objs, index=0, add_all_info=False): chrom = gemini_variant['chrom'] if chrom.startswith('chr') or chrom.startswith('CHR'): chrom = chrom[3:] variant_dict = { 'CHROM':chrom, 'POS':str(gemini_variant['start']), 'ID':gemini_variant['rs_ids'], 'REF':gemini_variant['ref'], 'ALT':gemini_variant['alt'], 'QUAL':gemini_variant['qual'], 'FILTER':gemini_variant['filter'] } variant = Variant(**variant_dict) variant.update_variant_id(gemini_variant['variant_id']) logger.debug("Creating a variant object of variant {0}".format( variant.variant_id)) variant['index'] = index self._add_most_severe_consequence(variant, gemini_variant) self._add_impact_severity(variant, gemini_variant) variant.start = int(gemini_variant['start']) variant.stop = int(gemini_variant['end']) if self.variant_type == 'sv': variant.sv_type = gemini_variant['sub_type'] variant.stop = int(gemini_variant['end']) self._add_sv_coordinates(variant) else: self._add_transcripts(variant, gemini_variant) self._add_thousand_g(variant, gemini_variant) self._add_exac(variant, gemini_variant) self._add_gmaf(variant, gemini_variant) if gemini_variant['cadd_scaled']: variant.cadd_score = gemini_variant['cadd_scaled'] polyphen = gemini_variant['polyphen_pred'] if polyphen: variant.add_severity('Polyphen', polyphen) sift = gemini_variant['sift_pred'] if sift: variant.add_severity('SIFT', sift) self._add_hgnc_symbols(variant) if self.variant_type == 'snv': self._add_genes(variant) self._add_consequences(variant) if add_all_info: self._add_genotypes(variant, gemini_variant, case_id, individual_objs) if self.variant_type == 'sv': self._add_genes(variant) return variant
Make a puzzle variant from a gemini variant Args: case_id (str): related case id gemini_variant (GeminiQueryRow): The gemini variant individual_objs (list(dict)): A list of Individuals index(int): The index of the variant Returns: variant (dict): A Variant object
juraj-google-style
def agg_wt_avg(mat, min_wt=0.01, corr_metric='spearman'): assert (mat.shape[1] > 0), 'mat is empty! mat: {}'.format(mat) if (mat.shape[1] == 1): out_sig = mat upper_tri_df = None raw_weights = None weights = None else: assert (corr_metric in ['spearman', 'pearson']) corr_mat = mat.corr(method=corr_metric) upper_tri_df = get_upper_triangle(corr_mat) (raw_weights, weights) = calculate_weights(corr_mat, min_wt) weighted_values = (mat * weights) out_sig = weighted_values.sum(axis=1) return (out_sig, upper_tri_df, raw_weights, weights)
Aggregate a set of replicate profiles into a single signature using a weighted average. Args: mat (pandas df): a matrix of replicate profiles, where the columns are samples and the rows are features; columns correspond to the replicates of a single perturbagen min_wt (float): Minimum raw weight when calculating weighted average corr_metric (string): Spearman or Pearson; the correlation method Returns: out_sig (pandas series): weighted average values upper_tri_df (pandas df): the correlations between each profile that went into the signature raw weights (pandas series): weights before normalization weights (pandas series): weights after normalization
codesearchnet
def run_config(self, project, run=None, entity=None): query = gql() response = self.gql(query, variable_values={ 'name': project, 'run': run, 'entity': entity }) if response['model'] == None: raise ValueError("Run {}/{}/{} not found".format(entity, project, run) ) run = response['model']['bucket'] commit = run['commit'] patch = run['patch'] config = json.loads(run['config'] or '{}') if len(run['files']['edges']) > 0: url = run['files']['edges'][0]['node']['url'] res = requests.get(url) res.raise_for_status() metadata = res.json() else: metadata = {} return (commit, config, patch, metadata)
Get the relevant configs for a run Args: project (str): The project to download, (can include bucket) run (str, optional): The run to download entity (str, optional): The entity to scope this project to.
juraj-google-style
def read_proto(filename: str, proto_cls: Type[_T]) -> _T: filepath = _fhir_filepath_from(filename) proto = proto_cls() raw_proto = '' with open(filepath, 'r', encoding='utf-8') as f: raw_proto = f.read() text_format.Parse(raw_proto, proto) return proto
Reads protobuf information from filename relative to the fhir/ root dir. Data is serialized into an instance of `proto_cls`. Args: filename: The file to read from. proto_cls: The type of protobuf message to look for and return. Returns: The protobuf message in the file.
github-repos