code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def process_fixed_issues(self, volumes, existing_issues):
fixed_issues = []
for (issue_id, issue) in list(existing_issues.items()):
if (issue_id not in volumes):
fixed_issues.append(issue)
return fixed_issues
|
Provided a list of volumes and existing issues, returns a list of fixed issues to be deleted
Args:
volumes (`dict`): A dictionary keyed on the issue id, with the :obj:`Volume` object as the value
existing_issues (`dict`): A dictionary keyed on the issue id, with the :obj:`EBSVolumeAuditIssue` object as
the value
Returns:
:obj:`list` of :obj:`EBSVolumeAuditIssue`
|
codesearchnet
|
def security(self, domains):
api_name = 'opendns-security'
fmt_url_path = u'security/name/{0}.json'
return self._multi_get(api_name, fmt_url_path, domains)
|
Calls security end point and adds an 'is_suspicious' key to each response.
Args:
domains: An enumerable of strings
Returns:
A dict of {domain: security_result}
|
codesearchnet
|
def _ParseMRUListEntryValue(
self, parser_mediator, registry_key, entry_index, entry_letter, **kwargs):
value_string = ''
value = registry_key.GetValueByName('{0:s}'.format(entry_letter))
if value is None:
parser_mediator.ProduceExtractionWarning(
'missing MRUList value: {0:s} in key: {1:s}.'.format(
entry_letter, registry_key.path))
elif value.DataIsString():
value_string = value.GetDataAsObject()
elif value.DataIsBinaryData():
logger.debug((
'[{0:s}] Non-string MRUList entry value: {1:s} parsed as string '
'in key: {2:s}.').format(self.NAME, entry_letter, registry_key.path))
utf16le_string_map = self._GetDataTypeMap('utf16le_string')
try:
value_string = self._ReadStructureFromByteStream(
value.data, 0, utf16le_string_map)
except (ValueError, errors.ParseError) as exception:
parser_mediator.ProduceExtractionWarning((
'unable to parse MRUList entry value: {0:s} with error: '
'{1!s}').format(entry_letter, exception))
value_string = value_string.rstrip('\x00')
return value_string
|
Parses the MRUList entry value.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
registry_key (dfwinreg.WinRegistryKey): Windows Registry key that contains
the MRUList value.
entry_index (int): MRUList entry index.
entry_letter (str): character value representing the entry.
Returns:
str: MRUList entry value.
|
juraj-google-style
|
def __init__(self, ppp_config_dir=None, enhancement_config_file=None):
self.ppp_config_dir = ppp_config_dir or get_environ_config_dir()
self.enhancement_config_file = enhancement_config_file
if self.enhancement_config_file is None:
config_fn = os.path.join("enhancements", "generic.yaml")
self.enhancement_config_file = config_search_paths(config_fn, self.ppp_config_dir)
if not self.enhancement_config_file:
self.enhancement_tree = None
else:
if not isinstance(self.enhancement_config_file, (list, tuple)):
self.enhancement_config_file = [self.enhancement_config_file]
self.enhancement_tree = EnhancementDecisionTree(*self.enhancement_config_file)
self.sensor_enhancement_configs = []
|
Initialize an Enhancer instance.
Args:
ppp_config_dir: Points to the base configuration directory
enhancement_config_file: The enhancement configuration to apply, False to leave as is.
|
juraj-google-style
|
def scalar_pb(tag, data, description=None):
arr = np.array(data)
if (arr.shape != ()):
raise ValueError(('Expected scalar shape for tensor, got shape: %s.' % arr.shape))
if (arr.dtype.kind not in ('b', 'i', 'u', 'f')):
raise ValueError(('Cast %s to float is not supported' % arr.dtype.name))
tensor_proto = tensor_util.make_tensor_proto(arr.astype(np.float32))
summary_metadata = metadata.create_summary_metadata(display_name=None, description=description)
summary = summary_pb2.Summary()
summary.value.add(tag=tag, metadata=summary_metadata, tensor=tensor_proto)
return summary
|
Create a scalar summary_pb2.Summary protobuf.
Arguments:
tag: String tag for the summary.
data: A 0-dimensional `np.array` or a compatible python number type.
description: Optional long-form description for this summary, as a
`str`. Markdown is supported. Defaults to empty.
Raises:
ValueError: If the type or shape of the data is unsupported.
Returns:
A `summary_pb2.Summary` protobuf object.
|
codesearchnet
|
def connect(self, wire_char, where, label=None):
if 'top' in where and self.top_connector:
self.top_connect = self.top_connector[wire_char]
if 'bot' in where and self.bot_connector:
self.bot_connect = self.bot_connector[wire_char]
if label:
self.top_format = self.top_format[:-1] + (label if label else "")
|
Connects boxes and elements using wire_char and setting proper connectors.
Args:
wire_char (char): For example '║' or '│'.
where (list["top", "bot"]): Where the connector should be set.
label (string): Some connectors have a label (see cu1, for example).
|
juraj-google-style
|
def _get_params(self, validator_parameter, name_prefix):
params_validator = self.request.get(validator_parameter)
user_params = {}
for key in self.request.arguments():
if key.startswith(name_prefix):
values = self.request.get_all(key)
adjusted_key = key[len(name_prefix):]
if len(values) == 1:
user_params[adjusted_key] = values[0]
else:
user_params[adjusted_key] = values
if params_validator:
resolved_validator = util.for_name(params_validator)
resolved_validator(user_params)
return user_params
|
Retrieves additional user-supplied params for the job and validates them.
Args:
validator_parameter: name of the request parameter which supplies
validator for this parameter set.
name_prefix: common prefix for all parameter names in the request.
Raises:
Any exception raised by the 'params_validator' request parameter if
the params fail to validate.
Returns:
The user parameters.
|
juraj-google-style
|
def CopyFromDict(self, attributes):
for (attribute_name, attribute_value) in attributes.items():
if (attribute_name[0] == '_'):
continue
setattr(self, attribute_name, attribute_value)
|
Copies the attribute container from a dictionary.
Args:
attributes (dict[str, object]): attribute values per name.
|
codesearchnet
|
def new_scope(self, new_scope={}):
old_scopes, self.scopes = self.scopes, self.scopes.new_child(new_scope)
yield
self.scopes = old_scopes
|
Add a new innermost scope for the duration of the with block.
Args:
new_scope (dict-like): The scope to add.
|
juraj-google-style
|
def __init__(self, atlas_name, root_dir, reference_gempro, reference_genome_path=None, description=None):
Object.__init__(self, id=atlas_name, description=description)
self._root_dir = None
self.root_dir = root_dir
self.strains = DictList()
self.df_orthology_matrix = pd.DataFrame()
self._orthology_matrix_has_sequences = False
self.reference_gempro = reference_gempro
if not reference_genome_path and not self.reference_gempro.genome_path:
self.reference_gempro.genome_path = self.reference_gempro.write_representative_sequences_file(outname=self.reference_gempro.id)
else:
self.reference_gempro.genome_path = reference_genome_path
self._empty_reference_gempro = None
if self.reference_gempro.model:
self._empty_reference_gempro = GEMPRO(gem_name='Copied reference GEM-PRO', gem=self.reference_gempro.model.copy())
for x in self._empty_reference_gempro.genes:
x.reset_protein()
else:
strain_genes = [x.id for x in self.reference_gempro.genes]
if len(strain_genes) == 0:
raise ValueError('GEM-PRO has no genes, unable to run multi-strain analysis')
self._empty_reference_gempro = GEMPRO(gem_name='Copied reference GEM-PRO', genes_list=strain_genes)
|
Prepare a GEM-PRO model for ATLAS analysis
Args:
atlas_name (str): Name of your ATLAS project
root_dir (str): Path to where the folder named after ``atlas_name`` will be created.
reference_gempro (GEMPRO): GEM-PRO model to use as the reference genome
reference_genome_path (str): Path to reference genome FASTA file
description (str): Optional string to describe your project
|
juraj-google-style
|
def reset_internal_states(self, record=None):
self._record = None
self._count = 0
self._record = record
|
Resets the internal state of the recorder.
Args:
record: records.TestResultRecord, the test record for a test.
|
github-repos
|
def expected_value(self):
alpha = (self.__success + self.__default_alpha)
beta = (self.__failure + self.__default_beta)
try:
expected_value = (alpha / (alpha + beta))
except ZeroDivisionError:
expected_value = 0.0
return expected_value
|
Compute expected value.
Returns:
Expected value.
|
codesearchnet
|
def delta_stoichiometry( reactants, products ):
totals = Counter()
for r in reactants:
totals.update( ( r * -1.0 ).stoichiometry )
for p in products:
totals.update( p.stoichiometry )
to_return = {}
for c in totals:
if totals[c] != 0:
to_return[c] = totals[c]
return to_return
|
Calculate the change in stoichiometry for reactants --> products.
Args:
reactants (list(vasppy.Calculation): A list of vasppy.Calculation objects. The initial state.
products (list(vasppy.Calculation): A list of vasppy.Calculation objects. The final state.
Returns:
(Counter): The change in stoichiometry.
|
juraj-google-style
|
def __init__(self, key, secret):
self.__key = key
self.__secret = secret
if self.__key is None or self.__secret is None:
raise ValueError("Key and secret must be set.")
|
Handles token authentication for Neurio Client.
Args:
key (string): your Neurio API key
secret (string): your Neurio API secret
|
juraj-google-style
|
def peek(quantity, min_type=EventType.firstevent, max_type=EventType.lastevent):
return _peep(quantity, lib.SDL_PEEKEVENT, min_type, max_type)
|
Return events at the front of the event queue, within the specified minimum and maximum type,
and do not remove them from the queue.
Args:
quantity (int): The maximum number of events to return.
min_type (int): The minimum value for the event type of the returned events.
max_type (int): The maximum value for the event type of the returned events.
Returns:
List[Event]: Events from the front of the event queue.
Raises:
SDLError: If there was an error retrieving the events.
|
codesearchnet
|
def get_pending_users_queryset(self, search_keyword, customer_uuid):
queryset = PendingEnterpriseCustomerUser.objects.filter(
enterprise_customer__uuid=customer_uuid
)
if search_keyword is not None:
queryset = queryset.filter(user_email__icontains=search_keyword)
return queryset
|
Get the list of PendingEnterpriseCustomerUsers we want to render.
Args:
search_keyword (str): The keyword to search for in pending users' email addresses.
customer_uuid (str): A unique identifier to filter down to only pending users
linked to a particular EnterpriseCustomer.
|
juraj-google-style
|
def _compose_custom_getters(getter_a, getter_b):
if (not getter_a):
return getter_b
if (not getter_b):
return getter_a
def getter_fn(getter, *args, **kwargs):
return getter_b(functools.partial(getter_a, getter), *args, **kwargs)
return getter_fn
|
Compose two custom getters.
Example use:
tf.get_variable_scope().set_custom_getter(
compose_custom_getters(tf.get_variable_scope().custom_getter, new_getter))
This composes getters in the same way as creating a new variable scope with
the new_getter, but it does not actually create a new variable scope.
Args:
getter_a: a custom getter - generally from the existing variable scope.
getter_b: a custom getter
Returns:
a custom getter
|
codesearchnet
|
def download(url: str, filename: str,
skip_cert_verify: bool = True) -> None:
log.info("Downloading from {} to {}", url, filename)
ctx = ssl.create_default_context()
if skip_cert_verify:
log.debug("Skipping SSL certificate check for " + url)
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE
with urllib.request.urlopen(url, context=ctx) as u, open(filename,
'wb') as f:
f.write(u.read())
|
Downloads a URL to a file.
Args:
url: URL to download from
filename: file to save to
skip_cert_verify: skip SSL certificate check?
|
juraj-google-style
|
def is_valid(container, path):
try:
tmp_hash_path = container.filename + ".hash"
with open(tmp_hash_path, 'r') as tmp_file:
tmp_hash = tmp_file.readline()
except IOError:
LOG.info("No .hash-file in the tmp-directory.")
container_hash_path = local.path(path) / "gentoo.tar.bz2.hash"
if container_hash_path.exists():
with open(container_hash_path, 'r') as hash_file:
container_hash = hash_file.readline()
return container_hash == tmp_hash
return False
|
Checks if a container exists and is unpacked.
Args:
path: The location where the container is expected.
Returns:
True if the container is valid, False if the container needs to
unpacked or if the path does not exist yet.
|
juraj-google-style
|
def generate_meta_features(path, base_learner_id):
with functions.DBContextManager(path) as session:
base_learner = session.query(models.BaseLearner).filter_by(id=base_learner_id).first()
if not base_learner:
raise exceptions.UserError('Base learner {} '
'does not exist'.format(base_learner_id))
base_learner.job_id = get_current_job().id
base_learner.job_status = 'started'
session.add(base_learner)
session.commit()
try:
est = base_learner.return_estimator()
extraction = session.query(models.Extraction).first()
X, y = extraction.return_train_dataset()
return_splits_iterable = functions.import_object_from_string_code(
extraction.meta_feature_generation['source'],
'return_splits_iterable'
)
meta_features_list = []
trues_list = []
for train_index, test_index in return_splits_iterable(X, y):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
est = est.fit(X_train, y_train)
meta_features_list.append(
getattr(est, base_learner.base_learner_origin.
meta_feature_generator)(X_test)
)
trues_list.append(y_test)
meta_features = np.concatenate(meta_features_list, axis=0)
y_true = np.concatenate(trues_list)
for key in base_learner.base_learner_origin.metric_generators:
metric_generator = functions.import_object_from_string_code(
base_learner.base_learner_origin.metric_generators[key],
'metric_generator'
)
base_learner.individual_score[key] = metric_generator(y_true, meta_features)
meta_features_path = base_learner.meta_features_path(path)
if not os.path.exists(os.path.dirname(meta_features_path)):
os.makedirs(os.path.dirname(meta_features_path))
np.save(meta_features_path, meta_features, allow_pickle=False)
base_learner.job_status = 'finished'
base_learner.meta_features_exists = True
session.add(base_learner)
session.commit()
except:
session.rollback()
base_learner.job_status = 'errored'
base_learner.description['error_type'] = repr(sys.exc_info()[0])
base_learner.description['error_value'] = repr(sys.exc_info()[1])
base_learner.description['error_traceback'] = \
traceback.format_exception(*sys.exc_info())
session.add(base_learner)
session.commit()
raise
|
Generates meta-features for specified base learner
After generation of meta-features, the file is saved into the meta-features folder
Args:
path (str): Path to Xcessiv notebook
base_learner_id (str): Base learner ID
|
juraj-google-style
|
def use(plugin):
log.debug('register new plugin: {}'.format(plugin))
if inspect.isfunction(plugin):
return plugin(Engine)
if (plugin and hasattr(plugin, 'register')):
return plugin.register(Engine)
raise ValueError('invalid plugin: must be a function or implement register() method')
|
Register plugin in grappa.
`plugin` argument can be a function or a object that implement `register`
method, which should accept one argument: `grappa.Engine` instance.
Arguments:
plugin (function|module): grappa plugin object to register.
Raises:
ValueError: if `plugin` is not a valid interface.
Example::
import grappa
class MyOperator(grappa.Operator):
pass
def my_plugin(engine):
engine.register(MyOperator)
grappa.use(my_plugin)
|
codesearchnet
|
def rvs(self, size=1):
return np.random.multivariate_normal(self.mean, self.cov, size)
|
Convenience method to sample from this distribution.
Args:
size (int or tuple): Shape of return value. Each element is drawn
independently from this distribution.
|
codesearchnet
|
def _base_query(self, session):
return session.query(ORMTargetMarker) \
.filter(ORMTargetMarker.name == self.name) \
.filter(ORMTargetMarker.params == self.params)
|
Base query for a target.
Args:
session: database session to query in
|
juraj-google-style
|
def visualize_conv_weights(filters, name):
with tf.name_scope(('visualize_w_' + name)):
filters = tf.transpose(filters, (3, 2, 0, 1))
filters = tf.unstack(filters)
filters = tf.concat(filters, 1)
filters = tf.unstack(filters)
filters = tf.concat(filters, 1)
filters = tf.expand_dims(filters, 0)
filters = tf.expand_dims(filters, (- 1))
tf.summary.image(('visualize_w_' + name), filters)
|
Visualize use weights in convolution filters.
Args:
filters: tensor containing the weights [H,W,Cin,Cout]
name: label for tensorboard
Returns:
image of all weight
|
codesearchnet
|
def merged(self, timeslots: 'TimeslotCollection') -> 'TimeslotCollection':
slots = [Timeslot(slot.interval, slot.channel) for slot in self.timeslots]
slots.extend([Timeslot(slot.interval, slot.channel) for slot in timeslots.timeslots])
return TimeslotCollection(*slots)
|
Return a new TimeslotCollection merged with a specified `timeslots`
Args:
timeslots: TimeslotCollection to be merged
|
juraj-google-style
|
def find_files(base_dir, extensions, exclude_dirs=list()):
result = []
for root, dir_names, file_names in os.walk(base_dir):
for filename in file_names:
candidate = os.path.join(root, filename)
if should_include_file_in_search(candidate, extensions, exclude_dirs):
result.append(candidate)
return result
|
Find all files matching the given extensions.
Args:
base_dir (str): Path of base directory to search in.
extensions (list): A list of file extensions to search for.
exclude_dirs (list): A list of directories to exclude from search.
Returns:
list of paths that match the search
|
juraj-google-style
|
def delete_record(self, record):
self.children.remove(record.resource)
record.delete()
|
Remove a DNSRecord
Args:
record (:obj:`DNSRecord`): :obj:`DNSRecord` to remove
Returns:
`None`
|
codesearchnet
|
def mme_add(store, user_obj, case_obj, add_gender, add_features, add_disorders, genes_only, mme_base_url, mme_accepts, mme_token):
if ((not mme_base_url) or (not mme_accepts) or (not mme_token)):
return 'Please check that Matchmaker connection parameters are valid'
url = ''.join([mme_base_url, '/patient/add'])
features = []
disorders = []
g_features = []
contact_info = {'name': user_obj['name'], 'href': ''.join(['mailto:', user_obj['email']]), 'institution': 'Scout software user, Science For Life Laboratory, Stockholm, Sweden'}
if add_features:
features = hpo_terms(case_obj)
if add_disorders:
disorders = omim_terms(case_obj)
server_responses = []
submitted_info = {'contact': contact_info, 'sex': add_gender, 'features': features, 'disorders': disorders, 'genes_only': genes_only, 'patient_id': []}
for individual in case_obj.get('individuals'):
if (not (individual['phenotype'] in [2, 'affected'])):
continue
patient = {'contact': contact_info, 'id': '.'.join([case_obj['_id'], individual.get('individual_id')]), 'label': '.'.join([case_obj['display_name'], individual.get('display_name')]), 'features': features, 'disorders': disorders}
if add_gender:
if (individual['sex'] == '1'):
patient['sex'] = 'MALE'
else:
patient['sex'] = 'FEMALE'
if case_obj.get('suspects'):
g_features = genomic_features(store, case_obj, individual.get('display_name'), genes_only)
patient['genomicFeatures'] = g_features
resp = matchmaker_request(url=url, token=mme_token, method='POST', content_type=mme_accepts, accept='application/json', data={'patient': patient})
server_responses.append({'patient': patient, 'message': resp.get('message'), 'status_code': resp.get('status_code')})
submitted_info['server_responses'] = server_responses
return submitted_info
|
Add a patient to MatchMaker server
Args:
store(adapter.MongoAdapter)
user_obj(dict) a scout user object (to be added as matchmaker contact)
case_obj(dict) a scout case object
add_gender(bool) if True case gender will be included in matchmaker
add_features(bool) if True HPO features will be included in matchmaker
add_disorders(bool) if True OMIM diagnoses will be included in matchmaker
genes_only(bool) if True only genes and not variants will be shared
mme_base_url(str) base url of the MME server
mme_accepts(str) request content accepted by MME server
mme_token(str) auth token of the MME server
Returns:
submitted_info(dict) info submitted to MatchMaker and its responses
|
codesearchnet
|
def _generate_entry(self, vm):
return \
'{name} ' \
'ansible_host={ip} ' \
'ansible_ssh_private_key_file={key}'.format(
name=vm.name(),
ip=vm.ip(),
key=self.prefix.paths.ssh_id_rsa()
)
|
Generate host entry for the given VM
Args:
vm (lago.plugins.vm.VMPlugin): The VM for which the entry
should be created for.
Returns:
str: An entry for vm
|
juraj-google-style
|
def _UpdateAndMigrateUnmerged(self, not_merged_stops, zone_map, merge_map, schedule):
for (stop, migrated_stop) in not_merged_stops:
if (stop.zone_id in zone_map):
migrated_stop.zone_id = zone_map[stop.zone_id]
else:
migrated_stop.zone_id = self.feed_merger.GenerateId(stop.zone_id)
zone_map[stop.zone_id] = migrated_stop.zone_id
if stop.parent_station:
parent_original = schedule.GetStop(stop.parent_station)
migrated_stop.parent_station = merge_map[parent_original].stop_id
self.feed_merger.merged_schedule.AddStopObject(migrated_stop)
|
Correct references in migrated unmerged stops and add to merged_schedule.
For stops migrated from one of the input feeds to the output feed update the
parent_station and zone_id references to point to objects in the output
feed. Then add the migrated stop to the new schedule.
Args:
not_merged_stops: list of stops from one input feed that have not been
merged
zone_map: map from zone_id in the input feed to zone_id in the output feed
merge_map: map from Stop objects in the input feed to Stop objects in
the output feed
schedule: the input Schedule object
|
codesearchnet
|
def _FormatDateTime(self, event):
try:
datetime_object = datetime.datetime(
1970, 1, 1, 0, 0, 0, 0, tzinfo=pytz.UTC)
datetime_object += datetime.timedelta(microseconds=event.timestamp)
datetime_object.astimezone(self._output_mediator.timezone)
return datetime_object.replace(tzinfo=None)
except (OverflowError, ValueError) as exception:
self._ReportEventError(event, (
'unable to copy timestamp: {0!s} to a human readable date and time '
'with error: {1!s}. Defaulting to: "ERROR"').format(
event.timestamp, exception))
return 'ERROR'
|
Formats the date to a datetime object without timezone information.
Note: timezone information must be removed due to lack of support
by xlsxwriter and Excel.
Args:
event (EventObject): event.
Returns:
datetime.datetime|str: date and time value or a string containing
"ERROR" on OverflowError.
|
juraj-google-style
|
def cuts_connections(self, a, b):
n = max(self.indices) + 1
return self.cut_matrix(n)[np.ix_(a, b)].any()
|
Check if this cut severs any connections from ``a`` to ``b``.
Args:
a (tuple[int]): A set of nodes.
b (tuple[int]): A set of nodes.
|
juraj-google-style
|
def __init__(self, address, ap, data):
super(WriteRequest, self).__init__(address=address, ap=ap, data=data)
|
Initializes the base class.
Args:
self (WriteRequest): the ``WriteRequest`` instance
address (int): the register index
ap (bool): ``True`` if this request is to an Access Port Access
Register, otherwise ``False`` for a Debug Port Access Register
Returns:
``None``
|
juraj-google-style
|
def fetch_committed_offsets(self, partitions):
if not partitions:
return {}
while True:
self.ensure_coordinator_ready()
future = self._send_offset_fetch_request(partitions)
self._client.poll(future=future)
if future.succeeded():
return future.value
if not future.retriable():
raise future.exception
time.sleep(self.config['retry_backoff_ms'] / 1000)
|
Fetch the current committed offsets for specified partitions
Arguments:
partitions (list of TopicPartition): partitions to fetch
Returns:
dict: {TopicPartition: OffsetAndMetadata}
|
juraj-google-style
|
def weeks(value: Union[int, float]) -> Duration:
return float(value * 60 * 60 * 24 * 7)
|
Converts input value from number of weeks to a `Duration` in seconds.
```python
>>> a = tp.event_set(
... # Dates are converted to unix timestamps
... timestamps=["2020-01-01", "2020-01-07", "2020-01-31"],
... features={"f1": [1, 5, -5]}
... )
>>> a.moving_sum(window_length=tp.duration.weeks(2))
indexes: ...
timestamps: ['2020-01-01T00:00:00' '2020-01-07T00:00:00'
'2020-01-31T00:00:00']
'f1': [ 1 6 -5]
...
```
Args:
value: Number of weeks.
Returns:
Equivalent number of seconds.
|
github-repos
|
def delete(self, paths):
results = s3io.S3IO(options=self._options).delete_paths(paths)
exceptions = {path: error for path, error in results.items() if error is not None}
if exceptions:
raise BeamIOError('Delete operation failed', exceptions)
|
Deletes files or directories at the provided paths.
Directories will be deleted recursively.
Args:
paths: list of paths that give the file objects to be deleted
|
github-repos
|
def GetSshkeyMap(self, since=None):
return SshkeyUpdateGetter().GetUpdates(self, self.conf['sshkey_url'], since)
|
Return the sshkey map from this source.
Args:
since: Get data only changed since this timestamp (inclusive) or None
for all data.
Returns:
instance of sshkey.SshkeyMap
|
github-repos
|
def TSKVolumeGetBytesPerSector(tsk_volume):
if hasattr(tsk_volume, 'info') and tsk_volume.info is not None:
block_size = getattr(tsk_volume.info, 'block_size', 512)
else:
block_size = 512
return block_size
|
Retrieves the number of bytes per sector from a TSK volume object.
Args:
tsk_volume (pytsk3.Volume_Info): TSK volume information.
Returns:
int: number of bytes per sector or 512 by default.
|
juraj-google-style
|
def remove_comp_items(self, context_word, comp_items):
if context_word not in self._comp_dict:
raise KeyError('Context word "%s" has not been registered' % context_word)
for item in comp_items:
self._comp_dict[context_word].remove(item)
|
Remove a list of completion items from a completion context.
Args:
context_word: A single completion word as a string. The removal will
also apply to all other context words of the same context.
comp_items: Completion items to remove.
Raises:
KeyError: if the context word has not been registered.
|
github-repos
|
def _make_pr_entry(self, step, wall_time, data_array, thresholds):
true_positives = [int(v) for v in data_array[metadata.TRUE_POSITIVES_INDEX]]
false_positives = [
int(v) for v in data_array[metadata.FALSE_POSITIVES_INDEX]]
tp_index = metadata.TRUE_POSITIVES_INDEX
fp_index = metadata.FALSE_POSITIVES_INDEX
positives = data_array[[tp_index, fp_index], :].astype(int).sum(axis=0)
end_index_inclusive = len(positives) - 1
while end_index_inclusive > 0 and positives[end_index_inclusive] == 0:
end_index_inclusive -= 1
end_index = end_index_inclusive + 1
return {
'wall_time': wall_time,
'step': step,
'precision': data_array[metadata.PRECISION_INDEX, :end_index].tolist(),
'recall': data_array[metadata.RECALL_INDEX, :end_index].tolist(),
'true_positives': true_positives[:end_index],
'false_positives': false_positives[:end_index],
'true_negatives':
[int(v) for v in
data_array[metadata.TRUE_NEGATIVES_INDEX][:end_index]],
'false_negatives':
[int(v) for v in
data_array[metadata.FALSE_NEGATIVES_INDEX][:end_index]],
'thresholds': thresholds[:end_index],
}
|
Creates an entry for PR curve data. Each entry corresponds to 1 step.
Args:
step: The step.
wall_time: The wall time.
data_array: A numpy array of PR curve data stored in the summary format.
thresholds: An array of floating point thresholds.
Returns:
A PR curve entry.
|
juraj-google-style
|
def __init__(self, graph, title="GraphViewer", handler=None, padding=PADDING):
title = self._make_unique_title(title)
idaapi.GraphViewer.__init__(self, title)
self._graph = graph
if handler is None:
handler = self.DEFAULT_HANDLER
if not isinstance(handler, BasicNodeHandler):
raise TypeError("Node handler must inherit from `BasicNodeHandler`.")
self._default_handler = handler
self._padding = padding
|
Initialize the graph viewer.
To avoid bizarre IDA errors (crashing when creating 2 graphs with the same title,)
a counter is appended to the title (similar to "Hex View-1".)
Args:
graph: A NetworkX graph to display.
title: The graph title.
handler: The default node handler to use when accessing node data.
|
juraj-google-style
|
def swd_write(self, output, value, nbits):
pDir = binpacker.pack(output, nbits)
pIn = binpacker.pack(value, nbits)
bitpos = self._dll.JLINK_SWD_StoreRaw(pDir, pIn, nbits)
if bitpos < 0:
raise errors.JLinkException(bitpos)
return bitpos
|
Writes bytes over SWD (Serial Wire Debug).
Args:
self (JLink): the ``JLink`` instance
output (int): the output buffer offset to write to
value (int): the value to write to the output buffer
nbits (int): the number of bits needed to represent the ``output`` and
``value``
Returns:
The bit position of the response in the input buffer.
|
juraj-google-style
|
def PrivateKeyFromWIF(wif):
if wif is None or len(wif) is not 52:
raise ValueError('Please provide a wif with a length of 52 bytes (LEN: {0:d})'.format(len(wif)))
data = base58.b58decode(wif)
length = len(data)
if length is not 38 or data[0] is not 0x80 or data[33] is not 0x01:
raise ValueError("Invalid format!")
checksum = Crypto.Hash256(data[0:34])[0:4]
if checksum != data[34:]:
raise ValueError("Invalid WIF Checksum!")
return data[1:33]
|
Get the private key from a WIF key
Args:
wif (str): The wif key
Returns:
bytes: The private key
|
juraj-google-style
|
def indent_xml(elem, level=0, more_sibs=False):
i = "\n"
pad = " "
if level:
i += (level - 1) * pad
num_kids = len(elem)
if num_kids:
if not elem.text or not elem.text.strip():
elem.text = i + pad
if level:
elem.text += pad
count = 0
for kid in elem:
if kid.tag == "data":
kid.text = "*DATA*"
indent_xml(kid, level + 1, count < num_kids - 1)
count += 1
if not elem.tail or not elem.tail.strip():
elem.tail = i
if more_sibs:
elem.tail += pad
else:
if level and (not elem.tail or not elem.tail.strip()):
elem.tail = i
if more_sibs:
elem.tail += pad
|
Indent an xml element object to prepare for pretty printing.
To avoid changing the contents of the original Element, it is
recommended that a copy is made to send to this function.
Args:
elem: Element to indent.
level: Int indent level (default is 0)
more_sibs: Bool, whether to anticipate further siblings.
|
juraj-google-style
|
def create_from_binary(cls, binary_view):
nw_obj = cls()
offset = 0
previous_dr_offset = 0
header_size = cls._INFO.size
while (binary_view[offset] != 0):
header = cls._INFO.unpack(binary_view[offset:(offset + header_size)])[0]
length_len = (header & 15)
length_offset = ((header & 240) >> 4)
temp_len = ((offset + header_size) + length_len)
dr_length = int.from_bytes(binary_view[(offset + header_size):temp_len], 'little', signed=False)
if length_offset:
dr_offset = (int.from_bytes(binary_view[temp_len:(temp_len + length_offset)], 'little', signed=True) + previous_dr_offset)
previous_dr_offset = dr_offset
else:
dr_offset = None
offset += ((header_size + length_len) + length_offset)
nw_obj.data_runs.append((dr_length, dr_offset))
_MOD_LOGGER.debug('DataRuns object created successfully')
return nw_obj
|
Creates a new object DataRuns from a binary stream. The binary
stream can be represented by a byte string, bytearray or a memoryview of the
bytearray.
Args:
binary_view (memoryview of bytearray) - A binary stream with the
information of the attribute
Returns:
DataRuns: New object using hte binary stream as source
|
codesearchnet
|
def convert_old_keys_to_new_keys(state_dict_keys: Optional[dict]=None):
output_dict = {}
if state_dict_keys is not None:
old_text = '\n'.join(state_dict_keys)
new_text = old_text
for pattern, replacement in ORIGINAL_TO_CONVERTED_KEY_MAPPING.items():
if replacement is None:
new_text = re.sub(pattern, '', new_text)
continue
new_text = re.sub(pattern, replacement, new_text)
output_dict = dict(zip(old_text.split('\n'), new_text.split('\n')))
return output_dict
|
Converts old keys to new keys using the mapping and dynamically removes the 'ijepa.' prefix if necessary.
Args:
state_dict_keys (dict): The keys from the state_dict to convert.
Returns:
dict: A mapping from old keys to new keys.
|
github-repos
|
def terminate_session(self, token):
url = self.rest_url + "/session/%s" % token
response = self._delete(url)
if not response.ok:
return None
return True
|
Terminates the session token, effectively logging out the user
from all crowd-enabled services.
Args:
token: The session token.
Returns:
True: If session terminated
None: If session termination failed
|
juraj-google-style
|
def write_file(self, filename='HEADER'):
with open(filename, 'w') as f:
f.write((str(self) + '\n'))
|
Writes Header into filename on disk.
Args:
filename: Filename and path for file to be written to disk
|
codesearchnet
|
def update_plot_limits(ax, white_space):
if hasattr(ax, 'zz_dataLim'):
bounds = ax.xy_dataLim.bounds
ax.set_xlim((bounds[0] - white_space), ((bounds[0] + bounds[2]) + white_space))
ax.set_ylim((bounds[1] - white_space), ((bounds[1] + bounds[3]) + white_space))
bounds = ax.zz_dataLim.bounds
ax.set_zlim((bounds[0] - white_space), ((bounds[0] + bounds[2]) + white_space))
else:
bounds = ax.dataLim.bounds
assert (not any(map(np.isinf, bounds))), 'Cannot set bounds if dataLim has infinite elements'
ax.set_xlim((bounds[0] - white_space), ((bounds[0] + bounds[2]) + white_space))
ax.set_ylim((bounds[1] - white_space), ((bounds[1] + bounds[3]) + white_space))
|
Sets the limit options of a matplotlib plot.
Args:
ax: matplotlib axes
white_space(float): whitespace added to surround the tight limit of the data
Note: This relies on ax.dataLim (in 2d) and ax.[xy, zz]_dataLim being set in 3d
|
codesearchnet
|
def clusters_sites_obj(clusters):
result = {}
all_clusters = get_all_clusters_sites()
clusters_sites = {c: s for (c, s) in all_clusters.items()
if c in clusters}
for cluster, site in clusters_sites.items():
result.update({cluster: get_site_obj(site)})
return result
|
Get all the corresponding sites of the passed clusters.
Args:
clusters(list): list of string uid of sites (e.g 'rennes')
Return:
dict corresponding to the mapping cluster uid to python-grid5000 site
|
juraj-google-style
|
def _SkipField(tokenizer):
if tokenizer.TryConsume('['):
tokenizer.ConsumeIdentifier()
while tokenizer.TryConsume('.'):
tokenizer.ConsumeIdentifier()
tokenizer.Consume(']')
else:
tokenizer.ConsumeIdentifier()
_SkipFieldContents(tokenizer)
if not tokenizer.TryConsume(','):
tokenizer.TryConsume(';')
|
Skips over a complete field (name and value/message).
Args:
tokenizer: A tokenizer to parse the field name and values.
|
juraj-google-style
|
def remove(self):
if (not self._is_item):
raise TypeError("Should be called on an item, not ListNode's itself.")
self.container.node_stack.remove(self)
|
Removes an item from ListNode.
Raises:
TypeError: If it's called on container ListNode (intstead of ListNode's item)
Note:
Parent object should be explicitly saved.
|
codesearchnet
|
def autogen_argparse_block(extra_args=[]):
grouped_args = []
for argtup in __REGISTERED_ARGS__:
argstr_list, type_, default, help_ = argtup
argstr_set = set(argstr_list)
found = False
for index, (keyset, vals) in enumerate(grouped_args):
if len(keyset.intersection(argstr_set)) > 0:
keyset.update(argstr_set)
vals.append(argtup)
found = True
break
if not found:
new_keyset = argstr_set
new_vals = [argtup]
grouped_args.append((new_keyset, new_vals))
multi_groups = []
for keyset, vals in grouped_args:
if len(vals) > 1:
multi_groups.append(vals)
if len(multi_groups) > 0:
import utool as ut
print('Following arg was specified multiple times')
print(ut.repr4(multi_groups, newlines=2))
|
SHOULD TURN ANY REGISTERED ARGS INTO A A NEW PARSING CONFIG
FILE FOR BETTER --help COMMANDS
import utool as ut
__REGISTERED_ARGS__ = ut.util_arg.__REGISTERED_ARGS__
Args:
extra_args (list): (default = [])
CommandLine:
python -m utool.util_arg --test-autogen_argparse_block
Example:
>>> # DISABLE_DOCTEST
>>> import utool as ut
>>> extra_args = []
>>> result = ut.autogen_argparse_block(extra_args)
>>> print(result)
|
juraj-google-style
|
def remove_keywords_from_dict(self, keyword_dict):
for (clean_name, keywords) in keyword_dict.items():
if (not isinstance(keywords, list)):
raise AttributeError('Value of key {} should be a list'.format(clean_name))
for keyword in keywords:
self.remove_keyword(keyword)
|
To remove keywords from a dictionary
Args:
keyword_dict (dict): A dictionary with `str` key and (list `str`) as value
Examples:
>>> keyword_dict = {
"java": ["java_2e", "java programing"],
"product management": ["PM", "product manager"]
}
>>> keyword_processor.remove_keywords_from_dict(keyword_dict)
Raises:
AttributeError: If value for a key in `keyword_dict` is not a list.
|
codesearchnet
|
def add_presence_listener(self, callback):
listener_uid = uuid4()
self.presence_listeners[listener_uid] = callback
return listener_uid
|
Add a presence listener that will send a callback when the client receives
a presence update.
Args:
callback (func(roomchunk)): Callback called when a presence update arrives.
Returns:
uuid.UUID: Unique id of the listener, can be used to identify the listener.
|
juraj-google-style
|
def _load_audio_list(self, path):
result = {}
for entry in textfile.read_separated_lines_generator(path, separator='\t', max_columns=4):
for i in range(len(entry)):
if (entry[i] == '\\N'):
entry[i] = None
if (len(entry) < 4):
entry.extend(([None] * (4 - len(entry))))
if ((not self.include_empty_licence) and (entry[2] is None)):
continue
if ((self.include_licenses is not None) and (entry[2] not in self.include_licenses)):
continue
result[entry[0]] = entry[1:]
return result
|
Load and filter the audio list.
Args:
path (str): Path to the audio list file.
Returns:
dict: Dictionary of filtered sentences (id : username, license, attribution-url)
|
codesearchnet
|
def create_object(self, obj_type, payload, return_fields=None):
self._validate_obj_type_or_die(obj_type)
query_params = self._build_query_params(return_fields=return_fields)
url = self._construct_url(obj_type, query_params)
opts = self._get_request_options(data=payload)
self._log_request('post', url, opts)
if(self.session.cookies):
self.session.auth = None
r = self.session.post(url, **opts)
self._validate_authorized(r)
if r.status_code != requests.codes.CREATED:
response = utils.safe_json_load(r.content)
already_assigned = 'is assigned to another network view'
if response and already_assigned in response.get('text'):
exception = ib_ex.InfobloxMemberAlreadyAssigned
else:
exception = ib_ex.InfobloxCannotCreateObject
raise exception(
response=response,
obj_type=obj_type,
content=r.content,
args=payload,
code=r.status_code)
return self._parse_reply(r)
|
Create an Infoblox object of type 'obj_type'
Args:
obj_type (str): Infoblox object type,
e.g. 'network', 'range', etc.
payload (dict): Payload with data to send
return_fields (list): List of fields to be returned
Returns:
The object reference of the newly create object
Raises:
InfobloxException
|
juraj-google-style
|
def __init__(self, in_features: int, out_features: int, kernel_size: int=3, padding: int=1):
super().__init__()
self.layers = [nn.Conv2d(in_features, out_features, kernel_size=kernel_size, padding=padding, bias=False), nn.GroupNorm(32, out_features), nn.ReLU(inplace=True)]
for i, layer in enumerate(self.layers):
self.add_module(str(i), layer)
|
A basic module that executes conv - norm - in sequence used in MaskFormer.
Args:
in_features (`int`):
The number of input features (channels).
out_features (`int`):
The number of outputs features (channels).
|
github-repos
|
def _GenerateStatsTable(self, feed_merger):
rows = []
rows.append('<tr><th class="header"/><th class="header">Merged</th>'
'<th class="header">Copied from old feed</th>'
'<th class="header">Copied from new feed</th></tr>')
for merger in feed_merger.GetMergerList():
stats = merger.GetMergeStats()
if stats is None:
continue
merged, not_merged_a, not_merged_b = stats
rows.append('<tr><th class="header">%s</th>'
'<td class="header">%d</td>'
'<td class="header">%d</td>'
'<td class="header">%d</td></tr>' %
(merger.DATASET_NAME, merged, not_merged_a, not_merged_b))
return '<table>%s</table>' % '\n'.join(rows)
|
Generate an HTML table of merge statistics.
Args:
feed_merger: The FeedMerger instance.
Returns:
The generated HTML as a string.
|
juraj-google-style
|
def verify_state(global_state_db, blockstore, bind_component, scheduler_type):
state_view_factory = StateViewFactory(global_state_db)
(start_block, prev_state_root) = search_for_present_state_root(blockstore, state_view_factory)
if (start_block is None):
LOGGER.info("Skipping state verification: chain head's state root is present")
return
LOGGER.info('Recomputing missing state from block %s with %s scheduler', start_block, scheduler_type)
component_thread_pool = InstrumentedThreadPoolExecutor(max_workers=10, name='Component')
component_dispatcher = Dispatcher()
component_service = Interconnect(bind_component, component_dispatcher, secured=False, heartbeat=False, max_incoming_connections=20, monitor=True, max_future_callback_workers=10)
context_manager = ContextManager(global_state_db)
transaction_executor = TransactionExecutor(service=component_service, context_manager=context_manager, settings_view_factory=SettingsViewFactory(state_view_factory), scheduler_type=scheduler_type, invalid_observers=[])
component_service.set_check_connections(transaction_executor.check_connections)
component_dispatcher.add_handler(validator_pb2.Message.TP_RECEIPT_ADD_DATA_REQUEST, tp_state_handlers.TpReceiptAddDataHandler(context_manager), component_thread_pool)
component_dispatcher.add_handler(validator_pb2.Message.TP_EVENT_ADD_REQUEST, tp_state_handlers.TpEventAddHandler(context_manager), component_thread_pool)
component_dispatcher.add_handler(validator_pb2.Message.TP_STATE_DELETE_REQUEST, tp_state_handlers.TpStateDeleteHandler(context_manager), component_thread_pool)
component_dispatcher.add_handler(validator_pb2.Message.TP_STATE_GET_REQUEST, tp_state_handlers.TpStateGetHandler(context_manager), component_thread_pool)
component_dispatcher.add_handler(validator_pb2.Message.TP_STATE_SET_REQUEST, tp_state_handlers.TpStateSetHandler(context_manager), component_thread_pool)
component_dispatcher.add_handler(validator_pb2.Message.TP_REGISTER_REQUEST, processor_handlers.ProcessorRegisterHandler(transaction_executor.processor_manager), component_thread_pool)
component_dispatcher.add_handler(validator_pb2.Message.TP_UNREGISTER_REQUEST, processor_handlers.ProcessorUnRegisterHandler(transaction_executor.processor_manager), component_thread_pool)
component_dispatcher.start()
component_service.start()
process_blocks(initial_state_root=prev_state_root, blocks=blockstore.get_block_iter(start_block=start_block, reverse=False), transaction_executor=transaction_executor, context_manager=context_manager, state_view_factory=state_view_factory)
component_dispatcher.stop()
component_service.stop()
component_thread_pool.shutdown(wait=True)
transaction_executor.stop()
context_manager.stop()
|
Verify the state root hash of all blocks is in state and if not,
reconstruct the missing state. Assumes that there are no "holes" in
state, ie starting from genesis, state is present for all blocks up to some
point and then not at all. If persist is False, this recomputes state in
memory for all blocks in the blockstore and verifies the state root
hashes.
Raises:
InvalidChainError: The chain in the blockstore is not valid.
ExecutionError: An unrecoverable error was encountered during batch
execution.
|
codesearchnet
|
def build_query_string(self, data):
query = []
keys_to_be_removed = []
for key, value in data.items():
if key not in ['version', 'restApi', 'resourcePath']:
if not key == 'method':
if key == 'points':
value = ','.join(str(val) for val in value)
keys_to_be_removed.append(key)
query.append('{0}={1}'.format(key, value))
keys_to_be_removed.append(key)
keys_to_be_removed.append(key)
querystring = '&'.join(query)
data['query'] = '{0}?{1}'.format(data['method'], querystring)
for k in list(set(keys_to_be_removed)):
del data[k]
return data
|
This method occurs after dumping the data into the class.
Args:
data (dict): dictionary of all the query values
Returns:
data (dict): ordered dict of all the values
|
juraj-google-style
|
def read(self, input_stream, kmip_version=enums.KMIPVersion.KMIP_1_0):
super(KeyWrappingData, self).read(input_stream, kmip_version=kmip_version)
local_stream = BytearrayStream(input_stream.read(self.length))
if self.is_tag_next(enums.Tags.WRAPPING_METHOD, local_stream):
self._wrapping_method = primitives.Enumeration(enum=enums.WrappingMethod, tag=enums.Tags.WRAPPING_METHOD)
self._wrapping_method.read(local_stream, kmip_version=kmip_version)
else:
raise ValueError('Invalid struct missing the wrapping method attribute.')
if self.is_tag_next(enums.Tags.ENCRYPTION_KEY_INFORMATION, local_stream):
self._encryption_key_information = EncryptionKeyInformation()
self._encryption_key_information.read(local_stream, kmip_version=kmip_version)
if self.is_tag_next(enums.Tags.MAC_SIGNATURE_KEY_INFORMATION, local_stream):
self._mac_signature_key_information = MACSignatureKeyInformation()
self._mac_signature_key_information.read(local_stream, kmip_version=kmip_version)
if self.is_tag_next(enums.Tags.MAC_SIGNATURE, local_stream):
self._mac_signature = primitives.ByteString(tag=enums.Tags.MAC_SIGNATURE)
self._mac_signature.read(local_stream, kmip_version=kmip_version)
if self.is_tag_next(enums.Tags.IV_COUNTER_NONCE, local_stream):
self._iv_counter_nonce = primitives.ByteString(tag=enums.Tags.IV_COUNTER_NONCE)
self._iv_counter_nonce.read(local_stream, kmip_version=kmip_version)
if self.is_tag_next(enums.Tags.ENCODING_OPTION, local_stream):
self._encoding_option = primitives.Enumeration(enum=enums.EncodingOption, tag=enums.Tags.ENCODING_OPTION)
self._encoding_option.read(local_stream, kmip_version=kmip_version)
self.is_oversized(local_stream)
|
Read the data encoding the KeyWrappingData struct and decode it into
its constituent parts.
Args:
input_stream (stream): A data stream containing encoded object
data, supporting a read method; usually a BytearrayStream
object.
kmip_version (KMIPVersion): An enumeration defining the KMIP
version with which the object will be decoded. Optional,
defaults to KMIP 1.0.
|
codesearchnet
|
def qualNormGaussian(data, qualitative):
genes, cells = data.shape
clusters = qualitative.shape[1]
output = np.zeros((genes, clusters))
missing_indices = []
qual_indices = []
for i in range(genes):
if qualitative[i,:].max() == -1 and qualitative[i,:].min() == -1:
missing_indices.append(i)
continue
qual_indices.append(i)
threshold = (qualitative[i,:].max() - qualitative[i,:].min())/2.0
kmeans = KMeans(n_clusters = 2).fit(data[i,:].reshape((1, cells)))
assignments = kmeans.labels_
means = kmeans.cluster_centers_
high_mean = means.max()
low_mean = means.min()
for k in range(clusters):
if qualitative[i,k]>threshold:
output[i,k] = high_mean
else:
output[i,k] = low_mean
if missing_indices:
M_init = output[qual_indices, :]
kmeans = KMeans(n_clusters = 2, init = M_init, max_iter = 1).fit(data[qual_indices, :])
assignments = kmeans.labels_
for ind in missing_indices:
for k in range(clusters):
output[ind, k] = np.mean(data[ind, assignments==k])
return output
|
Generates starting points using binarized data. If qualitative data is missing for a given gene, all of its entries should be -1 in the qualitative matrix.
Args:
data (array): 2d array of genes x cells
qualitative (array): 2d array of numerical data - genes x clusters
Returns:
Array of starting positions for state estimation or
clustering, with shape genes x clusters
|
juraj-google-style
|
def _compile_aggregation_expression(self, expr: Expression, scope: Dict[(str, TensorFluent)], batch_size: Optional[int]=None, noise: Optional[List[tf.Tensor]]=None) -> TensorFluent:
etype = expr.etype
args = expr.args
typed_var_list = args[:(- 1)]
vars_list = [var for (_, (var, _)) in typed_var_list]
expr = args[(- 1)]
x = self._compile_expression(expr, scope)
etype2aggr = {'sum': x.sum, 'prod': x.prod, 'avg': x.avg, 'maximum': x.maximum, 'minimum': x.minimum, 'exists': x.exists, 'forall': x.forall}
if (etype[1] not in etype2aggr):
raise ValueError('Invalid aggregation expression {}.'.format(expr))
aggr = etype2aggr[etype[1]]
fluent = aggr(vars_list=vars_list)
return fluent
|
Compile an aggregation expression `expr` into a TensorFluent
in the given `scope` with optional batch size.
Args:
expr (:obj:`rddl2tf.expr.Expression`): A RDDL aggregation expression.
scope (Dict[str, :obj:`rddl2tf.fluent.TensorFluent`]): A fluent scope.
batch_size (Optional[size]): The batch size.
Returns:
:obj:`rddl2tf.fluent.TensorFluent`: The compiled expression as a TensorFluent.
|
codesearchnet
|
def __sub__(self, other: Union[None, int, str, 'KeyPath']) -> 'KeyPath':
if other is None:
return self
if isinstance(other, str):
other = KeyPath.parse(other)
elif isinstance(other, int):
other = KeyPath(other)
if not isinstance(other, KeyPath):
raise TypeError(f'Cannot subtract KeyPath({self}) by {other!r}.')
max_len = max(len(self), len(other))
for pos in range(max_len):
if pos >= len(self):
raise ValueError(f'KeyPath subtraction failed: left path {self!r} is an ancestor of right path {other!r}.')
if pos >= len(other):
return KeyPath(self.keys[pos:])
if self.keys[pos] != other.keys[pos]:
raise ValueError(f'KeyPath subtraction failed: left path {self!r} and right path {other!r} are in different subtree.')
return KeyPath()
|
Finds the relative path of this path to the other.
Example::
path1 = pg.KeyPath.parse('a.b.c.d')
path2 = pg.KeyPath.parse('a.b')
assert path1 - path2 == 'c.d'
Args:
other: Object to subtract, which can be None, int (as a depth-1 KeyPath),
string (parsed as a KeyPath) or a KeyPath object.
Returns:
Relative path of this path to the other.
Raises:
ValueError: This path is an ancestor node of the other path,
or these two paths are in different branch.
|
github-repos
|
def delete(self, messageId):
check_type(messageId, basestring, may_be_none=False)
self._session.delete(API_ENDPOINT + '/' + messageId)
|
Delete a message.
Args:
messageId(basestring): The ID of the message to be deleted.
Raises:
TypeError: If the parameter types are incorrect.
ApiError: If the Webex Teams cloud returns an error.
|
juraj-google-style
|
def _should_recover(self, exception):
exception = _maybe_wrap_exception(exception)
if isinstance(exception, _RETRYABLE_STREAM_ERRORS):
_LOGGER.info('Observed recoverable stream error %s', exception)
return True
_LOGGER.info('Observed non-recoverable stream error %s', exception)
return False
|
Determine if an error on the RPC stream should be recovered.
If the exception is one of the retryable exceptions, this will signal
to the consumer thread that it should "recover" from the failure.
This will cause the stream to exit when it returns :data:`False`.
Returns:
bool: Indicates if the caller should recover or shut down.
Will be :data:`True` if the ``exception`` is "acceptable", i.e.
in a list of retryable / idempotent exceptions.
|
codesearchnet
|
def _flush_range(self, buffer, start, end):
with self._size_lock:
if not self._size_synched:
self._size_synched = True
try:
self._size = self.raw._size
except (ObjectNotFoundError, UnsupportedOperation):
self._size = 0
while start > self._size:
sleep(self._FLUSH_WAIT)
self._raw_flush(buffer, start, end)
|
Flush a buffer to a range of the file.
Meant to be used asynchronously, used to provides parallel flushing of
file parts when applicable.
Args:
buffer (memoryview): Buffer content.
start (int): Start of buffer position to flush.
end (int): End of buffer position to flush.
|
juraj-google-style
|
def get_rect(self):
if self.handle:
(left, top, right, bottom) = win32gui.GetWindowRect(self.handle)
return RECT(left, top, right, bottom)
else:
desktop = win32gui.GetDesktopWindow()
(left, top, right, bottom) = win32gui.GetWindowRect(desktop)
return RECT(left, top, right, bottom)
|
Get rectangle of app or desktop resolution
Returns:
RECT(left, top, right, bottom)
|
codesearchnet
|
def glob(*args):
if ((len(args) is 1) and isinstance(args[0], list)):
args = args[0]
matches = []
for pattern in args:
for item in glob2.glob(pattern):
if (not os.path.isdir(item)):
matches.append(item)
return matches
|
Returns list of paths matching one or more wildcard patterns.
Args:
include_dirs: Include directories in the output
|
codesearchnet
|
def forward(self, outputs, targets):
outputs_without_aux = {k: v for k, v in outputs.items() if 'auxiliary_outputs' not in k}
indices = self.matcher(outputs_without_aux, targets)
num_boxes = sum((len(t['class_labels']) for t in targets))
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
num_boxes = torch.clamp(num_boxes, min=1).item()
losses = {}
for loss in self.losses:
l_dict = self.get_loss(loss, outputs, targets, indices, num_boxes)
l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict}
losses.update(l_dict)
if 'auxiliary_outputs' in outputs:
for i, auxiliary_outputs in enumerate(outputs['auxiliary_outputs']):
indices = self.matcher(auxiliary_outputs, targets)
for loss in self.losses:
if loss == 'masks':
continue
l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes)
l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict}
l_dict = {k + f'_aux_{i}': v for k, v in l_dict.items()}
losses.update(l_dict)
if 'dn_auxiliary_outputs' in outputs:
if 'denoising_meta_values' not in outputs:
raise ValueError("The output must have the 'denoising_meta_values` key. Please, ensure that 'outputs' includes a 'denoising_meta_values' entry.")
indices = self.get_cdn_matched_indices(outputs['denoising_meta_values'], targets)
num_boxes = num_boxes * outputs['denoising_meta_values']['dn_num_group']
for i, auxiliary_outputs in enumerate(outputs['dn_auxiliary_outputs']):
for loss in self.losses:
if loss == 'masks':
continue
kwargs = {}
l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes, **kwargs)
l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict}
l_dict = {k + f'_dn_{i}': v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
|
This performs the loss computation.
Args:
outputs (`dict`, *optional*):
Dictionary of tensors, see the output specification of the model for the format.
targets (`List[dict]`, *optional*):
List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the
losses applied, see each loss' doc.
|
github-repos
|
def render(self, width: int, height: int) -> List[str]:
if width == 0 or height == 0:
return [''] * height
out_chars = [[' '] * width for _ in range(height)]
mid_x = int((width - 1) * self.horizontal_alignment)
mid_y = (height - 1)
if self.left:
out_chars[mid_y][:mid_x + 1] = self.left * (mid_x + 1)
if self.right:
out_chars[mid_y][mid_x:] = self.right * (width - mid_x)
if self.top:
for y in range(mid_y + 1):
out_chars[y][mid_x] = self.top
if self.bottom:
for y in range(mid_y, height):
out_chars[y][mid_x] = self.bottom
mid = self.content or self.center
if self.content or self.center:
content_lines = mid.split('\n')
y = mid_y - (len(content_lines) - 1)
for dy, content_line in enumerate(content_lines):
s = int((len(content_line) - 1) * self.horizontal_alignment)
x = mid_x - s
for dx, c in enumerate(content_line):
out_chars[y + dy][x + dx] = c
return [''.join(line) for line in out_chars]
|
Returns a list of text lines representing the block's contents.
Args:
width: The width of the output text. Must be at least as large as
the block's minimum width.
height: The height of the output text. Must be at least as large as
the block's minimum height.
Returns:
Text pre-split into lines.
|
juraj-google-style
|
def _parse_source_interface(self, config):
match = re.search(r'vxlan source-interface ([^\s]+)', config)
value = match.group(1) if match else self.DEFAULT_SRC_INTF
return dict(source_interface=value)
|
Parses the conf block and returns the vxlan source-interface value
Parses the provided configuration block and returns the value of
vxlan source-interface. If the value is not configured, this method
will return DEFAULT_SRC_INTF instead.
Args:
config (str): The Vxlan config block to scan
Return:
dict: A dict object intended to be merged into the resource dict
|
juraj-google-style
|
def message_tc(self, message, max_length=255):
if os.access(self.default_args.tc_out_path, os.W_OK):
message_file = '{}/message.tc'.format(self.default_args.tc_out_path)
else:
message_file = 'message.tc'
message = '{}\n'.format(message)
if max_length - len(message) > 0:
with open(message_file, 'a') as mh:
mh.write(message)
elif max_length > 0:
with open(message_file, 'a') as mh:
mh.write(message[:max_length])
max_length -= len(message)
|
Write data to message_tc file in TcEX specified directory.
This method is used to set and exit message in the ThreatConnect Platform.
ThreatConnect only supports files of max_message_length. Any data exceeding
this limit will be truncated by this method.
Args:
message (string): The message to add to message_tc file
|
juraj-google-style
|
def run_task_tests(self, task, torch_dtype='float32'):
if task not in self.pipeline_model_mapping:
self.skipTest(f'{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: `{task}` is not in `self.pipeline_model_mapping` for `{self.__class__.__name__}`.')
model_architectures = self.pipeline_model_mapping[task]
if not isinstance(model_architectures, tuple):
model_architectures = (model_architectures,)
at_least_one_model_is_tested = False
for model_architecture in model_architectures:
model_arch_name = model_architecture.__name__
model_type = model_architecture.config_class.model_type
for _prefix in ['Flax', 'TF']:
if model_arch_name.startswith(_prefix):
model_arch_name = model_arch_name[len(_prefix):]
break
if model_arch_name not in tiny_model_summary:
continue
tokenizer_names = tiny_model_summary[model_arch_name]['tokenizer_classes']
image_processor_names = []
feature_extractor_names = []
processor_classes = tiny_model_summary[model_arch_name]['processor_classes']
for cls_name in processor_classes:
if 'ImageProcessor' in cls_name:
image_processor_names.append(cls_name)
elif 'FeatureExtractor' in cls_name:
feature_extractor_names.append(cls_name)
processor_names = PROCESSOR_MAPPING_NAMES.get(model_type, None)
if not isinstance(processor_names, (list, tuple)):
processor_names = [processor_names]
commit = None
if model_arch_name in tiny_model_summary and 'sha' in tiny_model_summary[model_arch_name]:
commit = tiny_model_summary[model_arch_name]['sha']
repo_name = f'tiny-random-{model_arch_name}'
if TRANSFORMERS_TINY_MODEL_PATH != 'hf-internal-testing':
repo_name = model_arch_name
self.run_model_pipeline_tests(task, repo_name, model_architecture, tokenizer_names=tokenizer_names, image_processor_names=image_processor_names, feature_extractor_names=feature_extractor_names, processor_names=processor_names, commit=commit, torch_dtype=torch_dtype)
at_least_one_model_is_tested = True
if task in task_to_pipeline_and_spec_mapping:
pipeline, hub_spec = task_to_pipeline_and_spec_mapping[task]
compare_pipeline_args_to_hub_spec(pipeline, hub_spec)
if not at_least_one_model_is_tested:
self.skipTest(f'{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: Could not find any model architecture in the tiny models JSON file for `{task}`.')
|
Run pipeline tests for a specific `task`
Args:
task (`str`):
A task name. This should be a key in the mapping `pipeline_test_mapping`.
torch_dtype (`str`, `optional`, defaults to `'float32'`):
The torch dtype to use for the model. Can be used for FP16/other precision inference.
|
github-repos
|
def parse_source(info):
if ('extractor_key' in info):
source = info['extractor_key']
lower_source = source.lower()
for key in SOURCE_TO_NAME:
lower_key = key.lower()
if (lower_source == lower_key):
source = SOURCE_TO_NAME[lower_key]
if (source != 'Generic'):
return source
if (('url' in info) and (info['url'] is not None)):
p = urlparse(info['url'])
if (p and p.netloc):
return p.netloc
return 'Unknown'
|
Parses the source info from an info dict generated by youtube-dl
Args:
info (dict): The info dict to parse
Returns:
source (str): The source of this song
|
codesearchnet
|
def AddEvent(self, event):
self._RaiseIfNotWritable()
self._storage_file.AddEvent(event)
self.number_of_events += 1
self._UpdateCounters(event)
|
Adds an event.
Args:
event (EventObject): an event.
Raises:
IOError: when the storage writer is closed.
OSError: when the storage writer is closed.
|
juraj-google-style
|
def _create_per_replica(value_list, strategy):
always_wrap = _always_wrap(strategy)
per_replicas = distribute_utils.regroup(value_list, always_wrap=always_wrap)
return per_replicas
|
Creates a PerReplica.
For strategies other than OneDeviceStrategy, it creates a PerReplica whose
type spec is set to the element spec of the dataset. This helps avoid
retracing for partial batches. Retracing is problematic for multi client when
different client retraces different time, since retracing changes the
collective keys in the tf.function, and causes mismatches among clients.
For single client strategies, this simply calls distribute_utils.regroup().
Args:
value_list: a list of values, one for each replica.
strategy: the `tf.distribute.Strategy`.
Returns:
a structure of PerReplica.
|
github-repos
|
def update(self, **kwargs):
kwargs = self._preprocess_params(kwargs)
kwargs = self.preprocess_kwargs_before_update(kwargs)
for key, value in kwargs.iteritems():
cls = type(self)
if not hasattr(cls, key) or isinstance(getattr(cls, key), property):
continue
if key not in self._no_overwrite_:
setattr(self, key, value)
if isinstance(getattr(self, key), OrderingList):
getattr(self, key).reorder()
elif isinstance(getattr(cls, key), AssociationProxyInstance):
target_name = getattr(cls, key).target_collection
target_rel = getattr(self, target_name)
if isinstance(target_rel, OrderingList):
target_rel.reorder()
try:
self.session.commit()
return self
except Exception as e:
self.session.rollback()
raise e
|
Updates an instance.
Args:
**kwargs : Arbitrary keyword arguments. Column names are
keywords and their new values are the values.
Examples:
>>> customer.update(email="newemail@x.com", name="new")
|
juraj-google-style
|
def __init__(self, short_name, long_name, preregistered, int_id=None, max_messages=5):
self.short_name = short_name
self.long_name = long_name
self.preregistered = preregistered
self.last_heartbeat = monotonic()
self.num_heartbeats = 0
self.id = int_id
self._state = UNKNOWN
self.messages = deque(maxlen=max_messages)
self.headline = None
self._last_message_id = 0
|
Constructor.
Args:
short_name (string): A unique short name for the service
long_name (string): A user friendly name for the service
preregistered (bool): Whether this is an expected preregistered
service
int_id (int): An internal numeric id for this service
max_messages (int): The maximum number of messages to keep
|
juraj-google-style
|
def wmo(self, value=None):
if (value is not None):
try:
value = str(value)
except ValueError:
raise ValueError('value {} need to be of type str for field `wmo`'.format(value))
if (',' in value):
raise ValueError('value should not contain a comma for field `wmo`')
self._wmo = value
|
Corresponds to IDD Field `wmo` usually a 6 digit field. Used as
alpha in EnergyPlus.
Args:
value (str): value for IDD Field `wmo`
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value
|
codesearchnet
|
def IsEquivalent(self, other):
if self.name and other.name:
return self.name == other.name
if self.name:
self_family, self_version_tuple = self._FAMILY_AND_VERSION_PER_NAME.get(
self.name, self._DEFAULT_FAMILY_AND_VERSION)
return (
self_family == other.family and
self_version_tuple == other.version_tuple)
if self.family and self.version:
if other.name:
other_family, other_version_tuple = (
self._FAMILY_AND_VERSION_PER_NAME.get(
other.name, self._DEFAULT_FAMILY_AND_VERSION))
else:
other_family = other.family
other_version_tuple = other.version_tuple
return (
self.family == other_family and
self.version_tuple == other_version_tuple)
if self.family:
if other.name:
other_family, _ = self._FAMILY_AND_VERSION_PER_NAME.get(
other.name, self._DEFAULT_FAMILY_AND_VERSION)
else:
other_family = other.family
return self.family == other_family
return False
|
Determines if 2 operating system artifacts are equivalent.
This function compares the operating systems based in order of:
* name derived from product
* family and version
* family
Args:
other (OperatingSystemArtifact): operating system artifact attribute
container to compare with.
Returns:
bool: True if the operating systems are considered equivalent, False if
the most specific criteria do no match, or no criteria are available.
|
juraj-google-style
|
def write_tree_newick(self, filename, hide_rooted_prefix=False):
if not isinstance(filename, str):
raise TypeError("filename must be a str")
treestr = self.newick()
if hide_rooted_prefix:
if treestr.startswith('[&R]'):
treestr = treestr[4:].strip()
else:
warn("Specified hide_rooted_prefix, but tree was not rooted")
if filename.lower().endswith('.gz'):
f = gopen(expanduser(filename),'wb',9); f.write(treestr.encode()); f.close()
else:
f = open(expanduser(filename),'w'); f.write(treestr); f.close()
|
Write this ``Tree`` to a Newick file
Args:
``filename`` (``str``): Path to desired output file (plain-text or gzipped)
|
juraj-google-style
|
def decode(self, encoded):
encoded = super().decode(encoded)
if (encoded.numel() > 1):
raise ValueError('``decode`` decodes one label at a time, use ``batch_decode`` instead.')
return self.itos[encoded.squeeze().item()]
|
Decodes ``encoded`` label.
Args:
encoded (torch.Tensor): Encoded label.
Returns:
object: Label decoded from ``encoded``.
|
codesearchnet
|
def rotated_printing(self, action):
if action=='rotate':
action='1'
elif action=='cancel':
action='0'
else:
raise RuntimeError('Invalid action.')
self.send(chr(27)+chr(105)+chr(76)+action)
|
Calling this function applies the desired action to the printing orientation
of the printer.
Args:
action: The desired printing orientation. 'rotate' enables rotated printing. 'normal' disables rotated printing.
Returns:
None
Raises:
RuntimeError: Invalid action.
|
juraj-google-style
|
def add_electrode(self, electrode, label=None):
if (not label):
label = 'Electrode {}'.format((len(self._electrodes) + 1))
self._electrodes[label] = electrode
|
Add an electrode to the plot.
Args:
electrode: An electrode. All electrodes satisfying the
AbstractElectrode interface should work.
label: A label for the electrode. If None, defaults to a counting
system, i.e. 'Electrode 1', 'Electrode 2', ...
|
codesearchnet
|
def _process_counter_example(self, mma, w_string):
diff = len(w_string)
same = 0
membership_answer = self._membership_query(w_string)
while True:
i = (same + diff) / 2
access_string = self._run_in_hypothesis(mma, w_string, i)
if membership_answer != self._membership_query(access_string + w_string[i:]):
diff = i
else:
same = i
if diff - same == 1:
break
exp = w_string[diff:]
self.observation_table.em_vector.append(exp)
for row in self.observation_table.sm_vector + self.observation_table.smi_vector:
self._fill_table_entry(row, exp)
return 0
|
Process a counterexample in the Rivest-Schapire way.
Args:
mma (DFA): The hypothesis automaton
w_string (str): The examined string to be consumed
Returns:
None
|
juraj-google-style
|
def _ParsePropertiesXMLFile(self, xml_data):
xml_root = ElementTree.fromstring(xml_data)
properties = {}
for xml_element in xml_root.iter():
if not xml_element.text:
continue
_, _, name = xml_element.tag.partition('}')
if name == 'lpstr':
continue
property_name = self._PROPERTY_NAMES.get(name, None)
if not property_name:
property_name = self._FormatPropertyName(name)
properties[property_name] = xml_element.text
return properties
|
Parses a properties XML file.
Args:
xml_data (bytes): data of a _rels/.rels XML file.
Returns:
dict[str, object]: properties.
Raises:
zipfile.BadZipfile: if the properties XML file cannot be read.
|
juraj-google-style
|
def audio(self, audio, sample_rate, name=None, subdir=''):
from chainerui.report.audio_report import check_available
if (not check_available()):
return
from chainerui.report.audio_report import report as _audio
col_name = self.get_col_name(name, 'audio')
(out_dir, rel_out_dir) = self.get_subdir(subdir)
(filename, _) = _audio(audio, sample_rate, out_dir, col_name)
self.audios[col_name] = os.path.join(rel_out_dir, filename)
self.count += 1
|
Summary audio to listen on web browser.
Args:
audio (:class:`numpy.ndarray` or :class:`cupy.ndarray` or \
:class:`chainer.Variable`): sampled wave array.
sample_rate (int): sampling rate.
name (str): name of image. set as column name. when not setting,
assigned ``'audio'`` + sequential number.
subdir (str): sub-directory path of output.
|
codesearchnet
|
def energy(self, sample_like, dtype=np.float):
energy, = self.energies(sample_like, dtype=dtype)
return energy
|
The energy of the given sample.
Args:
sample_like (samples_like):
A raw sample. `sample_like` is an extension of
NumPy's array_like structure. See :func:`.as_samples`.
dtype (:class:`numpy.dtype`, optional):
The data type of the returned energies. Defaults to float.
Returns:
The energy.
|
juraj-google-style
|
def get_labels_encoder(self, data_dir):
label_filepath = os.path.join(data_dir, self.vocab_filename)
return text_encoder.TokenTextEncoder(label_filepath)
|
Builds encoder for the given class labels.
Args:
data_dir: data directory
Returns:
An encoder for class labels.
|
codesearchnet
|
def lookup_subclass(cls, d):
try:
typeid = d["typeid"]
except KeyError:
raise FieldError("typeid not present in keys %s" % list(d))
subclass = cls._subcls_lookup.get(typeid, None)
if not subclass:
raise FieldError("'%s' not a valid typeid" % typeid)
else:
return subclass
|
Look up a class based on a serialized dictionary containing a typeid
Args:
d (dict): Dictionary with key "typeid"
Returns:
Serializable subclass
|
juraj-google-style
|
def pose2mat(pose):
homo_pose_mat = np.zeros((4, 4), dtype=np.float32)
homo_pose_mat[:3, :3] = quat2mat(pose[1])
homo_pose_mat[:3, 3] = np.array(pose[0], dtype=np.float32)
homo_pose_mat[3, 3] = 1.
return homo_pose_mat
|
Converts pose to homogeneous matrix.
Args:
pose: a (pos, orn) tuple where pos is vec3 float cartesian, and
orn is vec4 float quaternion.
Returns:
4x4 homogeneous matrix
|
juraj-google-style
|
def get_bytes(obj):
try:
obj = obj.read(_NUM_SIGNATURE_BYTES)
except AttributeError:
pass
kind = type(obj)
if (kind is bytearray):
return signature(obj)
if (kind is str):
return get_signature_bytes(obj)
if (kind is bytes):
return signature(obj)
if (kind is memoryview):
return signature(obj).tolist()
raise TypeError(('Unsupported type as file input: %s' % kind))
|
Infers the input type and reads the first 262 bytes,
returning a sliced bytearray.
Args:
obj: path to readable, file, bytes or bytearray.
Returns:
First 262 bytes of the file content as bytearray type.
Raises:
TypeError: if obj is not a supported type.
|
codesearchnet
|
def wait(self, timeout=None, raise_error=True):
return self.get(timeout=timeout, raise_error=raise_error)
|
alias of get
Args:
timeout (float): timeout seconds
raise_error (bool): default true, whether to raise error if element not found
Raises:
WDAElementNotFoundError
|
juraj-google-style
|
def get_country_name_from_m49(cls, m49, use_live=True, exception=None):
iso3 = cls.get_iso3_from_m49(m49, use_live=use_live, exception=exception)
if iso3 is not None:
return cls.get_country_name_from_iso3(iso3, exception=exception)
return None
|
Get country name from M49 code
Args:
m49 (int): M49 numeric code for which to get country name
use_live (bool): Try to get use latest data from web rather than file in package. Defaults to True.
exception (Optional[ExceptionUpperBound]): An exception to raise if country not found. Defaults to None.
Returns:
Optional[str]: Country name
|
juraj-google-style
|
def verify(value, msg):
return (bool(value) and converts_to_proto(value, msg) and successfuly_encodes(msg) and special_typechecking(value, msg))
|
C-style validator
Keyword arguments:
value -- dictionary to validate (required)
msg -- the protobuf schema to validate against (required)
Returns:
True: If valid input
False: If invalid input
|
codesearchnet
|
def _string_to_int(x, vocab):
def _map_to_int(x):
table = lookup.index_table_from_tensor(
vocab,
default_value=len(vocab))
return table.lookup(x)
return _map_to_int(x)
|
Given a vocabulary and a string tensor `x`, maps `x` into an int tensor.
Args:
x: A `Column` representing a string value.
vocab: list of strings.
Returns:
A `Column` where each string value is mapped to an integer representing
its index in the vocab. Out of vocab values are mapped to len(vocab).
|
juraj-google-style
|
def match_rules_context_multi(tree, rules, parent_context={}):
all_contexts = []
for template, match_rules in rules.items():
context = parent_context.copy()
if match_template(tree, template, context):
child_contextss = []
if not match_rules:
all_contexts += [context]
else:
for key, child_rules in match_rules.items():
child_contextss.append(match_rules_context_multi(context[key], child_rules, context))
all_contexts += cross_context(child_contextss)
return all_contexts
|
Recursively matches a Tree structure with rules and returns context
Args:
tree (Tree): Parsed tree structure
rules (dict): See match_rules
parent_context (dict): Context of parent call
Returns:
dict: Context matched dictionary of matched rules or
None if no match
|
juraj-google-style
|
def _shuffle_single(fname, extra_fn=None):
records = read_records(fname)
random.shuffle(records)
if extra_fn is not None:
records = extra_fn(records)
out_fname = fname.replace(UNSHUFFLED_SUFFIX, "")
write_records(records, out_fname)
tf.gfile.Remove(fname)
|
Shuffle a single file of records.
Args:
fname: a string
extra_fn: an optional function from list of TFRecords to list of TFRecords
to be called after shuffling.
|
juraj-google-style
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.