code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def parse_fs_url(fs_url):
match = _RE_FS_URL.match(fs_url)
if match is None:
raise ParseError("{!r} is not a fs2 url".format(fs_url))
fs_name, credentials, url1, url2, path = match.groups()
if not credentials:
username = None
password = None
url = url2
else:
username, _, password = credentials.partition(":")
username = unquote(username)
password = unquote(password)
url = url1
url, has_qs, qs = url.partition("?")
resource = unquote(url)
if has_qs:
_params = parse_qs(qs, keep_blank_values=True)
params = {k: unquote(v[0]) for k, v in six.iteritems(_params)}
else:
params = {}
return ParseResult(fs_name, username, password, resource, params, path)
|
Parse a Filesystem URL and return a `ParseResult`.
Arguments:
fs_url (str): A filesystem URL.
Returns:
~fs.opener.parse.ParseResult: a parse result instance.
Raises:
~fs.errors.ParseError: if the FS URL is not valid.
|
juraj-google-style
|
def has_basal_dendrite(neuron, min_number=1, treefun=_read_neurite_type):
types = [treefun(n) for n in neuron.neurites]
return CheckResult(types.count(NeuriteType.basal_dendrite) >= min_number)
|
Check if a neuron has basal dendrites
Arguments:
neuron(Neuron): The neuron object to test
min_number: minimum number of basal dendrites required
treefun: Optional function to calculate the tree type of neuron's
neurites
Returns:
CheckResult with result
|
juraj-google-style
|
def add_inputs(self, mutable_accumulator, elements, *args, **kwargs):
for element in elements:
mutable_accumulator = self.add_input(mutable_accumulator, element, *args, **kwargs)
return mutable_accumulator
|
Returns the result of folding each element in elements into accumulator.
This is provided in case the implementation affords more efficient
bulk addition of elements. The default implementation simply loops
over the inputs invoking add_input for each one.
Args:
mutable_accumulator: the current accumulator,
may be modified and returned for efficiency
elements: the elements to add, should not be mutated
*args: Additional arguments and side inputs.
**kwargs: Additional arguments and side inputs.
|
github-repos
|
def Sign(self, data, signing_key, verify_key=None):
if (signing_key.KeyLen() < 2048):
logging.warning('signing key is too short.')
self.signature = signing_key.Sign(data)
self.signature_type = self.SignatureType.RSA_PKCS1v15
self.digest = hashlib.sha256(data).digest()
self.digest_type = self.HashType.SHA256
self.data = data
if (verify_key is None):
verify_key = signing_key.GetPublicKey()
self.Verify(verify_key)
return self
|
Use the data to sign this blob.
Args:
data: String containing the blob data.
signing_key: The key to sign with.
verify_key: Key to verify with. If None we assume the signing key also
contains the public key.
Returns:
self for call chaining.
|
codesearchnet
|
def str2dict_keys(str_in):
tmp_dict = str2dict(str_in)
if (tmp_dict is None):
return None
return sorted([k for k in tmp_dict])
|
Extracts the keys from a string that represents a dict and returns them
sorted by key.
Args:
str_in (string) that contains python dict
Returns:
(list) with keys or None if no valid dict was found
Raises:
-
|
codesearchnet
|
def gather_dilated_memory_blocks(x, num_memory_blocks, gap_size, query_block_size, memory_block_size, gather_indices, direction='left'):
gathered_blocks = []
for block_id in range(num_memory_blocks):
block_end_index = (- ((query_block_size + (gap_size * (block_id + 1))) + (memory_block_size * block_id)))
block_start_index = ((memory_block_size + gap_size) * (num_memory_blocks - (block_id + 1)))
if (direction != 'left'):
[block_end_index, block_start_index] = [(- block_start_index), (- block_end_index)]
if (block_end_index == 0):
x_block = x[block_start_index:]
else:
x_block = x[block_start_index:block_end_index]
def gather_dilated_1d_blocks(x, gather_indices):
x_new = tf.gather(x, gather_indices)
return tf.transpose(x_new, [2, 3, 0, 1, 4])
gathered_blocks.append(gather_dilated_1d_blocks(x_block, gather_indices))
return tf.concat(gathered_blocks, 3)
|
Gathers blocks with gaps in between.
Args:
x: Tensor of shape [length, batch, heads, depth]
num_memory_blocks: how many memory blocks to look in "direction". Each will
be separated by gap_size.
gap_size: an integer indicating the gap size
query_block_size: an integer indicating size of query block
memory_block_size: an integer indicating the size of a memory block.
gather_indices: The indices to gather from.
direction: left or right
Returns:
Tensor of shape [batch, heads, blocks, block_length, depth]
|
codesearchnet
|
def normalize_bytes2str(x):
if isinstance(x, str):
return x
if isinstance(x, bytes):
return x.decode('utf8')
elif is_array_str(x):
return _to_str_array(x)
else:
return x
|
Normalize `bytes` array to `str` (UTF-8).
Example of usage:
```python
for ex in tfds.as_numpy(ds): # tf.data returns `tf.string` as `bytes`
ex = tf.nest.map_structure(enp.normalize_bytes2str, ex)
```
Args:
x: Any array
Returns:
x: `bytes` array are decoded as `str`
|
github-repos
|
def load(cls, config: Optional[Config]=None):
if (cls._dfk is not None):
raise RuntimeError('Config has already been loaded')
if (config is None):
cls._dfk = DataFlowKernel(Config())
else:
cls._dfk = DataFlowKernel(config)
return cls._dfk
|
Load a DataFlowKernel.
Args:
- config (Config) : Configuration to load. This config will be passed to a
new DataFlowKernel instantiation which will be set as the active DataFlowKernel.
Returns:
- DataFlowKernel : The loaded DataFlowKernel object.
|
codesearchnet
|
def GetValidHostsForCert(cert):
if 'subjectAltName' in cert:
return [x[1] for x in cert['subjectAltName'] if x[0].lower() == 'dns']
else:
return [x[0][1] for x in cert['subject']
if x[0][0].lower() == 'commonname']
|
Returns a list of valid host globs for an SSL certificate.
Args:
cert: A dictionary representing an SSL certificate.
Returns:
list: A list of valid host globs.
|
juraj-google-style
|
def _iflat_tasks_wti(self, status=None, op='==', nids=None, with_wti=True):
nids = as_set(nids)
if (status is None):
for (wi, work) in enumerate(self):
for (ti, task) in enumerate(work):
if (nids and (task.node_id not in nids)):
continue
if with_wti:
(yield (task, wi, ti))
else:
(yield task)
else:
op = operator_from_str(op)
status = Status.as_status(status)
for (wi, work) in enumerate(self):
for (ti, task) in enumerate(work):
if (nids and (task.node_id not in nids)):
continue
if op(task.status, status):
if with_wti:
(yield (task, wi, ti))
else:
(yield task)
|
Generators that produces a flat sequence of task.
if status is not None, only the tasks with the specified status are selected.
nids is an optional list of node identifiers used to filter the tasks.
Returns:
(task, work_index, task_index) if with_wti is True else task
|
codesearchnet
|
def execute_workflow(self, directory: str) -> None:
thread = current_thread()
print(f'Executing directory {directory} on thread {thread.name}...')
for path, subdirs, files in os.walk(directory):
s = os.path.join(path, 'service.json')
if os.path.isfile(s):
project = self.get_project_from_service(s)
service = s
else:
project = self.get_project_from_vm()
service = 'DEFAULT'
for filename in files:
if filename != 'service.json':
workflow = os.path.join(path, filename)
if os.path.isfile(workflow):
command = f'python3 starthinker/tool/recipe.py {workflow} -s {service} -p {project} --verbose'
self.execute_command(command)
print(f'Finished executing workflows in directory {directory}.')
|
Executes workflows in the provided directory, one per thread
Args:
- directory: (string) The directory with the workflow JSON files to execute
|
github-repos
|
def __call__(self, token, device, args):
func = self.get(token, None)
if func is None:
raise ValueError(f'Could not find callback with key={token} in the registry.')
if isinstance(func, EagerFunc):
return func(device, token, args)
else:
ret = func(*args)
if isinstance(ret, bytes):
ret = [ret]
if isinstance(ret, (tuple, list)):
return [self._convert(x) for x in ret]
else:
return self._convert(ret)
|
Calls the registered function for `token` with args.
Args:
token: A key into this `FuncRegistry` identifying which function to call.
device: Name of the device on which outputs of `token`'s corresponding
operation should be placed. Used iff the function registered for `token`
is an EagerPyFunc.
args: The arguments to pass to the function registered for `token`.
Returns:
The output of the function registered for `token`.
Raises:
ValueError: if no function is registered for `token`.
|
github-repos
|
def __init__(self, zslgen=ZSLGenerator(), film_max_miller=1, substrate_max_miller=1):
self.zsl = zslgen
self.film_max_miller = film_max_miller
self.substrate_max_miller = substrate_max_miller
|
Initializes the substrate analyzer
Args:
zslgen(ZSLGenerator): Defaults to a ZSLGenerator with standard
tolerances, but can be fed one with custom tolerances
film_max_miller(int): maximum miller index to generate for film
surfaces
substrate_max_miller(int): maximum miller index to generate for
substrate surfaces
|
juraj-google-style
|
def get_board(self, **query_params):
board_json = self.get_board_json(self.base_uri, query_params=query_params)
return self.create_board(board_json)
|
Get board information for this card. Returns a Board object.
Returns:
Board: The board this card is attached to
|
codesearchnet
|
def add_annotation(self, subj: URIRef, pred: URIRef, obj: Union[(Literal, URIRef)], a_p: URIRef, a_o: Union[(Literal, URIRef)]) -> BNode:
bnode: BNode = self.triple2annotation_bnode.get((subj, pred, obj))
if (not bnode):
a_s: BNode = BNode()
self.triple2annotation_bnode[(subj, pred, obj)]: BNode = a_s
self.g.add((a_s, RDF.type, OWL.Axiom))
self.g.add((a_s, OWL.annotatedSource, self.process_subj_or_pred(subj)))
self.g.add((a_s, OWL.annotatedProperty, self.process_subj_or_pred(pred)))
self.g.add((a_s, OWL.annotatedTarget, self.process_obj(obj)))
else:
a_s: BNode = bnode
self.g.add((a_s, self.process_subj_or_pred(a_p), self.process_obj(a_o)))
return bnode
|
Adds annotation to rdflib graph.
The annotation axiom will filled in if this is a new annotation for the triple.
Args:
subj: Entity subject to be annotated
pref: Entities Predicate Anchor to be annotated
obj: Entities Object Anchor to be annotated
a_p: Annotation predicate
a_o: Annotation object
Returns:
A BNode which is an address to the location in the RDF graph that is storing the
annotation information.
|
codesearchnet
|
def EnableNetworkInterfaces(
self, interfaces, logger, dhclient_script=None):
helpers.CallDhclient(interfaces, logger, dhclient_script=dhclient_script)
|
Enable the list of network interfaces.
Args:
interfaces: list of string, the output device names to enable.
logger: logger object, used to write to SysLog and serial port.
dhclient_script: string, the path to a dhclient script used by dhclient.
|
juraj-google-style
|
def decode(self, image_tokens: torch.LongTensor) -> torch.FloatTensor:
if image_tokens.shape[1] != self.quantize.quant_state_dims[0] * self.quantize.quant_state_dims[1]:
raise ValueError(f'Expected `image_tokens` to have shape `(batch_size, {self.quantize.quant_state_dims[0] * self.quantize.quant_state_dims[1]})`, but got shape `{image_tokens.shape}`.')
codebook_entry = self.quantize.get_codebook_entry(image_tokens)
hidden_states = self.post_quant_conv(codebook_entry)
pixel_values = self.decoder(hidden_states)
return pixel_values
|
Decodes quantized token IDs into pixel values.
Args:
image_tokens (torch.LongTensor): Batch of token IDs.
Returns:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
Pixel values decoded from the token IDs.
|
github-repos
|
def wrap_http_for_auth(credentials, http):
orig_request_method = http.request
def new_request(uri, method='GET', body=None, headers=None,
redirections=httplib2.DEFAULT_MAX_REDIRECTS,
connection_type=None):
if not credentials.access_token:
_LOGGER.info('Attempting refresh to obtain '
'initial access_token')
credentials._refresh(orig_request_method)
headers = _initialize_headers(headers)
credentials.apply(headers)
_apply_user_agent(headers, credentials.user_agent)
body_stream_position = None
if all(getattr(body, stream_prop, None) for stream_prop in
_STREAM_PROPERTIES):
body_stream_position = body.tell()
resp, content = request(orig_request_method, uri, method, body,
clean_headers(headers),
redirections, connection_type)
max_refresh_attempts = 2
for refresh_attempt in range(max_refresh_attempts):
if resp.status not in REFRESH_STATUS_CODES:
break
_LOGGER.info('Refreshing due to a %s (attempt %s/%s)',
resp.status, refresh_attempt + 1,
max_refresh_attempts)
credentials._refresh(orig_request_method)
credentials.apply(headers)
if body_stream_position is not None:
body.seek(body_stream_position)
resp, content = request(orig_request_method, uri, method, body,
clean_headers(headers),
redirections, connection_type)
return resp, content
http.request = new_request
http.request.credentials = credentials
|
Prepares an HTTP object's request method for auth.
Wraps HTTP requests with logic to catch auth failures (typically
identified via a 401 status code). In the event of failure, tries
to refresh the token used and then retry the original request.
Args:
credentials: Credentials, the credentials used to identify
the authenticated user.
http: httplib2.Http, an http object to be used to make
auth requests.
|
juraj-google-style
|
def get_common_register(start, end):
registers = defaultdict(int)
for line in lines(start, end):
insn = line.insn
for operand in insn.operands:
if (not operand.type.has_phrase):
continue
if (not operand.base):
continue
register_name = operand.base
registers[register_name] += 1
return max(registers.iteritems(), key=operator.itemgetter(1))[0]
|
Get the register most commonly used in accessing structs.
Access to is considered for every opcode that accesses memory
in an offset from a register::
mov eax, [ebx + 5]
For every access, the struct-referencing registers, in this case
`ebx`, are counted. The most used one is returned.
Args:
start: The adderss to start at
end: The address to finish at
|
codesearchnet
|
def replace_batch_norm(model):
for name, module in model.named_children():
if isinstance(module, nn.BatchNorm2d):
new_module = TableTransformerFrozenBatchNorm2d(module.num_features)
if not module.weight.device == torch.device('meta'):
new_module.weight.data.copy_(module.weight)
new_module.bias.data.copy_(module.bias)
new_module.running_mean.data.copy_(module.running_mean)
new_module.running_var.data.copy_(module.running_var)
model._modules[name] = new_module
if len(list(module.children())) > 0:
replace_batch_norm(module)
|
Recursively replace all `torch.nn.BatchNorm2d` with `TableTransformerFrozenBatchNorm2d`.
Args:
model (torch.nn.Module):
input model
|
github-repos
|
def save_data(data, file_fmt, append=False, drop_dups=None, info=None, **kwargs):
d_file = data_file(file_fmt=file_fmt, info=info, **kwargs)
if (append and files.exists(d_file)):
data = pd.DataFrame(pd.concat([pd.read_parquet(d_file), data], sort=False))
if (drop_dups is not None):
data.drop_duplicates(subset=utils.tolist(drop_dups), inplace=True)
if (not data.empty):
data.to_parquet(d_file)
return data
|
Save data to file
Args:
data: pd.DataFrame
file_fmt: data file format in terms of f-strings
append: if append data to existing data
drop_dups: list, drop duplicates in columns
info: dict, infomation to be hashed and passed to f-strings
**kwargs: additional parameters for f-strings
Examples:
>>> data = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b'])
>>> # save_data(
>>> # data, '{ROOT}/daily/{typ}.parq',
>>> # ROOT='tests/data', typ='earnings'
>>> # )
|
codesearchnet
|
def _finalize_namespaces(self, ns_dict=None):
if ns_dict:
for (ns, alias) in six.iteritems(ns_dict):
self._collected_namespaces.add_namespace_uri(ns, alias)
self._collected_namespaces.add_namespace_uri(ns_uri=idgen.get_id_namespace(), prefix=idgen.get_id_namespace_alias())
self._fix_example_namespace()
for (prefix, uri) in six.iteritems(self._input_namespaces):
self._collected_namespaces.add_namespace_uri(uri, prefix)
self._collected_namespaces.import_from(namespaces.XML_NAMESPACES)
for ns_uri in self._collected_namespaces.namespace_uris:
preferred_prefix = self._collected_namespaces.preferred_prefix_for_namespace(ns_uri)
if preferred_prefix:
continue
prefixes = self._collected_namespaces.get_prefixes(ns_uri)
if prefixes:
prefix = next(iter(prefixes))
else:
prefix = namespaces.lookup_name(ns_uri)
if (prefix is None):
raise namespaces.NoPrefixesError(ns_uri)
self._collected_namespaces.set_preferred_prefix_for_namespace(ns_uri=ns_uri, prefix=prefix, add_if_not_exist=True)
|
Returns a dictionary of namespaces to be exported with an XML
document.
This loops over all the namespaces that were discovered and built
during the execution of ``collect()`` and
``_parse_collected_classes()`` and attempts to merge them all.
Raises:
.namespaces.DuplicatePrefixError: If namespace prefix was
mapped to more than one namespace.
.namespaces.NoPrefixError: If a namespace was collected that is
not mapped to a prefix.
|
codesearchnet
|
def get_central_coors(self, row, col):
if row < 0 or row >= self.nRows or col < 0 or col >= self.nCols:
raise ValueError("The row (%d) or col (%d) must be >=0 and less than "
"nRows (%d) or nCols (%d)!" % (row, col, self.nRows, self.nCols))
else:
tmpx = self.xMin + (col + 0.5) * self.dx
tmpy = self.yMax - (row + 0.5) * self.dx
return tmpx, tmpy
|
Get the coordinates of central grid.
Args:
row: row number, range from 0 to (nRows - 1).
col: col number, range from 0 to (nCols - 1).
Returns:
XY coordinates. If the row or col are invalid, raise ValueError.
|
juraj-google-style
|
def _track_trackable(self, trackable, name, overwrite=False):
self._maybe_initialize_trackable()
if not isinstance(trackable, Trackable):
raise TypeError(f'Trackable._track_trackable() can only be used to track objects of type Trackable. Got type {type(trackable)}.')
if not getattr(self, '_manual_tracking', True):
return trackable
new_reference = TrackableReference(name=name, ref=trackable)
current_object = self._lookup_dependency(name)
if current_object is not None and current_object is not trackable:
if not overwrite:
raise ValueError(f"Called Trackable._track_trackable() with name='{name}', but a Trackable with this name is already declared as a dependency. Names must be unique (or overwrite=True).")
for index, (old_name, _) in enumerate(self._self_unconditional_checkpoint_dependencies):
if name == old_name:
self._self_unconditional_checkpoint_dependencies[index] = new_reference
elif current_object is None:
self._self_unconditional_checkpoint_dependencies.append(new_reference)
self._handle_deferred_dependencies(name=name, trackable=trackable)
self._self_unconditional_dependency_names[name] = trackable
return trackable
|
Declare a dependency on another `Trackable` object.
Indicates that checkpoints for this object should include variables from
`trackable`.
Variables in a checkpoint are mapped to `Trackable`s based on the names
provided when the checkpoint was written. To avoid breaking existing
checkpoints when modifying a class, neither variable names nor dependency
names (the names passed to `_track_trackable`) may change.
Args:
trackable: A `Trackable` which this object depends on.
name: A local name for `trackable`, used for loading checkpoints into the
correct objects.
overwrite: Boolean, whether silently replacing dependencies is OK. Used
for __setattr__, where throwing an error on attribute reassignment would
be inappropriate.
Returns:
`trackable`, for convenience when declaring a dependency and
assigning to a member variable in one statement.
Raises:
TypeError: If `trackable` does not inherit from `Trackable`.
ValueError: If another object is already tracked by this name.
|
github-repos
|
def _Open(self, path_spec=None, mode='rb'):
if not path_spec:
raise ValueError('Missing path specification.')
data_stream = getattr(path_spec, 'data_stream', None)
self._file_system = resolver.Resolver.OpenFileSystem(
path_spec, resolver_context=self._resolver_context)
file_entry = self._file_system.GetFileEntryByPathSpec(path_spec)
if not file_entry:
raise IOError('Unable to open file entry.')
fsntfs_data_stream = None
fsntfs_file_entry = file_entry.GetNTFSFileEntry()
if not fsntfs_file_entry:
raise IOError('Unable to open NTFS file entry.')
if data_stream:
fsntfs_data_stream = fsntfs_file_entry.get_alternate_data_stream_by_name(
data_stream)
if not fsntfs_data_stream:
raise IOError('Unable to open data stream: {0:s}.'.format(
data_stream))
elif not fsntfs_file_entry.has_default_data_stream():
raise IOError('Missing default data stream.')
self._fsntfs_data_stream = fsntfs_data_stream
self._fsntfs_file_entry = fsntfs_file_entry
|
Opens the file-like object defined by path specification.
Args:
path_spec (PathSpec): path specification.
mode (Optional[str]): file access mode.
Raises:
AccessError: if the access to open the file was denied.
IOError: if the file-like object could not be opened.
OSError: if the file-like object could not be opened.
PathSpecError: if the path specification is incorrect.
ValueError: if the path specification is invalid.
|
juraj-google-style
|
def read(self, input_buffer, kmip_version=enums.KMIPVersion.KMIP_1_0):
super(GetAttributesResponsePayload, self).read(input_buffer, kmip_version=kmip_version)
local_buffer = utils.BytearrayStream(input_buffer.read(self.length))
if self.is_tag_next(enums.Tags.UNIQUE_IDENTIFIER, local_buffer):
unique_identifier = primitives.TextString(tag=enums.Tags.UNIQUE_IDENTIFIER)
unique_identifier.read(local_buffer, kmip_version=kmip_version)
self.unique_identifier = unique_identifier.value
else:
raise exceptions.InvalidKmipEncoding('The GetAttributes response payload encoding is missing the unique identifier.')
if (kmip_version < enums.KMIPVersion.KMIP_2_0):
self._attributes = list()
while self.is_tag_next(enums.Tags.ATTRIBUTE, local_buffer):
attribute = objects.Attribute()
attribute.read(local_buffer, kmip_version=kmip_version)
self._attributes.append(attribute)
elif self.is_tag_next(enums.Tags.ATTRIBUTES, local_buffer):
attributes = objects.Attributes()
attributes.read(local_buffer, kmip_version=kmip_version)
temp_attr = objects.convert_attributes_to_template_attribute(attributes)
self._attributes = temp_attr.attributes
else:
raise exceptions.InvalidKmipEncoding('The GetAttributes response payload encoding is missing the attributes structure.')
self.is_oversized(local_buffer)
|
Read the data encoding the GetAttributes response payload and decode
it into its constituent parts.
Args:
input_buffer (stream): A data stream containing encoded object
data, supporting a read method; usually a BytearrayStream
object.
kmip_version (KMIPVersion): An enumeration defining the KMIP
version with which the object will be decoded. Optional,
defaults to KMIP 1.0.
|
codesearchnet
|
def __init__(self, scope, parent, name):
CodeEntity.__init__(self, scope, parent)
self.name = name
self.children = []
|
Constructor for namespaces.
Args:
scope (CodeEntity): The program scope where this object belongs.
parent (CodeEntity): This object's parent in the program tree.
name (str): The name of the namespace in the program.
|
juraj-google-style
|
def _full_reduce(nodes):
(was_reduced, nodes) = maybe_reduce(nodes)
while was_reduced:
(was_reduced, nodes) = maybe_reduce(nodes)
return nodes
|
Apply degree reduction to ``nodes`` until it can no longer be reduced.
.. note::
There is also a Fortran implementation of this function, which
will be used if it can be built.
Args:
nodes (numpy.ndarray): The nodes in the curve.
Returns:
numpy.ndarray: The fully degree-reduced nodes.
|
codesearchnet
|
async def _get_person_json(self, id_, url_params=None):
url = self.url_builder('person/{person_id}', dict(person_id=id_), url_params=(url_params or OrderedDict()))
data = (await self.get_data(url))
return data
|
Retrieve raw person JSON by ID.
Arguments:
id_ (:py:class:`int`): The person's TMDb ID.
url_params (:py:class:`dict`): Any additional URL parameters.
Returns:
:py:class:`dict`: The JSON data.
|
codesearchnet
|
def add_record_references(self, app_id, record_id, field_id, target_record_ids):
self._swimlane.request('post', 'app/{0}/record/{1}/add-references'.format(app_id, record_id), json={'fieldId': field_id, 'targetRecordIds': target_record_ids})
|
Bulk operation to directly add record references without making any additional requests
Warnings:
Does not perform any app, record, or target app/record validation
Args:
app_id (str): Full App ID string
record_id (str): Full parent Record ID string
field_id (str): Full field ID to target reference field on parent Record string
target_record_ids (List(str)): List of full target reference Record ID strings
|
codesearchnet
|
def check_cache(resource_type):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
try:
adapter = args[0]
key, val = list(kwargs.items())[0]
except IndexError:
logger.warning("Couldn't generate full index key, skipping cache")
else:
index_key = (resource_type, key, val)
try:
cached_record = adapter._swimlane.resources_cache[index_key]
except KeyError:
logger.debug('Cache miss: `{!r}`'.format(index_key))
else:
logger.debug('Cache hit: `{!r}`'.format(cached_record))
return cached_record
return func(*args, **kwargs)
return wrapper
return decorator
|
Decorator for adapter methods to check cache for resource before normally sending requests to retrieve data
Only works with single kwargs, almost always used with @one_of_keyword_only decorator
Args:
resource_type (type(APIResource)): Subclass of APIResource of cache to be checked when called
|
juraj-google-style
|
def lf_empirical_accuracies(L, Y):
Y = arraylike_to_numpy(Y)
L = L.toarray()
X = np.where(L == 0, 0, np.where(L == np.vstack([Y] * L.shape[1]).T, 1, -1))
return 0.5 * (X.sum(axis=0) / (L != 0).sum(axis=0) + 1)
|
Return the **empirical accuracy** against a set of labels Y (e.g. dev
set) for each LF.
Args:
L: an n x m scipy.sparse matrix where L_{i,j} is the label given by the
jth LF to the ith candidate
Y: an [n] or [n, 1] np.ndarray of gold labels
|
juraj-google-style
|
def GetTokenBalance(self, token, watch_only=0):
total = Decimal(0)
if (watch_only > 0):
for addr in self._watch_only:
balance = token.GetBalance(self, addr)
total += balance
else:
for contract in self._contracts.values():
balance = token.GetBalance(self, contract.Address)
total += balance
return total
|
Get the balance of the specified token.
Args:
token (NEP5Token): an instance of type neo.Wallets.NEP5Token to get the balance from.
watch_only (bool): True, to limit to watch only wallets.
Returns:
Decimal: total balance for `token`.
|
codesearchnet
|
def add_param_summary(*summary_lists, **kwargs):
collections = kwargs.pop('collections', None)
assert (len(kwargs) == 0), ('Unknown kwargs: ' + str(kwargs))
ctx = get_current_tower_context()
if ((ctx is not None) and (not ctx.is_main_training_tower)):
return
params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
with cached_name_scope('param-summary'):
for p in params:
name = p.op.name
for (rgx, actions) in summary_lists:
if (not rgx.endswith('$')):
rgx = (rgx + '$')
if re.match(rgx, name):
add_tensor_summary(p, actions, name=name, collections=collections)
|
Add summary ops for all trainable variables matching the regex, under a
reused 'param-summary' name scope.
This function is a no-op if not calling from main training tower.
Args:
summary_lists (list): each is (regex, [list of summary type]).
Summary type is defined in :func:`add_tensor_summary`.
collections (list[str]): collections of the summary ops.
Example:
.. code-block:: python
add_param_summary(
('.*/W', ['histogram', 'rms']),
('.*/gamma', ['scalar']),
)
|
codesearchnet
|
def forbidden(cls, errors=None):
if cls.expose_status:
cls.response.content_type = 'application/json'
cls.response._status_line = '403 Forbidden'
return cls(403, errors=errors).to_json
|
Shortcut API for HTTP 403 `Forbidden` response.
Args:
errors (list): Response key/value data.
Returns:
WSResponse Instance.
|
juraj-google-style
|
def _create_distributed_tensor_spec(strategy, tensor_spec):
num_replicas = len(strategy.extended.worker_devices)
if not _always_wrap(strategy):
return tensor_spec
def _get_value_per_replica(tensor_spec_per_input):
value_specs = [tensor_spec_per_input for _ in range(num_replicas)]
return values.PerReplicaSpec(*value_specs)
return nest.map_structure(_get_value_per_replica, tensor_spec)
|
Create a `tf.TypeSpec` for a given strategy and input `tensor_spec`.
Args:
strategy: The given `tf.distribute` strategy.
tensor_spec: `tf.TensorSpec` of a given value. The batch dimension of the
shape should be None if you have partial batches.
Returns:
A `tf.TypeSpec` that matches the values produced by a given strategy. This
can be a `tf.TensorSpec` or a `PerRelicaSpec`.
|
github-repos
|
def DeregisterDecrypter(cls, decrypter):
encryption_method = decrypter.ENCRYPTION_METHOD.lower()
if encryption_method not in cls._decrypters:
raise KeyError(
'Decrypter for encryption method: {0:s} not set.'.format(
decrypter.ENCRYPTION_METHOD))
del cls._decrypters[encryption_method]
|
Deregisters a decrypter for a specific encryption method.
Args:
decrypter (type): decrypter class.
Raises:
KeyError: if the corresponding decrypter is not set.
|
juraj-google-style
|
def __init__(self, proxy: T, reference: Any=None):
super().__init__('placeholder', proxy)
self._reference = reference
|
Initialize a placeholder expression.
Args:
proxy: A proxy object with the type expected to be bound to this
expression. Used for type checking at pipeline construction time.
|
github-repos
|
def get_all_supported_aspect_ratios(max_image_tiles: int) -> List[Tuple[int, int]]:
aspect_ratios = []
for width in range(1, max_image_tiles + 1):
for height in range(1, max_image_tiles + 1):
if width * height <= max_image_tiles:
aspect_ratios.append((width, height))
return aspect_ratios
|
Computes all allowed aspect ratios for a given maximum number of input tiles.
This function calculates all possible arrangements of tiles that can be formed
within the constraint of the maximum number of tiles. Each arrangement is
represented by its aspect ratio (width/height) and the corresponding tile configuration.
Args:
max_image_tiles (`int`):
The maximum number of tiles allowed.
Returns:
`List[Tuple[int, int]]`: A list of tuples, each tuple representing a valid (width, height)
configuration in terms of number of tiles.
Example:
>>> get_all_supported_aspect_ratios(4)
[(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1), (4, 1)]
|
github-repos
|
def ParseBookmarkAnnotationRow(
self, parser_mediator, query, row, **unused_kwargs):
query_hash = hash(query)
event_data = FirefoxPlacesBookmarkAnnotationEventData()
event_data.content = self._GetRowValue(query_hash, row, 'content')
event_data.offset = self._GetRowValue(query_hash, row, 'id')
event_data.query = query
event_data.title = self._GetRowValue(query_hash, row, 'title')
event_data.url = self._GetRowValue(query_hash, row, 'url')
timestamp = self._GetRowValue(query_hash, row, 'dateAdded')
if timestamp:
date_time = dfdatetime_posix_time.PosixTimeInMicroseconds(
timestamp=timestamp)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_ADDED)
parser_mediator.ProduceEventWithEventData(event, event_data)
timestamp = self._GetRowValue(query_hash, row, 'lastModified')
if timestamp:
date_time = dfdatetime_posix_time.PosixTimeInMicroseconds(
timestamp=timestamp)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_MODIFICATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
|
Parses a bookmark annotation row.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
query (str): query that created the row.
row (sqlite3.Row): row.
|
juraj-google-style
|
def _parse_title(dom, details):
title = details.find("h1")
if not title:
title = dom.find("title")
assert title, "Can't find <title> tag!"
return title[0].getContent().split("|")[0].strip()
return title[0].getContent().strip()
|
Parse title/name of the book.
Args:
dom (obj): HTMLElement containing whole HTML page.
details (obj): HTMLElement containing slice of the page with details.
Returns:
str: Book's title.
Raises:
AssertionError: If title not found.
|
juraj-google-style
|
def _rapply(input_layer, operation, *op_args, **op_kwargs):
op_args = list(op_args)
op_args.append(input_layer.tensor)
return input_layer.with_tensor(operation(*op_args, **op_kwargs))
|
Applies the given operation to this after expanding op_args.
Args:
input_layer: The input layer for this op.
operation: An operation that takes a tensor and the supplied args.
*op_args: Extra arguments for operation.
**op_kwargs: Keyword arguments for the operation.
Returns:
A new layer with operation applied.
|
codesearchnet
|
def add_case(self, case_obj, vtype='snv', mode='vcf', ped_svg=None):
new_case = Case(case_id=case_obj.case_id,
name=case_obj.name,
variant_source=case_obj.variant_source,
variant_type=vtype,
variant_mode=mode,
pedigree=ped_svg,
compressed=case_obj.compressed,
tabix_index=case_obj.tabix_index)
inds = [Individual(
ind_id=ind.ind_id,
name=ind.name,
mother=ind.mother,
father=ind.father,
sex=ind.sex,
phenotype=ind.phenotype,
ind_index=ind.ind_index,
variant_source=ind.variant_source,
bam_path=ind.bam_path,
) for ind in case_obj.individuals]
new_case.individuals = inds
if self.case(new_case.case_id):
logger.warning("Case already exists in database!")
else:
self.session.add(new_case)
self.save()
return new_case
|
Load a case with individuals.
Args:
case_obj (puzzle.models.Case): initialized case model
|
juraj-google-style
|
def _assert_valid_dtypes(self, tensors):
valid_dtypes = self._valid_dtypes()
for t in tensors:
dtype = t.dtype.base_dtype
if dtype not in valid_dtypes:
raise ValueError('Invalid type %r for %s, expected: %s.' % (dtype, t.name, [v for v in valid_dtypes]))
|
Asserts tensors are all valid types (see `_valid_dtypes`).
Args:
tensors: Tensors to check.
Raises:
ValueError: If any tensor is not a valid type.
|
github-repos
|
def __getattr__(self, name):
if not str(name) in ['_initialized', '_settings']:
try:
xx = self.read_probes(name)
return xx
except:
print(('class ' + type(self).__name__ + ' has no attribute ' + str(name)))
raise AttributeError('class ' + type(self).__name__ + ' has no attribute ' + str(name))
|
allows to read instrument inputs in the form value = instrument.input
Args:
name: name of input channel
Returns: value of input channel
|
juraj-google-style
|
def enable_beacon(name, **kwargs):
ret = {'comment': [], 'result': True}
if (not name):
ret['comment'] = 'Beacon name is required.'
ret['result'] = False
return ret
if (('test' in kwargs) and kwargs['test']):
ret['comment'] = 'Beacon {0} would be enabled.'.format(name)
else:
_beacons = list_(return_yaml=False, **kwargs)
if (name not in _beacons):
ret['comment'] = 'Beacon {0} is not currently configured.'.format(name)
ret['result'] = False
return ret
try:
eventer = salt.utils.event.get_event('minion', opts=__opts__)
res = __salt__['event.fire']({'func': 'enable_beacon', 'name': name}, 'manage_beacons')
if res:
event_ret = eventer.get_event(tag='/salt/minion/minion_beacon_enabled_complete', wait=kwargs.get('timeout', 30))
if (event_ret and event_ret['complete']):
beacons = event_ret['beacons']
beacon_config_dict = _get_beacon_config_dict(beacons[name])
if (('enabled' in beacon_config_dict) and beacon_config_dict['enabled']):
ret['result'] = True
ret['comment'] = 'Enabled beacon {0} on minion.'.format(name)
else:
ret['result'] = False
ret['comment'] = 'Failed to enable beacon {0} on minion.'.format(name)
elif event_ret:
ret['result'] = False
ret['comment'] = event_ret['comment']
else:
ret['result'] = False
ret['comment'] = 'Did not receive the manage event before the timeout of {0}s'.format(kwargs.get('timeout', 30))
return ret
except KeyError:
ret['result'] = False
ret['comment'] = 'Event module not available. Beacon enable job failed.'
return ret
|
Enable a beacon on the minion.
Args:
name (str): Name of the beacon to enable.
Returns:
dict: Boolean and status message on success or failure of enable.
CLI Example:
.. code-block:: bash
salt '*' beacons.enable_beacon ps
|
codesearchnet
|
def releases(self, **kwargs):
path = self._get_id_path('releases')
response = self._GET(path, kwargs)
self._set_attrs_to_values(response)
return response
|
Get the release date and certification information by country for a
specific movie id.
Args:
append_to_response: (optional) Comma separated, any movie method.
Returns:
A dict representation of the JSON returned from the API.
|
codesearchnet
|
def UploadAccount(self, hash_algorithm, hash_key, accounts):
param = {'hashAlgorithm': hash_algorithm, 'signerKey': hash_key, 'users': accounts}
return self._InvokeGitkitApi('uploadAccount', param)
|
Uploads multiple accounts to Gitkit server.
Args:
hash_algorithm: string, algorithm to hash password.
hash_key: string, base64-encoded key of the algorithm.
accounts: array of accounts to be uploaded.
Returns:
Response of the API.
|
codesearchnet
|
def _pad_for_batching(self, pixel_values: List['torch.Tensor']) -> List['torch.Tensor']:
max_patch = max((len(x) for x in pixel_values))
pixel_values = [torch.nn.functional.pad(image, pad=[0, 0, 0, 0, 0, 0, 0, max_patch - image.shape[0]]) for image in pixel_values]
return pixel_values
|
Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches.
Args:
pixel_values (`List[torch.Tensor]`):
An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`)
Returns:
List[`torch.Tensor`]: The padded images.
|
github-repos
|
def GetMessageStrings(cls, formatter_mediator, event):
formatter_object = cls.GetFormatterObject(event.data_type)
return formatter_object.GetMessages(formatter_mediator, event)
|
Retrieves the formatted message strings for a specific event object.
Args:
formatter_mediator (FormatterMediator): mediates the interactions between
formatters and other components, such as storage and Windows EventLog
resources.
event (EventObject): event.
Returns:
list[str, str]: long and short version of the message string.
|
juraj-google-style
|
def list_locations(access_token, subscription_id):
endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/locations?api-version=', BASE_API])
return do_get(endpoint, access_token)
|
List available locations for a subscription.
Args:
access_token (str): A valid Azure authentication token.
subscription_id (str): Azure subscription id.
Returns:
HTTP response. JSON list of locations.
|
codesearchnet
|
def __init__(self, n=65, radius=1, port_distance_from_surface=.07):
super(Sphere, self).__init__()
particle = mb.Particle(name='np')
particle.add(mb.Port(anchor=particle), label='out')
pattern = mb.SpherePattern(n)
pattern.scale(radius)
particles = pattern.apply(particle, orientation='normal', compound_port='out')
self.add(particles, label='np_[$]')
for i, pos in enumerate(pattern.points):
particle = mb.Particle(name="np", pos=pos)
self.add(particle, "np_{}".format(i))
port = mb.Port(anchor=particle)
self.add(port, "port_{}".format(i))
port.spin(-pi/2, [0, 0, 1])
port.spin(-arcsin(pos[2]/radius), [0, 1, 0])
port.spin(arctan2(pos[1], pos[0]), [0, 0, 1])
port.translate(pos/radius * port_distance_from_surface)
|
Initialize a Sphere object.
Args:
n (int): Number of points used to construct the Sphere.
radius (float): Radius of the Sphere.
port_distance_from_surface (float): Distance of Ports from Sphere.
|
juraj-google-style
|
def scatterplot_matrix(df, features, downsample_frac=None, figsize=(15, 15)):
if downsample_frac:
df = df.sample(frac=downsample_frac)
plt.figure(figsize=figsize)
sns.pairplot(df[features], hue='target')
plt.show()
|
Plot a scatterplot matrix for a list of features, colored by target value.
Example: `scatterplot_matrix(X, X.columns.tolist(), downsample_frac=0.01)`
Args:
df: Pandas dataframe containing the target column (named 'target').
features: The list of features to include in the correlation plot.
downsample_frac: Dataframe downsampling rate (0.1 to include 10% of the dataset).
figsize: The size of the plot.
|
codesearchnet
|
def __init__(self, channel):
self.NotifyReviewEvent = channel.unary_unary(
'/pb.Analyzer/NotifyReviewEvent',
request_serializer=lookout_dot_sdk_dot_event__pb2.ReviewEvent.SerializeToString,
response_deserializer=lookout_dot_sdk_dot_service__analyzer__pb2.EventResponse.FromString,
)
self.NotifyPushEvent = channel.unary_unary(
'/pb.Analyzer/NotifyPushEvent',
request_serializer=lookout_dot_sdk_dot_event__pb2.PushEvent.SerializeToString,
response_deserializer=lookout_dot_sdk_dot_service__analyzer__pb2.EventResponse.FromString,
)
|
Constructor.
Args:
channel: A grpc.Channel.
|
juraj-google-style
|
def write_asc_file(filename, data, xsize, ysize, geotransform, nodata_value):
UtilClass.mkdir(os.path.dirname(FileClass.get_file_fullpath(filename)))
header = ('NCOLS %d\nNROWS %d\nXLLCENTER %f\nYLLCENTER %f\nCELLSIZE %f\nNODATA_VALUE %f' % (xsize, ysize, (geotransform[0] + (0.5 * geotransform[1])), (geotransform[3] - ((ysize - 0.5) * geotransform[1])), geotransform[1], nodata_value))
with open(filename, 'w', encoding='utf-8') as f:
f.write(header)
for i in range(0, ysize):
for j in range(0, xsize):
f.write(('%s\t' % repr(data[i][j])))
f.write('\n')
f.close()
|
Output Raster to ASCII file.
Args:
filename: output ASCII filename.
data: 2D array data.
xsize: Col count.
ysize: Row count.
geotransform: geographic transformation.
nodata_value: nodata_flow value.
|
codesearchnet
|
def saturate_cast(value, dtype, name=None):
with ops.name_scope(name, 'saturate_cast', [value]) as name:
value = ops.convert_to_tensor(value, name='value')
dtype = dtypes.as_dtype(dtype).base_dtype
in_dtype = value.dtype
if in_dtype.is_complex:
if dtype.is_complex:
real_in_dtype = in_dtype.real_dtype
real_out_dtype = dtype.real_dtype
if real_in_dtype.min < real_out_dtype.min or real_in_dtype.max > real_out_dtype.max:
value = gen_math_ops._clip_by_value(value, ops.convert_to_tensor(builtins.complex(real_out_dtype.min, real_out_dtype.min), dtype=in_dtype), ops.convert_to_tensor(builtins.complex(real_out_dtype.max, real_out_dtype.max), dtype=in_dtype), name='clamp')
return cast(value, dtype, name=name)
else:
value = real(value)
logging.warn('Casting complex to real discards imaginary part.')
in_dtype = in_dtype.real_dtype
out_real_dtype = dtype.real_dtype
if forward_compat.forward_compatible(2024, 11, 1) or in_dtype.min < out_real_dtype.min or in_dtype.max > out_real_dtype.max:
np_dtype = in_dtype.as_numpy_dtype
try:
promoted_type = np.promote_types(np_dtype, out_real_dtype.as_numpy_dtype)
except TypeError:
promoted_type = float
min_limit = np_dtype(np.maximum(in_dtype.min, out_real_dtype.min))
promoted = np.array([min_limit, out_real_dtype.min], dtype=promoted_type)
if promoted[0] < promoted[1]:
min_limit = np.nextafter(min_limit, np_dtype(0), dtype=np_dtype)
max_limit = np_dtype(np.minimum(in_dtype.max, out_real_dtype.max))
promoted = np.array([max_limit, out_real_dtype.max], dtype=promoted_type)
if promoted[0] > promoted[1]:
max_limit = np.nextafter(max_limit, np_dtype(0), dtype=np_dtype)
value = gen_math_ops._clip_by_value(value, ops.convert_to_tensor(min_limit, dtype=in_dtype), ops.convert_to_tensor(max_limit, dtype=in_dtype), name='clamp')
return cast(value, dtype, name=name)
|
Performs a safe saturating cast of `value` to `dtype`.
This function casts the input to `dtype` without overflow. If
there is a danger that values would over or underflow in the cast, this op
applies the appropriate clamping before the cast. See `tf.cast` for more
details.
Args:
value: A `Tensor`.
dtype: The desired output `DType`.
name: A name for the operation (optional).
Returns:
`value` safely cast to `dtype`.
|
github-repos
|
def leak(self):
(capacity, last_leak) = self.storage.mget(self.key_amount, self.key_last_leak, coherent=True)
now = time.time()
if last_leak:
elapsed = (now - last_leak)
decrement = (elapsed * self.rate)
new_capacity = max(int((capacity - decrement)), 0)
else:
new_capacity = 0
self.storage.mset({self.key_amount: new_capacity, self.key_last_leak: now})
return new_capacity
|
Leak the adequate amount of data from the bucket.
This should be called before any consumption takes place.
Returns:
int: the new capacity of the bucket
|
codesearchnet
|
def _validate_measure_sampling(self, experiment):
if (self._shots <= 1):
self._sample_measure = False
return
if hasattr(experiment.config, 'allows_measure_sampling'):
self._sample_measure = experiment.config.allows_measure_sampling
else:
measure_flag = False
for instruction in experiment.instructions:
if (instruction.name == 'reset'):
self._sample_measure = False
return
if measure_flag:
if (instruction.name not in ['measure', 'barrier', 'id', 'u0']):
self._sample_measure = False
return
elif (instruction.name == 'measure'):
measure_flag = True
self._sample_measure = True
|
Determine if measure sampling is allowed for an experiment
Args:
experiment (QobjExperiment): a qobj experiment.
|
codesearchnet
|
def process_openxml_file(filename: str, print_good: bool, delete_if_bad: bool) -> None:
print_bad = (not print_good)
try:
file_good = is_openxml_good(filename)
file_bad = (not file_good)
if ((print_good and file_good) or (print_bad and file_bad)):
print(filename)
if (delete_if_bad and file_bad):
log.warning('Deleting: {}', filename)
os.remove(filename)
except Exception as e:
log.critical('Uncaught error in subprocess: {!r}\n{}', e, traceback.format_exc())
raise
|
Prints the filename of, or deletes, an OpenXML file depending on whether
it is corrupt or not.
Args:
filename: filename to check
print_good: if ``True``, then prints the filename if the file
appears good.
delete_if_bad: if ``True``, then deletes the file if the file
appears corrupt.
|
codesearchnet
|
def random_masking(self, sequence, noise=None):
batch_size, seq_length, dim = sequence.shape
len_keep = int(seq_length * (1 - self.config.mask_ratio))
if noise is None:
noise = torch.rand(batch_size, seq_length, device=sequence.device)
ids_shuffle = torch.argsort(noise, dim=1).to(sequence.device)
ids_restore = torch.argsort(ids_shuffle, dim=1).to(sequence.device)
ids_keep = ids_shuffle[:, :len_keep]
sequence_unmasked = torch.gather(sequence, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, dim))
mask = torch.ones([batch_size, seq_length], device=sequence.device)
mask[:, :len_keep] = 0
mask = torch.gather(mask, dim=1, index=ids_restore)
return (sequence_unmasked, mask, ids_restore)
|
Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random
noise.
Args:
sequence (`torch.LongTensor` of shape `(batch_size, sequence_length, dim)`)
noise (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*) which is
mainly used for testing purposes to control randomness and maintain the reproducibility
|
github-repos
|
def verified(self, institute_id):
query = {'verb': 'validate', 'institute': institute_id}
res = []
validate_events = self.event_collection.find(query)
for validated in list(validate_events):
case_id = validated['case']
var_obj = self.variant(case_id=case_id, document_id=validated['variant_id'])
case_obj = self.case(case_id=case_id)
if ((not case_obj) or (not var_obj)):
continue
var_obj['case_obj'] = {'display_name': case_obj['display_name'], 'individuals': case_obj['individuals']}
res.append(var_obj)
return res
|
Return all verified variants for a given institute
Args:
institute_id(str): institute id
Returns:
res(list): a list with validated variants
|
codesearchnet
|
def add_router(self, path, router):
if self.strict_router_check and not isinstance(router, Router):
raise TypeError("Expected object of type Router, found %r" % type(router))
log.info("{} Adding router {} on path {}", id(self), router, path)
self.middleware.add(path=path,
func=router,
method_mask=HTTPMethod.ALL,)
|
Adds a router to the list of routers
Args:
path (str or regex): The path on which the router binds
router (growler.Router): The router which will respond to
requests
Raises:
TypeError: If `strict_router_check` attribute is True and
the router is not an instance of growler.Router.
|
juraj-google-style
|
def get_metadata_attribute(self, metaname):
metadata_value = self.metadata.get(metaname, None)
if (metadata_value is None):
raise NoMetadataException(('No metadata attribute named %s' % metaname))
if (not isinstance(metadata_value, list)):
raise TypeError('Metadata is not a list and it should be.')
if (len(metadata_value) > 1):
return metadata_value
else:
return metadata_value[0]
|
Get the metadata attribute by the name.
Args:
metaname (:obj:`str`): Name of the attribute
Returns:
:obj:`list` or :obj:`str`: Value(s) of the requested metadata
attribute
Raises:
NoMetadataException: Attribute error
TypeError: Metadata should be a list
|
codesearchnet
|
def OpenFileEntry(cls, path_spec_object, resolver_context=None):
file_system = cls.OpenFileSystem(path_spec_object, resolver_context=resolver_context)
if (resolver_context is None):
resolver_context = cls._resolver_context
file_entry = file_system.GetFileEntryByPathSpec(path_spec_object)
resolver_context.ReleaseFileSystem(file_system)
return file_entry
|
Opens a file entry object defined by path specification.
Args:
path_spec_object (PathSpec): path specification.
resolver_context (Optional[Context]): resolver context, where None
represents the built in context which is not multi process safe.
Returns:
FileEntry: file entry or None if the path specification could not be
resolved.
|
codesearchnet
|
def _parse_exchange_token_response(content):
resp = {}
content = _helpers._from_bytes(content)
try:
resp = json.loads(content)
except Exception:
resp = _helpers.parse_unique_urlencoded(content)
if resp and 'expires' in resp:
resp['expires_in'] = resp.pop('expires')
return resp
|
Parses response of an exchange token request.
Most providers return JSON but some (e.g. Facebook) return a
url-encoded string.
Args:
content: The body of a response
Returns:
Content as a dictionary object. Note that the dict could be empty,
i.e. {}. That basically indicates a failure.
|
juraj-google-style
|
def secondary_training_status_message(job_description, prev_description):
if job_description is None or job_description.get('SecondaryStatusTransitions') is None\
or len(job_description.get('SecondaryStatusTransitions')) == 0:
return ''
prev_description_secondary_transitions = prev_description.get('SecondaryStatusTransitions')\
if prev_description is not None else None
prev_transitions_num = len(prev_description['SecondaryStatusTransitions'])\
if prev_description_secondary_transitions is not None else 0
current_transitions = job_description['SecondaryStatusTransitions']
if len(current_transitions) == prev_transitions_num:
transitions_to_print = current_transitions[-1:]
else:
transitions_to_print = current_transitions[prev_transitions_num - len(current_transitions):]
status_strs = []
for transition in transitions_to_print:
message = transition['StatusMessage']
time_str = datetime.utcfromtimestamp(
time.mktime(job_description['LastModifiedTime'].timetuple())).strftime('%Y-%m-%d %H:%M:%S')
status_strs.append('{} {} - {}'.format(time_str, transition['Status'], message))
return '\n'.join(status_strs)
|
Returns a string contains last modified time and the secondary training job status message.
Args:
job_description: Returned response from DescribeTrainingJob call
prev_description: Previous job description from DescribeTrainingJob call
Returns:
str: Job status string to be printed.
|
juraj-google-style
|
def set_requestable(self, requestable=True):
self.data['is_requestdata_type'] = requestable
if requestable:
self.data['private'] = False
|
Set the dataset to be of type requestable or not
Args:
requestable (bool): Set whether dataset is requestable. Defaults to True.
Returns:
None
|
juraj-google-style
|
def make_initial_frame_chooser(real_env, frame_stack_size, simulation_random_starts, simulation_flip_first_random_for_beginning, split=tf.estimator.ModeKeys.TRAIN):
initial_frame_rollouts = real_env.current_epoch_rollouts(split=split, minimal_rollout_frames=frame_stack_size)
def initial_frame_chooser(batch_size):
'Frame chooser.'
deterministic_initial_frames = initial_frame_rollouts[0][:frame_stack_size]
if (not simulation_random_starts):
initial_frames = ([deterministic_initial_frames] * batch_size)
else:
initial_frames = random_rollout_subsequences(initial_frame_rollouts, batch_size, frame_stack_size)
if simulation_flip_first_random_for_beginning:
initial_frames[0] = deterministic_initial_frames
return np.stack([[frame.observation.decode() for frame in initial_frame_stack] for initial_frame_stack in initial_frames])
return initial_frame_chooser
|
Make frame chooser.
Args:
real_env: T2TEnv to take initial frames from.
frame_stack_size (int): Number of consecutive frames to extract.
simulation_random_starts (bool): Whether to choose frames at random.
simulation_flip_first_random_for_beginning (bool): Whether to flip the first
frame stack in every batch for the frames at the beginning.
split (tf.estimator.ModeKeys or None): Data split to take the frames from,
None means use all frames.
Returns:
Function batch_size -> initial_frames.
|
codesearchnet
|
def conjugate(self):
return self.__class__(scalar=self.scalar, vector=(- self.vector))
|
Quaternion conjugate, encapsulated in a new instance.
For a unit quaternion, this is the same as the inverse.
Returns:
A new Quaternion object clone with its vector part negated
|
codesearchnet
|
def requestMapIdentity(self, subject, vendorSpecific=None):
response = self.requestMapIdentityResponse(subject, vendorSpecific)
return self._read_boolean_response(response)
|
See Also: requestMapIdentityResponse()
Args:
subject:
vendorSpecific:
Returns:
|
juraj-google-style
|
def run_config_diagnostics(config_path=CONFIG_PATH):
config = read_config(config_path)
missing_sections = set()
malformed_entries = defaultdict(set)
for section, expected_section_keys in SECTION_KEYS.items():
section_content = config.get(section)
if not section_content:
missing_sections.add(section)
else:
for option in expected_section_keys:
option_value = section_content.get(option)
if not option_value:
malformed_entries[section].add(option)
return config_path, missing_sections, malformed_entries
|
Run diagnostics on the configuration file.
Args:
config_path (str): Path to the configuration file.
Returns:
str, Set[str], dict(str, Set[str]): The path to the configuration file, a set of missing
sections and a dict that maps each section to the entries that have either missing or empty
options.
|
juraj-google-style
|
def save_data_files(bs, prefix=None, directory=None):
filename = 'phonon_band.dat'
filename = ('{}_phonon_band.dat'.format(prefix) if prefix else filename)
directory = (directory if directory else '.')
filename = os.path.join(directory, filename)
with open(filename, 'w') as f:
header = '
f.write(header)
for band in bs.bands:
for (d, e) in zip(bs.distance, band):
f.write('{:.8f} {:.8f}\n'.format(d, e))
f.write('\n')
return filename
|
Write the phonon band structure data files to disk.
Args:
bs (:obj:`~pymatgen.phonon.bandstructure.PhononBandStructureSymmLine`):
The phonon band structure.
prefix (:obj:`str`, optional): Prefix for data file.
directory (:obj:`str`, optional): Directory in which to save the data.
Returns:
str: The filename of the written data file.
|
codesearchnet
|
def _einsum_matmul_index_helper(gate_indices, number_of_qubits):
if ((len(gate_indices) + number_of_qubits) > 26):
raise QiskitError('Total number of free indexes limited to 26')
tens_in = ascii_lowercase[:number_of_qubits]
tens_out = list(tens_in)
mat_left = ''
mat_right = ''
for (pos, idx) in enumerate(reversed(gate_indices)):
mat_left += ascii_lowercase[((- 1) - pos)]
mat_right += tens_in[((- 1) - idx)]
tens_out[((- 1) - idx)] = ascii_lowercase[((- 1) - pos)]
tens_out = ''.join(tens_out)
return (mat_left, mat_right, tens_in, tens_out)
|
Return the index string for Numpy.eignsum matrix multiplication.
The returned indices are to perform a matrix multiplication A.v where
the matrix A is an M-qubit matrix, matrix v is an N-qubit vector, and
M <= N, and identity matrices are implied on the subsystems where A has no
support on v.
Args:
gate_indices (list[int]): the indices of the right matrix subsystems
to contract with the left matrix.
number_of_qubits (int): the total number of qubits for the right matrix.
Returns:
tuple: (mat_left, mat_right, tens_in, tens_out) of index strings for
that may be combined into a Numpy.einsum function string.
Raises:
QiskitError: if the total number of qubits plus the number of
contracted indices is greater than 26.
|
codesearchnet
|
def diet_expert(x, hidden_size, params):
@fn_with_diet_vars(params)
def diet_expert_internal(x):
dim = x.get_shape().as_list()[-1]
h = tf.layers.dense(x, hidden_size, activation=tf.nn.relu, use_bias=False)
y = tf.layers.dense(h, dim, use_bias=False)
y *= tf.rsqrt(tf.to_float(dim * hidden_size))
return y
return diet_expert_internal(x)
|
A two-layer feed-forward network with relu activation on hidden layer.
Uses diet variables.
Recomputes hidden layer on backprop to save activation memory.
Args:
x: a Tensor with shape [batch, io_size]
hidden_size: an integer
params: a diet variable HParams object.
Returns:
a Tensor with shape [batch, io_size]
|
juraj-google-style
|
def extend(self, *bindings):
self._bindings.extend(self._preprocess(bindings))
return self
|
Append the given bindings to this keymap.
Arguments:
*bindings (Binding): Bindings to be added.
Returns:
Keymap: self
|
juraj-google-style
|
def _obj_to_path(obj):
if (obj is None):
return obj
if (inspect.isclass(obj) or inspect.isfunction(obj)):
fetched = getattr(sys.modules[obj.__module__], obj.__name__, None)
if (fetched is None):
raise ValueError(('Object %r must be defined on the top level of a module.' % obj))
return ('%s.%s' % (obj.__module__, obj.__name__))
raise TypeError(('Unexpected type %s.' % type(obj)))
|
Returns the fully qualified path to the object.
Args:
obj: obj must be a new style top level class, or a top level function.
No inner function or static method.
Returns:
Fully qualified path to the object.
Raises:
TypeError: when argument obj has unsupported type.
ValueError: when obj can't be discovered on the top level.
|
codesearchnet
|
def _retrieve_all_filtered_nodes(self):
if self._node_filters is None:
return None
all_filtered_nodes = set()
nodes_to_visit = list(self._node_filters)
while nodes_to_visit:
node_path = nodes_to_visit.pop(0)
node_id = self._node_path_to_id[node_path]
if node_id in all_filtered_nodes:
continue
all_filtered_nodes.add(node_id)
node, setter = self._loaded_nodes.get(node_id, (None, None))
if node is not None:
if not isinstance(node, base.Trackable):
raise TypeError(f"Error when processing dictionary values passed to nodes_to_load.Object at {node_path} is expected to be a checkpointable (i.e. 'trackable') TensorFlow object (e.g. tf.Variable, tf.Module or Keras layer).")
node._maybe_initialize_trackable()
for reference in self._proto.nodes[node_id].children:
child_object, _ = self._loaded_nodes.get(reference.node_id, (None, None))
if child_object is None and node is not None:
child_object = node._lookup_dependency(reference.local_name)
if isinstance(child_object, data_structures.TrackableDataStructure):
setter = lambda *args: None
self._loaded_nodes[reference.node_id] = (child_object, setter)
child_path = '{}.{}'.format(node_path, reference.local_name)
self._node_path_to_id[child_path] = reference.node_id
nodes_to_visit.append(child_path)
if 0 in all_filtered_nodes:
return None
return all_filtered_nodes
|
Traverses through the object graph to get the IDs of all nodes to load.
As a side-effect, if node_filters is a dictionary that contains already-
created objects, then the children tracked by those objects will be
added to node_filters.
Returns:
List of all nodes to load, or None if all nodes should be loaded.
|
github-repos
|
def _select_class_id(ids, selected_id):
ids = sparse_tensor.convert_to_tensor_or_sparse_tensor(ids)
if isinstance(ids, sparse_tensor.SparseTensor):
return sparse_ops.sparse_retain(ids, math_ops.equal(ids.values, selected_id))
ids_shape = array_ops.shape(ids, out_type=dtypes.int64)
ids_last_dim = array_ops.size(ids_shape) - 1
filled_selected_id_shape = math_ops.reduced_shape(ids_shape, array_ops.reshape(ids_last_dim, [1]))
filled_selected_id = array_ops.fill(filled_selected_id_shape, math_ops.cast(selected_id, dtypes.int64))
result = sets.set_intersection(filled_selected_id, ids)
return sparse_tensor.SparseTensor(indices=result.indices, values=result.values, dense_shape=ids_shape)
|
Filter all but `selected_id` out of `ids`.
Args:
ids: `int64` `Tensor` or `SparseTensor` of IDs.
selected_id: Int id to select.
Returns:
`SparseTensor` of same dimensions as `ids`. This contains only the entries
equal to `selected_id`.
|
github-repos
|
def assertAllLessEqual(self, a, comparison_target):
a, comparison_target = self.evaluate_if_both_tensors(a, comparison_target)
a = self._GetNdArray(a)
self.assertLessEqual(np.max(a), comparison_target)
|
Assert element values are all less than or equal to a target value.
Args:
a: The numpy `ndarray`, or anything that can be converted into a numpy
`ndarray` (including Tensor).
comparison_target: The target value of comparison.
|
github-repos
|
def parse(self, string, root=None):
phrases = []
meta = self.meta.search(string)
while meta:
pos = meta.start()
if (meta.group() == '<'):
(string, child, meta) = self.open_phrase(string, pos)
if (child and root):
root.nested.append(child)
elif child:
phrases.append(child)
continue
elif root:
if (meta.group() == '('):
meta = self.meta.search(string, (pos + 1))
if (meta.group() == ')'):
(string, root, meta) = self.handle_arguments(string, root, pos, meta.start())
continue
elif (meta.group() == '>'):
(string, phrase, meta) = self.close_phrase(string, root, pos)
if phrase:
return (string, phrase)
continue
(string, meta) = self.escape_meta(string, pos)
if (not root):
return (string, phrases)
word = re.search('([\\w\\s]+)(?![\\d]*>[\\w\\s]+>)', string)
what = 'No closing tag found for opening tag'
if word:
what += " after expression '{0}'".format(word.group())
raise errors.ParseError((what + '!'))
|
Parses a string to handle escaped tags and retrieve phrases.
This method works recursively to parse nested tags. When escaped
tags are found, those are removed from the string. Also argument
sequences are removed from the string. The string returned can
thus be quite different from the string passed.
Arguments:
string (str): The string to parse.
root (Phrase): If in a recursive call, the root/parent phrase.
Returns:
For one, the escaped string (without escape characters and
phrase arguments). For the other, it depends on the stack-depth.
If this is the lowest recursion depth/level (i.e. the stack
call resulting from the first function call in self.beautify()),
it will return a list of phrases. For higher stack levels (
i.e. resulting from recursive function calls from with
self.parse(), for nested phrases), it returns exactly one
Phrase instance.
Raises:
errors.ParseError: If no closing tag could be
found for an opening tag.
|
codesearchnet
|
def words_string(fake: Faker, n: int) -> str:
return ' '.join(fake.words(n))
|
Provide Faker words as a joined string.
Args:
* fake: Faker instance
* n: number of words
Returns:
* string of n words joined by spaces
|
github-repos
|
def get_newest(blocks, layout_blocks):
layout_temp = list(layout_blocks)
for i in range(0, len(layout_temp)):
for k in range(0, len(layout_blocks)):
if (blocks[layout_temp[i]].ec_hdr.image_seq != blocks[layout_blocks[k]].ec_hdr.image_seq):
continue
if (blocks[layout_temp[i]].leb_num != blocks[layout_blocks[k]].leb_num):
continue
if (blocks[layout_temp[i]].vid_hdr.sqnum > blocks[layout_blocks[k]].vid_hdr.sqnum):
del layout_blocks[k]
break
return layout_blocks
|
Filter out old layout blocks from list
Arguments:
List:blocks -- List of block objects
List:layout_blocks -- List of layout block indexes
Returns:
List -- Newest layout blocks in list
|
codesearchnet
|
def push(self, key, value, *, section=DataStoreDocumentSection.Data):
key_notation = '.'.join([section, key])
result = self._collection.update_one({'_id': ObjectId(self._workflow_id)}, {'$push': {key_notation: self._encode_value(value)}, '$currentDate': {'lastModified': True}})
return (result.modified_count == 1)
|
Appends a value to a list in the specified section of the document.
Args:
key (str): The key pointing to the value that should be stored/updated.
It supports MongoDB's dot notation for nested fields.
value: The value that should be appended to a list in the data store.
section (DataStoreDocumentSection): The section from which the data should
be retrieved.
Returns:
bool: ``True`` if the value could be appended, otherwise ``False``.
|
codesearchnet
|
def uninstall(pkg):
ret = {'result': None, 'output': ''}
out = __salt__['cmd.run_all'](FLATPAK_BINARY_NAME + ' uninstall ' + pkg)
if out['retcode'] and out['stderr']:
ret['stderr'] = out['stderr'].strip()
ret['result'] = False
else:
ret['stdout'] = out['stdout'].strip()
ret['result'] = True
return ret
|
Uninstall the specified package.
Args:
pkg (str): The package name.
Returns:
dict: The ``result`` and ``output``.
CLI Example:
.. code-block:: bash
salt '*' flatpak.uninstall org.gimp.GIMP
|
juraj-google-style
|
def get_corrections_dict(self, entry):
corrections = {}
for c in self.corrections:
val = c.get_correction(entry)
if val != 0:
corrections[str(c)] = val
return corrections
|
Returns the corrections applied to a particular entry.
Args:
entry: A ComputedEntry object.
Returns:
({correction_name: value})
|
juraj-google-style
|
def write(self, output_buffer, kmip_version=enums.KMIPVersion.KMIP_1_3):
if (kmip_version < enums.KMIPVersion.KMIP_1_3):
raise exceptions.VersionNotSupported('KMIP {} does not support the ProfileInformation object.'.format(kmip_version.value))
local_buffer = BytearrayStream()
if self._profile_name:
self._profile_name.write(local_buffer, kmip_version=kmip_version)
else:
raise exceptions.InvalidField('The ProfileInformation structure is missing the profile name field.')
if self._server_uri:
self._server_uri.write(local_buffer, kmip_version=kmip_version)
if self._server_port:
self._server_port.write(local_buffer, kmip_version=kmip_version)
self.length = local_buffer.length()
super(ProfileInformation, self).write(output_buffer, kmip_version=kmip_version)
output_buffer.write(local_buffer.buffer)
|
Write the ProfileInformation structure encoding to the data stream.
Args:
output_buffer (stream): A data stream in which to encode
ProfileInformation structure data, supporting a write method.
kmip_version (enum): A KMIPVersion enumeration defining the KMIP
version with which the object will be encoded. Optional,
defaults to KMIP 2.0.
Raises:
InvalidField: Raised if the profile name field is not defined.
VersionNotSupported: Raised when a KMIP version is provided that
does not support the ProfileInformation structure.
|
codesearchnet
|
def multiply(x1, x2, output_shape=None, name=None):
if not isinstance(x2, Tensor):
return ScalarMultiplyOperation(x1, x2).outputs[0]
with tf.name_scope(name, default_name="mul"):
x1, x2 = binary_arguments_to_tensors(x1, x2)
return einsum(
[x1, x2],
output_shape=_infer_binary_broadcast_shape(
x1.shape, x2.shape, output_shape))
|
Binary multiplication with broadcasting.
Args:
x1: a Tensor
x2: a Tensor
output_shape: an optional Shape
name: an optional string
Returns:
a Tensor
|
juraj-google-style
|
def register_instance(self, instance: '_instance_base.Instance') -> None:
|
Treating self as a class definition, register an instance of it.
This is used for keeping merging call records on instances when generating
the formal definition of a class. See InterpreterClass and TupleClass.
Args:
instance: An instance of this class (as a BaseValue)
|
github-repos
|
def delete(self, collector_id=None):
cid = self.collector_id
if collector_id:
cid = collector_id
url = '{0}/{1}'.format(self.url, cid)
request = requests.delete(url, auth=self.auth)
try:
response = request.json()
except ValueError:
response = {
u'message': u'The request completed successfully.',
u'status': 200,
}
return response
|
Delete a collector from inventory.
Args:
collector_id (int): id of collector (optional)
|
juraj-google-style
|
def calculate_parity(n):
if (not is_natural(n)):
raise ValueError('Expected n to be a positive integer.')
y = 0
n = abs(n)
while n:
y += (n & 1)
n = (n >> 1)
return (y & 1)
|
Calculates and returns the parity of a number.
The parity of a number is ``1`` if the number has an odd number of ones
in its binary representation, otherwise ``0``.
Args:
n (int): the number whose parity to calculate
Returns:
``1`` if the number has an odd number of ones, otherwise ``0``.
Raises:
ValueError: if ``n`` is less than ``0``.
|
codesearchnet
|
def numeric_function_clean_dataframe(self, axis):
result = None
query_compiler = self
if not axis and len(self.index) == 0:
result = pandas.Series(dtype=np.int64)
nonnumeric = [
col
for col, dtype in zip(self.columns, self.dtypes)
if not is_numeric_dtype(dtype)
]
if len(nonnumeric) == len(self.columns):
if axis:
result = pandas.Series([np.nan for _ in self.index])
else:
result = pandas.Series([0 for _ in self.index])
else:
query_compiler = self.drop(columns=nonnumeric)
return result, query_compiler
|
Preprocesses numeric functions to clean dataframe and pick numeric indices.
Args:
axis: '0' if columns and '1' if rows.
Returns:
Tuple with return value(if any), indices to apply func to & cleaned Manager.
|
juraj-google-style
|
def gui(discord_token, discord_client_id):
logger.info("Starting Modis in GUI")
import tkinter as tk
logger.debug("Loading packages")
from modis.discord_modis import gui as discord_modis_gui
from modis.reddit_modis import gui as reddit_modis_gui
from modis.facebook_modis import gui as facebook_modis_gui
logger.debug("Initialising window")
root = tk.Tk()
root.minsize(width=800, height=400)
root.geometry("800x600")
root.title("Modis Control Panel")
root.iconbitmap(r"{}/assets/modis.ico".format(file_dir))
discord = discord_modis_gui.Frame(root, discord_token, discord_client_id)
discord.grid(column=0, row=0, padx=0, pady=0, sticky="W E N S")
root.columnconfigure(0, weight=1)
root.rowconfigure(0, weight=1)
discord.columnconfigure(0, weight=1)
discord.rowconfigure(0, weight=1)
logger.debug("GUI initialised")
root.mainloop()
|
Start Modis in gui format.
Args:
discord_token (str): The bot token for your Discord application
discord_client_id: The bot's client ID
|
juraj-google-style
|
async def connect(self, client_id, conn_string):
conn_id = self.adapter.unique_conn_id()
self._client_info(client_id)
(await self.adapter.connect(conn_id, conn_string))
self._hook_connect(conn_string, conn_id, client_id)
|
Connect to a device on behalf of a client.
See :meth:`AbstractDeviceAdapter.connect`.
Args:
client_id (str): The client we are working for.
conn_string (str): A connection string that will be
passed to the underlying device adapter to connect.
Raises:
DeviceServerError: There is an issue with your client_id.
DeviceAdapterError: The adapter had an issue connecting.
|
codesearchnet
|
def make_timebar(progress=0, duration=0):
duration_string = api_music.duration_to_string(duration)
if (duration <= 0):
return '---'
time_counts = int(round(((progress / duration) * TIMEBAR_LENGTH)))
if (time_counts > TIMEBAR_LENGTH):
time_counts = TIMEBAR_LENGTH
if (duration > 0):
bar = ((('│' + (TIMEBAR_PCHAR * time_counts)) + (TIMEBAR_ECHAR * (TIMEBAR_LENGTH - time_counts))) + '│')
time_bar = '{} {}'.format(bar, duration_string)
else:
time_bar = duration_string
return time_bar
|
Makes a new time bar string
Args:
progress: How far through the current song we are (in seconds)
duration: The duration of the current song (in seconds)
Returns:
timebar (str): The time bar string
|
codesearchnet
|
def end(self, session):
pass
|
Called at the end of session.
The `session` argument can be used in case the hook wants to run final ops,
such as saving a last checkpoint.
If `session.run()` raises exception other than OutOfRangeError or
StopIteration then `end()` is not called.
Note the difference between `end()` and `after_run()` behavior when
`session.run()` raises OutOfRangeError or StopIteration. In that case
`end()` is called but `after_run()` is not called.
Args:
session: A TensorFlow Session that will be soon closed.
|
github-repos
|
def __init__(self, log_path, config_path, output_path):
if FLAGS.phantomjs_timeout is not None:
logging.info(
'Using FLAGS.phantomjs_timeout which is deprecated in favor'
'of FLAGS.capture_timeout - please update your config')
capture_timeout = FLAGS.phantomjs_timeout
else:
capture_timeout = FLAGS.capture_timeout
process_worker.ProcessWorkflow.__init__(
self, log_path, timeout_seconds=capture_timeout)
self.config_path = config_path
self.output_path = output_path
|
Initializer.
Args:
log_path: Where to write the verbose logging output.
config_path: Path to the screenshot config file to pass
to PhantomJs.
output_path: Where the output screenshot should be written.
|
juraj-google-style
|
def augment(self, dct: NonAugmentedDict, document: Optional[YamlDocument]=None) -> AugmentedDict:
Validator.instance_of(dict, raise_ex=True, dct=dct)
for instance in self._extensions:
nodes = list(dict_find_pattern(dct, **instance.config()))
for (parent, k, val) in nodes:
parent.pop(k)
fragment = instance.apply(ExtensionContext(mentor=self, document=(document or dct), dct=dct, parent_node=parent, node=(k, val)))
if (fragment is not None):
parent.update(fragment)
return dct
|
Augments the given dictionary by using all the bound extensions.
Args:
dct: Dictionary to augment.
document: The document the dictionary was loaded from.
Returns:
The augmented dictionary.
|
codesearchnet
|
def get_distrib_version():
key = 'distrib_ver'
out, err = run_shell_cmd(cmds_all[PLATFORM][key])
if err and FLAGS.debug:
print('Error in detecting distribution version:\n %s' % str(err))
return out.strip(b'\n')
|
Retrieves distribution version of the operating system.
Returns:
String that is the distribution version.
e.g. '14.04'
|
github-repos
|
def parse_simple_id(chrom, pos, ref, alt):
return '_'.join([chrom, pos, ref, alt])
|
Parse the simple id for a variant
Simple id is used as a human readable reference for a position, it is
in no way unique.
Args:
chrom(str)
pos(str)
ref(str)
alt(str)
Returns:
simple_id(str): The simple human readable variant id
|
codesearchnet
|
def auto_forward(auto=True):
global __auto_forward_state
prev = __auto_forward_state
__auto_forward_state = auto
(yield)
__auto_forward_state = prev
|
Context for dynamic graph execution mode.
Args:
auto (bool): Whether forward computation is executed during a
computation graph construction.
Returns: bool
|
codesearchnet
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.