code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def create_model_table(self, model): try: return db_model_factory(self.Base, model, self.models) except Exception as exc: raise ModelError( model.name, message="failed to create in-memory table.", orig_exc=exc, context=self.error_context )
Creates the table for the given model. Args: model: A StatikModel instance. Returns: A SQLAlchemy model instance for the table corresponding to this particular model.
juraj-google-style
def import_class(classpath): modname, classname = classpath.rsplit(".", 1) module = importlib.import_module(modname) klass = getattr(module, classname) return klass
Import the class referred to by the fully qualified class path. Args: classpath: A full "foo.bar.MyClass" path to a class definition. Returns: The class referred to by the classpath. Raises: ImportError: If an error occurs while importing the module. AttributeError: IF the class does not exist in the imported module.
juraj-google-style
def _strip_layer_names(self, summaries, model_type): result = set() for s in summaries: if '/' not in s.tag: raise ValueError(f'tag has no layer name: {s.tag!r}') start_from = 2 if 'subclass' in model_type else 1 new_tag = '/'.join(s.tag.split('/')[start_from:]) result.add(s._replace(tag=new_tag)) return result
Deduplicate summary names modulo layer prefix. This removes the first slash-component of each tag name: for instance, "foo/bar/baz" becomes "bar/baz". Args: summaries: A `set` of `_ObservedSummary` values. model_type: The model type currently being tested. Returns: A new `set` of `_ObservedSummary` values with layer prefixes removed.
github-repos
def to_json(self, drop_null=True, camel=False, indent=None, sort_keys=False): return json.dumps(self.to_dict(drop_null, camel), indent=indent, sort_keys=sort_keys)
Serialize self as JSON Args: drop_null: bool, default True. Remove 'empty' attributes. See to_dict. camel: bool, default True. Convert keys to camelCase. indent: int, default None. See json built-in. sort_keys: bool, default False. See json built-in. Return: str: object params.
codesearchnet
def edit_distance_matrix(train_x, train_y=None): if train_y is None: ret = np.zeros((train_x.shape[0], train_x.shape[0])) for x_index, x in enumerate(train_x): for y_index, y in enumerate(train_x): if x_index == y_index: ret[x_index][y_index] = 0 elif x_index < y_index: ret[x_index][y_index] = edit_distance(x, y) else: ret[x_index][y_index] = ret[y_index][x_index] return ret ret = np.zeros((train_x.shape[0], train_y.shape[0])) for x_index, x in enumerate(train_x): for y_index, y in enumerate(train_y): ret[x_index][y_index] = edit_distance(x, y) return ret
Calculate the edit distance. Args: train_x: A list of neural architectures. train_y: A list of neural architectures. Returns: An edit-distance matrix.
juraj-google-style
def setOption(self, name, value): if isinstance(value, bool): lock_and_call( lambda: self._impl.setBoolOption(name, value), self._lock ) elif isinstance(value, int): lock_and_call( lambda: self._impl.setIntOption(name, value), self._lock ) elif isinstance(value, float): lock_and_call( lambda: self._impl.setDblOption(name, value), self._lock ) elif isinstance(value, basestring): lock_and_call( lambda: self._impl.setOption(name, value), self._lock ) else: raise TypeError
Set an AMPL option to a specified value. Args: name: Name of the option to be set (alphanumeric without spaces). value: The value the option must be set to. Raises: InvalidArgumet: if the option name is not valid. TypeError: if the value has an invalid type.
juraj-google-style
def _process_tabs(self, tabs, current_tab, group_current_tab): for t in tabs: t.current_tab = current_tab t.group_current_tab = group_current_tab tabs = list(filter((lambda t: t.tab_visible), tabs)) tabs.sort(key=(lambda t: t.weight)) return tabs
Process and prepare tabs. This includes steps like updating references to the current tab, filtering out hidden tabs, sorting tabs etc... Args: tabs: The list of tabs to process. current_tab: The reference to the currently loaded tab. group_current_tab: The reference to the active tab in the current tab group. For parent tabs, this is different than for the current tab group. Returns: Processed list of tabs. Note that the method may have side effects.
codesearchnet
def merge_dicts(dicts, op=operator.add): a = None for b in dicts: if (a is None): a = b.copy() else: a = dict(((a.items() + b.items()) + [(k, op(a[k], b[k])) for k in (set(b) & set(a))])) return a
Merge a list of dictionaries. Args: dicts (list): a list of dictionary objects op (operator): an operator item used to merge the dictionaries. Defaults to :py:func:`operator.add`. Returns: dict: the merged dictionary
codesearchnet
def decr(self, key, value, noreply=False): key = self.check_key(key) cmd = (((b'decr ' + key) + b' ') + six.text_type(value).encode('ascii')) if noreply: cmd += b' noreply' cmd += b'\r\n' results = self._misc_cmd([cmd], b'decr', noreply) if noreply: return None if (results[0] == b'NOT_FOUND'): return None return int(results[0])
The memcached "decr" command. Args: key: str, see class docs for details. value: int, the amount by which to increment the value. noreply: optional bool, False to wait for the reply (the default). Returns: If noreply is True, always returns None. Otherwise returns the new value of the key, or None if the key wasn't found.
codesearchnet
def GetPathSegmentAndSuffix(self, base_path, path): if ((path is None) or (base_path is None) or (not path.startswith(base_path))): return (None, None) path_index = len(base_path) if (base_path and (not base_path.endswith(self.PATH_SEPARATOR))): path_index += 1 if (path_index == len(path)): return ('', '') (path_segment, _, suffix) = path[path_index:].partition(self.PATH_SEPARATOR) return (path_segment, suffix)
Determines the path segment and suffix of the path. None is returned if the path does not start with the base path and an empty string if the path exactly matches the base path. Args: base_path (str): base path. path (str): path. Returns: tuple[str, str]: path segment and suffix string.
codesearchnet
def movie_credits(self, **kwargs): path = self._get_id_path('movie_credits') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
Get the movie credits for a specific person id. Args: language: (optional) ISO 639-1 code. append_to_response: (optional) Comma separated, any person method. Returns: A dict respresentation of the JSON returned from the API.
codesearchnet
def deployment_plans(self): if (not self.__deployment_plans): self.__deployment_plans = DeploymentPlans(self.__connection) return self.__deployment_plans
Gets the Deployment Plans API client. Returns: DeploymentPlans:
codesearchnet
def two_qubit_matrix_to_ion_operations(q0: ops.Qid, q1: ops.Qid, mat: np.ndarray, atol: float = 1e-8 ) -> List[ops.Operation]: kak = linalg.kak_decomposition(mat, atol=atol) operations = _kak_decomposition_to_operations(q0, q1, kak, atol) return _cleanup_operations(operations)
Decomposes a two-qubit operation into MS/single-qubit rotation gates. Args: q0: The first qubit being operated on. q1: The other qubit being operated on. mat: Defines the operation to apply to the pair of qubits. tolerance: A limit on the amount of error introduced by the construction. Returns: A list of operations implementing the matrix.
juraj-google-style
def post(self, **kwargs): if (self._url is None): raise NoWebsiteLoadedError('request submission requires a loaded website') data = kwargs.get('data', {}) for i in self.soup('form').select('input[name]'): if (i.get('name') not in data): data[i.get('name')] = i.get('value', '') kwargs['data'] = data response = self.session.post(self._url, **kwargs) self._url = response.url self._response = response return response
Send a POST request to the currently loaded website's URL. The browser will automatically fill out the form. If `data` dict has been passed into ``kwargs``, the contained input values will override the automatically filled out values. Returns: `Response` object of a successful request. Raises: NoWebsiteLoadedError: If no website is currently loaded.
codesearchnet
def WriteFileHash(self, path, hash_value): string = '{0:s}\t{1:s}\n'.format(hash_value, path) encoded_string = self._EncodeString(string) self._file_object.write(encoded_string)
Writes the file path and hash to file. Args: path (str): path of the file. hash_value (str): message digest hash calculated over the file data.
juraj-google-style
def FromFile(cls, path, actions_dict, resources_dict, file_format='yaml', name=None): format_map = {'yaml': cls._process_yaml} format_handler = format_map.get(file_format) if (format_handler is None): raise ArgumentError('Unknown file format or file extension', file_format=file_format, known_formats=[x for x in format_map if (format_map[x] is not None)]) recipe_info = format_handler(path) if (name is None): (name, _ext) = os.path.splitext(os.path.basename(path)) try: recipe_info = RecipeSchema.verify(recipe_info) except ValidationError as exc: raise RecipeFileInvalid('Recipe file does not match expected schema', file=path, error_message=exc.msg, **exc.params) description = recipe_info.get('description') try: resources = cls._parse_resource_declarations(recipe_info.get('resources', []), resources_dict) defaults = cls._parse_variable_defaults(recipe_info.get('defaults', [])) steps = [] for (i, action) in enumerate(recipe_info.get('actions', [])): action_name = action.pop('name') if (action_name is None): raise RecipeFileInvalid('Action is missing required name parameter', parameters=action, path=path) action_class = actions_dict.get(action_name) if (action_class is None): raise UnknownRecipeActionType('Unknown step specified in recipe', action=action_name, step=(i + 1), path=path) step_resources = cls._parse_resource_usage(action, declarations=resources) (fixed_files, _variable_files) = cls._parse_file_usage(action_class, action) step = RecipeStep(action_class, action, step_resources, fixed_files) steps.append(step) return RecipeObject(name, description, steps, resources, defaults, path) except RecipeFileInvalid as exc: cls._future_raise(RecipeFileInvalid, RecipeFileInvalid(exc.msg, recipe=name, **exc.params), sys.exc_info()[2])
Create a RecipeObject from a file. The file should be a specially constructed yaml file that describes the recipe as well as the actions that it performs. Args: path (str): The path to the recipe file that we wish to load actions_dict (dict): A dictionary of named RecipeActionObject types that is used to look up all of the steps listed in the recipe file. resources_dict (dict): A dictionary of named RecipeResource types that is used to look up all of the shared resources listed in the recipe file. file_format (str): The file format of the recipe file. Currently we only support yaml. name (str): The name of this recipe if we created it originally from an archive.
codesearchnet
def delete_endpoint(self, endpoint_name=None): endpoint_name = (endpoint_name or self.best_training_job()) self.sagemaker_session.delete_endpoint(endpoint_name)
Delete an Amazon SageMaker endpoint. If an endpoint name is not specified, this defaults to looking for an endpoint that shares a name with the best training job for deletion. Args: endpoint_name (str): Name of the endpoint to delete
codesearchnet
def write(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0): tstream = BytearrayStream() self.certificate_type.write(tstream, kmip_version=kmip_version) self.certificate_value.write(tstream, kmip_version=kmip_version) self.length = tstream.length() super(Certificate, self).write(ostream, kmip_version=kmip_version) ostream.write(tstream.buffer)
Write the data encoding the Certificate object to a stream. Args: ostream (Stream): A data stream in which to encode object data, supporting a write method; usually a BytearrayStream object. kmip_version (KMIPVersion): An enumeration defining the KMIP version with which the object will be encoded. Optional, defaults to KMIP 1.0.
codesearchnet
def cluster_nodes(self, tol=0.2): lattice = self.structure.lattice vf_coords = self.extrema_coords if len(vf_coords) == 0: if self.extrema_type is None: logger.warning( "Please run ChargeDensityAnalyzer.get_local_extrema first!") return new_f_coords = [] self._update_extrema(new_f_coords, self.extrema_type) return new_f_coords dist_matrix = np.array(lattice.get_all_distances(vf_coords, vf_coords)) dist_matrix = (dist_matrix + dist_matrix.T) / 2 for i in range(len(dist_matrix)): dist_matrix[i, i] = 0 condensed_m = squareform(dist_matrix) z = linkage(condensed_m) cn = fcluster(z, tol, criterion="distance") merged_fcoords = [] for n in set(cn): frac_coords = [] for i, j in enumerate(np.where(cn == n)[0]): if i == 0: frac_coords.append(self.extrema_coords[j]) else: f_coords = self.extrema_coords[j] d, image = lattice.get_distance_and_image(frac_coords[0], f_coords) frac_coords.append(f_coords + image) merged_fcoords.append(np.average(frac_coords, axis=0)) merged_fcoords = [f - np.floor(f) for f in merged_fcoords] merged_fcoords = [f * (np.abs(f - 1) > 1E-15) for f in merged_fcoords] self._update_extrema(merged_fcoords, extrema_type=self.extrema_type) logger.debug( "{} vertices after combination.".format(len(self.extrema_coords)))
Cluster nodes that are too close together using a tol. Args: tol (float): A distance tolerance. PBC is taken into account.
juraj-google-style
def value(self, new_value): if ((self.unit != units.Undefined) and (new_value.unit != self.unit)): raise AttributeError(('%s must be in %s' % (self.__class__, self.unit))) self._value = new_value
Set the value of this measurement. Raises: AttributeError: if the new value isn't of the correct units.
codesearchnet
def __init__(self, filename): self.root_values = {} self.tree = [] if filename is not None and os.path.dirname(filename) == '': self.original_filename = os.path.join(os.getcwd(), filename) else: self.original_filename = filename if filename is not None: self.sax_parse(filename)
A container for a SAX SVG light tree objects document. This class provides functions for extracting SVG data into Path objects. Args: filename (str): The filename of the SVG file
juraj-google-style
def from_inputs(cls, workdir, inputs, manager=None, pickle_protocol=(- 1), task_class=ScfTask, work_class=Work, remove=False): if (not isinstance(inputs, (list, tuple))): inputs = [inputs] flow = cls(workdir, manager=manager, pickle_protocol=pickle_protocol, remove=remove) work = work_class() for inp in inputs: work.register(inp, task_class=task_class) flow.register_work(work) return flow.allocate()
Construct a simple flow from a list of inputs. The flow contains a single Work with tasks whose class is given by task_class. .. warning:: Don't use this interface if you have dependencies among the tasks. Args: workdir: String specifying the directory where the works will be produced. inputs: List of inputs. manager: :class:`TaskManager` object responsible for the submission of the jobs. If manager is None, the object is initialized from the yaml file located either in the working directory or in the user configuration dir. pickle_protocol: Pickle protocol version used for saving the status of the object. -1 denotes the latest version supported by the python interpreter. task_class: The class of the :class:`Task`. work_class: The class of the :class:`Work`. remove: attempt to remove working directory `workdir` if directory already exists.
codesearchnet
def _add_main_menu(output, node_name=None, enable_list_tensors=True, enable_node_info=True, enable_print_tensor=True, enable_list_inputs=True, enable_list_outputs=True): menu = debugger_cli_common.Menu() menu.append(debugger_cli_common.MenuItem('list_tensors', 'list_tensors', enabled=enable_list_tensors)) if node_name: menu.append(debugger_cli_common.MenuItem('node_info', 'node_info -a -d -t %s' % node_name, enabled=enable_node_info)) menu.append(debugger_cli_common.MenuItem('print_tensor', 'print_tensor %s' % node_name, enabled=enable_print_tensor)) menu.append(debugger_cli_common.MenuItem('list_inputs', 'list_inputs -c -r %s' % node_name, enabled=enable_list_inputs)) menu.append(debugger_cli_common.MenuItem('list_outputs', 'list_outputs -c -r %s' % node_name, enabled=enable_list_outputs)) else: menu.append(debugger_cli_common.MenuItem('node_info', None, enabled=False)) menu.append(debugger_cli_common.MenuItem('print_tensor', None, enabled=False)) menu.append(debugger_cli_common.MenuItem('list_inputs', None, enabled=False)) menu.append(debugger_cli_common.MenuItem('list_outputs', None, enabled=False)) menu.append(debugger_cli_common.MenuItem('run_info', 'run_info')) menu.append(debugger_cli_common.MenuItem('help', 'help')) output.annotations[debugger_cli_common.MAIN_MENU_KEY] = menu
Generate main menu for the screen output from a command. Args: output: (debugger_cli_common.RichTextLines) the output object to modify. node_name: (str or None) name of the node involved (if any). If None, the menu items node_info, list_inputs and list_outputs will be automatically disabled, overriding the values of arguments enable_node_info, enable_list_inputs and enable_list_outputs. enable_list_tensors: (bool) whether the list_tensor menu item will be enabled. enable_node_info: (bool) whether the node_info item will be enabled. enable_print_tensor: (bool) whether the print_tensor item will be enabled. enable_list_inputs: (bool) whether the item list_inputs will be enabled. enable_list_outputs: (bool) whether the item list_outputs will be enabled.
github-repos
def parse_rfc3339_utc_string(rfc3339_utc_string): m = re.match(r'(\d{4})-(\d{2})-(\d{2})T(\d{2}):(\d{2}):(\d{2}).?(\d*)Z', rfc3339_utc_string) if not m: return None groups = m.groups() if len(groups[6]) not in (0, 3, 6, 9): return None g = [int(val) for val in groups[:6]] fraction = groups[6] if not fraction: micros = 0 elif len(fraction) == 3: micros = int(fraction) * 1000 elif len(fraction) == 6: micros = int(fraction) elif len(fraction) == 9: micros = int(round(int(fraction) / 1000)) else: assert False, 'Fraction length not 0, 6, or 9: {}'.len(fraction) try: return datetime(g[0], g[1], g[2], g[3], g[4], g[5], micros, tzinfo=pytz.utc) except ValueError as e: assert False, 'Could not parse RFC3339 datestring: {} exception: {}'.format( rfc3339_utc_string, e)
Converts a datestamp from RFC3339 UTC to a datetime. Args: rfc3339_utc_string: a datetime string in RFC3339 UTC "Zulu" format Returns: A datetime.
juraj-google-style
def ParseAutofillRow( self, parser_mediator, query, row, **unused_kwargs): query_hash = hash(query) event_data = ChromeAutofillEventData() event_data.field_name = self._GetRowValue(query_hash, row, 'name') event_data.value = self._GetRowValue(query_hash, row, 'value') event_data.usage_count = self._GetRowValue(query_hash, row, 'count') event_data.query = query timestamp = self._GetRowValue(query_hash, row, 'date_created') date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_CREATION) parser_mediator.ProduceEventWithEventData(event, event_data) if event_data.usage_count > 1: timestamp = self._GetRowValue(query_hash, row, 'date_last_used') date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_LAST_USED) parser_mediator.ProduceEventWithEventData(event, event_data)
Parses an autofill entry row. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. query (str): query that created the row. row (sqlite3.Row): row.
juraj-google-style
def _save_representative_dataset(representative_dataset: repr_dataset.RepresentativeDatasetOrMapping, signature_def_map: _SignatureDefMap) -> Mapping[str, _RepresentativeDatasetFile]: if isinstance(representative_dataset, Mapping): if set(signature_def_map.keys()) != set(representative_dataset.keys()): raise ValueError(f'The signature keys and the keys of representative dataset map do not match. Signature keys: {set(signature_def_map.keys())}, representative dataset map: {set(representative_dataset.keys())}.') representative_dataset_map = representative_dataset elif len(signature_def_map.keys()) > 1: raise ValueError(f'Representative dataset is not a mapping (got: {type(representative_dataset)}), but there is more than one signature key provided. Please provide a map of {{signature_key -> dataset}} with more than one signature key.') else: representative_dataset_map = {list(signature_def_map.keys())[0]: representative_dataset} path_map = {} expected_input_key_map = {} for signature_key, signature_def in signature_def_map.items(): _, path_map[signature_key] = tempfile.mkstemp(suffix='.tfrecord', prefix=signature_key) expected_input_key_map[signature_key] = signature_def.inputs.keys() return repr_dataset.TfRecordRepresentativeDatasetSaver(path_map=path_map, expected_input_key_map=expected_input_key_map).save(representative_dataset_map)
Saves the representative dataset to temporary TFRecord files. Args: representative_dataset: Representative dataset used for the calibration step. Representative datasets should exist for each signature def key in `signature_def_keys`. signature_def_map: Signature def key -> SignatureDef mapping. Returns: A map from signature key to the saved representative dataset file.
github-repos
def squad_v2_f1(y_true: List[List[str]], y_predicted: List[str]) -> float: f1_total = 0.0 for (ground_truth, prediction) in zip(y_true, y_predicted): prediction_tokens = normalize_answer(prediction).split() f1s = [] for gt in ground_truth: gt_tokens = normalize_answer(gt).split() if ((len(gt_tokens) == 0) or (len(prediction_tokens) == 0)): f1s.append(float((gt_tokens == prediction_tokens))) continue common = (Counter(prediction_tokens) & Counter(gt_tokens)) num_same = sum(common.values()) if (num_same == 0): f1s.append(0.0) continue precision = ((1.0 * num_same) / len(prediction_tokens)) recall = ((1.0 * num_same) / len(gt_tokens)) f1 = (((2 * precision) * recall) / (precision + recall)) f1s.append(f1) f1_total += max(f1s) return (((100 * f1_total) / len(y_true)) if (len(y_true) > 0) else 0)
Calculates F-1 score between y_true and y_predicted F-1 score uses the best matching y_true answer The same as in SQuAD-v2.0 Args: y_true: list of correct answers (correct answers are represented by list of strings) y_predicted: list of predicted answers Returns: F-1 score : float
codesearchnet
def rename_style(self, old_name, new_name): if old_name not in self.styles: raise KeyError("Style %r not found" % old_name) if new_name in self.styles: raise ValueError("There is already a style called %r" % new_name) if not is_valid_field_content(new_name): raise ValueError("%r is not a valid name" % new_name) self.styles[new_name] = self.styles[old_name] del self.styles[old_name] for line in self: if line.style == old_name: line.style = new_name
Rename a style, including references to it. Arguments: old_name (str): Style to be renamed. new_name (str): New name for the style (must be unused). Raises: KeyError: No style named old_name. ValueError: new_name is not a legal name (cannot use commas) or new_name is taken.
juraj-google-style
def forward(self, hidden_states: torch.Tensor, metadata: Optional[List[torch.LongTensor]], decode: Optional[bool]=False, get_preds: Optional[bool]=False) -> List[torch.Tensor]: batch_size = hidden_states.shape[0] music_tokens, *music_tokens_conds = self.encode(hidden_states, bs_chunks=batch_size) loss, metrics = self.forward_tokens(music_tokens=music_tokens, music_tokens_conds=music_tokens_conds, metadata=metadata, get_preds=get_preds) if decode: dequantised_states = self.decode([music_tokens, *music_tokens_conds]) else: dequantised_states = None return (dequantised_states, loss, metrics)
Encode the hidden states using the `vqvae` encoder, and then predicts the next token in the `forward_tokens` function. The loss is the sum of the `encoder` loss and the `decoder` loss. Args: hidden_states (`torch.Tensor`): Hidden states which should be raw audio metadata (`List[torch.LongTensor]`, *optional*): List containing the metadata conditioning tensor with the lyric and the metadata tokens. decode (`bool`, *optional*, defaults to `False`): Whether or not to decode the encoded to tokens. get_preds (`bool`, *optional*, defaults to `False`): Whether or not to return the actual predictions of the model.
github-repos
def get_dihedral_degrees(self, indices, start_row=0): coords = ['x', 'y', 'z'] if isinstance(indices, pd.DataFrame): i_pos = self.loc[(indices.index, coords)].values b_pos = self.loc[(indices.loc[(:, 'b')], coords)].values a_pos = self.loc[(indices.loc[(:, 'a')], coords)].values d_pos = self.loc[(indices.loc[(:, 'd')], coords)].values else: indices = np.array(indices) if (len(indices.shape) == 1): indices = indices[(None, :)] i_pos = self.loc[(indices[(:, 0)], coords)].values b_pos = self.loc[(indices[(:, 1)], coords)].values a_pos = self.loc[(indices[(:, 2)], coords)].values d_pos = self.loc[(indices[(:, 3)], coords)].values IB = (b_pos - i_pos) BA = (a_pos - b_pos) AD = (d_pos - a_pos) N1 = np.cross(IB, BA, axis=1) N2 = np.cross(BA, AD, axis=1) (n1, n2) = [(v / np.linalg.norm(v, axis=1)[(:, None)]) for v in (N1, N2)] dot_product = np.sum((n1 * n2), axis=1) dot_product[(dot_product > 1)] = 1 dot_product[(dot_product < (- 1))] = (- 1) dihedrals = np.degrees(np.arccos(dot_product)) where_to_modify = (np.sum((BA * np.cross(n1, n2, axis=1)), axis=1) > 0) where_to_modify = np.nonzero(where_to_modify)[0] length = (indices.shape[0] - start_row) sign = np.full(length, 1, dtype='float64') to_add = np.full(length, 0, dtype='float64') sign[where_to_modify] = (- 1) to_add[where_to_modify] = 360 dihedrals = (to_add + (sign * dihedrals)) return dihedrals
Return the dihedrals between given atoms. Calculates the dihedral angle in degrees between the atoms with indices ``i, b, a, d``. The indices can be given in three ways: * As simple list ``[i, b, a, d]`` * As list of lists: ``[[i1, b1, a1, d1], [i2, b2, a2, d2]...]`` * As :class:`pandas.DataFrame` where ``i`` is taken from the index and ``b``, ``a`` and ``d``from the respective columns ``'b'``, ``'a'`` and ``'d'``. Args: indices (list): Returns: :class:`numpy.ndarray`: Vector of angles in degrees.
codesearchnet
def _broadcast_normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=0.001): mean, var = nn.moments(x, reduction_axes, None, None, False) target_shape = [] for axis in range(ndim(x)): if axis in reduction_axes: target_shape.append(1) else: target_shape.append(array_ops.shape(x)[axis]) target_shape = array_ops_stack.stack(target_shape) broadcast_mean = array_ops.reshape(mean, target_shape) broadcast_var = array_ops.reshape(var, target_shape) if gamma is None: broadcast_gamma = None else: broadcast_gamma = array_ops.reshape(gamma, target_shape) if beta is None: broadcast_beta = None else: broadcast_beta = array_ops.reshape(beta, target_shape) normed = nn.batch_normalization(x, broadcast_mean, broadcast_var, broadcast_beta, broadcast_gamma, epsilon) return (normed, mean, var)
Non-fused, broadcast version of `normalize_batch_in_training`. Args: x: Input tensor or variable. gamma: Tensor by which to scale the input. beta: Tensor with which to center the input. reduction_axes: iterable of integers, axes over which to normalize. epsilon: Fuzz factor. Returns: A tuple length of 3, `(normalized_tensor, mean, variance)`.
github-repos
def dump_credibilities(self, output): for p in self.products: json.dump({ "product_id": p.name, "credibility": self.credibility(p) }, output) output.write("\n")
Dump credibilities of all products. Args: output: a writable object.
juraj-google-style
def conversations_invite(self, *, channel: str, users: List[str], **kwargs) -> SlackResponse: self._validate_xoxp_token() kwargs.update({'channel': channel, 'users': users}) return self.api_call('conversations.invite', json=kwargs)
Invites users to a channel. Args: channel (str): The channel id. e.g. 'C1234567890' users (list): An list of user id's to invite. e.g. ['U2345678901', 'U3456789012']
codesearchnet
def SetUseSSL(self, use_ssl): self._use_ssl = use_ssl logger.debug('Elasticsearch use_ssl: {0!s}'.format(use_ssl))
Sets the use of ssl. Args: use_ssl (bool): enforces use of ssl.
codesearchnet
def extend(self, table, keys=None): if keys: for k in keys: if (k not in self._Header()): raise IndexError("Unknown key: '%s'", k) extend_with = [] for column in table.header: if (column not in self.header): extend_with.append(column) if (not extend_with): return for column in extend_with: self.AddColumn(column) if (not keys): for (row1, row2) in zip(self, table): for column in extend_with: row1[column] = row2[column] return for row1 in self: for row2 in table: for k in keys: if (row1[k] != row2[k]): break else: for column in extend_with: row1[column] = row2[column] break
Extends all rows in the texttable. The rows are extended with the new columns from the table. Args: table: A texttable, the table to extend this table by. keys: A set, the set of columns to use as the key. If None, the row index is used. Raises: IndexError: If key is not a valid column name.
codesearchnet
def ordered_dump(data, Dumper=yaml.Dumper, **kws): class OrderedDumper(Dumper): pass def _dict_representer(dumper, data): return dumper.represent_mapping(yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, data.items()) OrderedDumper.add_representer(OrderedDict, _dict_representer) return yaml.dump(data, None, OrderedDumper, **kws)
Expand PyYAML's built-in dumper to support parsing OrderedDict. Return a string as parse result of the original data structure, which includes OrderedDict. Args: data: the data structure to be dumped(parsed) which is supposed to contain OrderedDict. Dumper: the yaml serializer to be expanded and used. kws: extra key-value arguments to be passed to yaml.dump.
codesearchnet
def add_snmp_community(self, **kwargs): community = kwargs.pop('community') callback = kwargs.pop('callback', self._callback) config = ET.Element('config') snmp_server = ET.SubElement(config, 'snmp-server', xmlns=("urn:brocade.com:mgmt:" "brocade-snmp")) community_el = ET.SubElement(snmp_server, 'community') community_name = ET.SubElement(community_el, 'community') community_name.text = community return callback(config)
Add SNMP Community to NOS device. Args: community (str): Community string to be added to device. callback (function): A function executed upon completion of the method. The only parameter passed to `callback` will be the ``ElementTree`` `config`. Returns: Return value of `callback`. Raises: KeyError: if `community` is not defined.
juraj-google-style
async def remember(request, user_id): auth_policy = request.get(POLICY_KEY) if auth_policy is None: raise RuntimeError('auth_middleware not installed') return await auth_policy.remember(request, user_id)
Called to store and remember the userid for a request Args: request: aiohttp Request object. user_id: String representing the user_id to remember Raises: RuntimeError: Middleware is not installed
juraj-google-style
def _validate_alias_command_level(alias, command): alias_collision_table = AliasManager.build_collision_table([alias]) if not alias_collision_table: return command_collision_table = AliasManager.build_collision_table([command]) alias_collision_levels = alias_collision_table.get(alias.split()[0], []) command_collision_levels = command_collision_table.get(command.split()[0], []) if set(alias_collision_levels) & set(command_collision_levels): raise CLIError(COMMAND_LVL_ERROR.format(alias, command))
Make sure that if the alias is a reserved command, the command that the alias points to in the command tree does not conflict in levels. e.g. 'dns' -> 'network dns' is valid because dns is a level 2 command and network dns starts at level 1. However, 'list' -> 'show' is not valid because list and show are both reserved commands at level 2. Args: alias: The name of the alias. command: The command that the alias points to.
juraj-google-style
def db_wb020(self, value=None): if (value is not None): try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float for field `db_wb020`'.format(value)) self._db_wb020 = value
Corresponds to IDD Field `db_wb020` mean coincident dry-bulb temperature to Wet-bulb temperature corresponding to 2.0% annual cumulative frequency of occurrence Args: value (float): value for IDD Field `db_wb020` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
codesearchnet
def area_of_a_triangle_in_cartesian_space(a, b, c): return (0.5 * np.linalg.norm(np.cross((b - a), (c - a))))
Returns the area of a triangle defined by three points in Cartesian space. Args: a (np.array): Cartesian coordinates of point A. b (np.array): Cartesian coordinates of point B. c (np.array): Cartesian coordinates of point C. Returns: (float): the area of the triangle.
codesearchnet
def start(self, attempts=5, timeout=2): if not self.alive(): with LogTask('Create network %s' % self.name()): net = self.libvirt_con.networkCreateXML(self._libvirt_xml()) if net is None: raise RuntimeError( 'failed to create network, XML: %s' % (self._libvirt_xml()) ) for _ in range(attempts): if net.isActive(): return LOGGER.debug( 'waiting for network %s to become active', net.name() ) time.sleep(timeout) raise RuntimeError( 'failed to verify network %s is active' % net.name() )
Start the network, will check if the network is active ``attempts`` times, waiting ``timeout`` between each attempt. Args: attempts (int): number of attempts to check the network is active timeout (int): timeout for each attempt Returns: None Raises: RuntimeError: if network creation failed, or failed to verify it is active.
juraj-google-style
def _parse_normalization(normalization): parsed_normalization = None if isinstance(normalization, dict): if len(normalization.keys()) == 1: items = list(normalization.items())[0] if len(items) == 2: if items[1] and isinstance(items[1], dict): parsed_normalization = items else: parsed_normalization = items[0] elif isinstance(normalization, STR_TYPE): parsed_normalization = normalization return parsed_normalization
Parse a normalization item. Transform dicts into a tuple containing the normalization options. If a string is found, the actual value is used. Args: normalization: Normalization to parse. Returns: Tuple or string containing the parsed normalization.
juraj-google-style
def synctree(src, dst, onexist=None): src = pathlib.Path(src).resolve() dst = pathlib.Path(dst).resolve() if (not src.is_dir()): raise ValueError if (dst.exists() and (not dst.is_dir())): raise ValueError if (onexist is None): def onexist(): pass _synctree(src, dst, onexist)
Recursively sync files at directory src to dst This is more or less equivalent to:: cp -n -R ${src}/ ${dst}/ If a file at the same path exists in src and dst, it is NOT overwritten in dst. Pass ``onexist`` in order to raise an error on such conditions. Args: src (path-like): source directory dst (path-like): destination directory, does not need to exist onexist (callable): function to call if file exists at destination, takes the full path to destination file as only argument
codesearchnet
def __init__(self, message_type, message_text): if message_type not in self.TYPES: raise TypeError("Unknown message_type: " + message_type) if not isinstance(message_text, six.text_type): raise TypeError("Message text must be unicode") self.type = message_type self.text = message_text
Create a new message. Args: message_type (unicode): The type associated with this message. Must be included in `TYPES`. message_text (unicode): The textual message.
juraj-google-style
def metadata(self): if (self._metadata is None): try: with open(self.paths.metadata()) as metadata_fd: self._metadata = json.load(metadata_fd) except IOError: self._metadata = {} return self._metadata
Retrieve the metadata info for this prefix Returns: dict: metadata info
codesearchnet
def get_block_containing_tx(self, txid): blocks = list(backend.query.get_block_with_transaction(self.connection, txid)) if len(blocks) > 1: logger.critical('Transaction id %s exists in multiple blocks', txid) return [block['height'] for block in blocks]
Retrieve the list of blocks (block ids) containing a transaction with transaction id `txid` Args: txid (str): transaction id of the transaction to query Returns: Block id list (list(int))
juraj-google-style
def _read_template(template): template = _read_content_or_path(template) file_obj = StringIO.StringIO(template) return ET.parse(file_obj)
Read XSLT template. Args: template (str): Filename or XML string. Don't use ``\\n`` in case of filename. Returns: obj: Required XML parsed with ``lxml.etree``.
codesearchnet
def probability_density(self, X): self.check_fit() covariance = self.covariance * np.identity(self.covariance.shape[0]) return stats.multivariate_normal.pdf(X, cov=covariance)
Compute probability density function for given copula family. Args: X: `numpy.ndarray` or `pandas.DataFrame` Returns: np.array: Probability density for the input values.
juraj-google-style
def __init__(self, *, dtype=np.complex64): if dtype not in {np.complex64, np.complex128}: raise ValueError( 'dtype must be complex64 or complex128 but was {}'.format( dtype)) self._dtype = dtype
A sparse matrix simulator. Args: dtype: The `numpy.dtype` used by the simulation. One of `numpy.complex64` or `numpy.complex128`
juraj-google-style
def datasets_insert(self, dataset_name, friendly_name=None, description=None): url = Api._ENDPOINT + (Api._DATASETS_PATH % (dataset_name.project_id, '')) data = { 'kind': 'bigquery 'datasetReference': { 'projectId': dataset_name.project_id, 'datasetId': dataset_name.dataset_id }, } if friendly_name: data['friendlyName'] = friendly_name if description: data['description'] = description return datalab.utils.Http.request(url, data=data, credentials=self._credentials)
Issues a request to create a dataset. Args: dataset_name: the name of the dataset to create. friendly_name: (optional) the friendly name for the dataset description: (optional) a description for the dataset Returns: A parsed result object. Raises: Exception if there is an error performing the operation.
juraj-google-style
def get_flux_biases(sampler, embedding, chain_strength, num_reads=1000, max_age=3600): if (not isinstance(sampler, dimod.Sampler)): raise TypeError('input sampler should be DWaveSampler') system_name = sampler.properties.get('chip_id', str(sampler.__class__)) try: with cache_connect() as cur: fbo = get_flux_biases_from_cache(cur, embedding.values(), system_name, chain_strength=chain_strength, max_age=max_age) return fbo except MissingFluxBias: pass try: import dwave.drivers as drivers except ImportError: msg = "dwave-drivers not found, cannot calculate flux biases. dwave-drivers can be installed with 'pip install dwave-drivers --extra-index-url https: raise RuntimeError(msg) fbo = drivers.oneshot_flux_bias(sampler, embedding.values(), num_reads=num_reads, chain_strength=chain_strength) with cache_connect() as cur: for chain in embedding.values(): v = next(iter(chain)) flux_bias = fbo.get(v, 0.0) insert_flux_bias(cur, chain, system_name, flux_bias, chain_strength) return fbo
Get the flux bias offsets for sampler and embedding. Args: sampler (:obj:`.DWaveSampler`): A D-Wave sampler. embedding (dict[hashable, iterable]): Mapping from a source graph to the specified sampler’s graph (the target graph). The keys of embedding should be nodes in the source graph, the values should be an iterable of nodes in the target graph. chain_strength (number): Desired chain coupling strength. This is the magnitude of couplings between qubits in a chain. num_reads (int, optional, default=1000): The number of reads per system call if new flux biases need to be calculated. max_age (int, optional, default=3600): The maximum age (in seconds) allowed for previously calculated flux bias offsets. Returns: dict: A dict where the keys are the nodes in the chains and the values are the flux biases.
codesearchnet
def _flag_is_registered(self, flag_obj): flag_dict = self._flags() name = flag_obj.name if flag_dict.get(name, None) == flag_obj: return True short_name = flag_obj.short_name if (short_name is not None and flag_dict.get(short_name, None) == flag_obj): return True return False
Checks whether a Flag object is registered under long name or short name. Args: flag_obj: Flag, the Flag instance to check for. Returns: bool, True iff flag_obj is registered under long name or short name.
juraj-google-style
def format_unitary(mat, decimals=None): num_basis = len(mat) mat_complex = np.zeros((num_basis, num_basis), dtype=complex) for (i, vec) in enumerate(mat): mat_complex[i] = format_statevector(vec, decimals) return mat_complex
Format unitary coming from the backend to present to the Qiskit user. Args: mat (list[list]): a list of list of [re, im] complex numbers decimals (int): the number of decimals in the statevector. If None, no rounding is done. Returns: list[list[complex]]: a matrix of complex numbers
codesearchnet
def map_arg(**maps): def deco(func): @functools.wraps(func) def wrapper(*args, **kwargs): if six.PY2: argmap = inspect.getcallargs(func, *args, **kwargs) else: sig = inspect.signature(func) argmap = sig.bind_partial(*args, **kwargs).arguments for (k, map_func) in six.iteritems(maps): if (k in argmap): argmap[k] = map_func(argmap[k]) return func(**argmap) return wrapper return deco
Apply a mapping on certain argument before calling the original function. Args: maps (dict): {argument_name: map_func}
codesearchnet
def readSettings(self): success = (self.readHolidayDates() and self.readMonthTariffs(ReadMonths.kWh) and self.readMonthTariffs(ReadMonths.kWhReverse) and self.readSchedules(ReadSchedules.Schedules_1_To_4) and self.readSchedules(ReadSchedules.Schedules_5_To_6)) return success
Recommended call to read all meter settings at once. Returns: bool: True if all subsequent serial calls completed with ACK.
codesearchnet
def quantize_saved_model(src_saved_model_path: str, dst_saved_model_path: str, config: qc.QuantizationConfig) -> None: print('=== User-provided QuantizationConfig ===') print(config) config = qc.QuantizationConfig.FromString(pywrap_quantization.populate_default_configs(config.SerializeToString())) config = qc.QuantizationConfig.FromString(pywrap_quantization.expand_preset_configs(config.SerializeToString())) print('=== Updated QuantizationConfig ===') print(config) if not (_has_quantization_method(config.specs, 'static_range_ptq') and len(config.calibration_options.representative_datasets) == 1) and (not _has_quantization_method(config.specs, 'weight_only_ptq')): raise ValueError('`quantize_saved_model` currently only supports static-range PTQ with a single signature or weight-only quantization.') signature_def_map = save_model.get_signatures_from_saved_model(src_saved_model_path, signature_keys=None, tags=set(config.tf_saved_model.tags)) signature_def_map_serialized = _serialize_signature_def_map(signature_def_map) if _has_quantization_method(config.specs, 'static_range_ptq'): pywrap_quantization.static_range_ptq(src_saved_model_path, dst_saved_model_path, quantization_config_serialized=config.SerializeToString(), signature_keys=list(signature_def_map.keys()), signature_def_map_serialized=signature_def_map_serialized, py_function_library=py_function_lib.PyFunctionLibrary()) elif _has_quantization_method(config.specs, 'weight_only_ptq'): pywrap_quantization.weight_only_ptq(src_saved_model_path, dst_saved_model_path, quantization_config_serialized=config.SerializeToString(), signature_keys=list(signature_def_map.keys()), signature_def_map_serialized=signature_def_map_serialized, py_function_library=py_function_lib.PyFunctionLibrary())
Quantizes a saved model. Args: src_saved_model_path: Path to the directory for the source SavedModel. dst_saved_model_path: Path to the directory for the destination SavedModel. config: Quantization configuration. Raises: ValueError: When `config` was not configured for static-range PTQ single representative dataset.
github-repos
def login(self, email, password, android_id): self._email = email self._android_id = android_id res = gpsoauth.perform_master_login(self._email, password, self._android_id) if ('Token' not in res): raise exception.LoginException(res.get('Error'), res.get('ErrorDetail')) self._master_token = res['Token'] self.refresh() return True
Authenticate to Google with the provided credentials. Args: email (str): The account to use. password (str): The account password. android_id (str): An identifier for this client. Raises: LoginException: If there was a problem logging in.
codesearchnet
def save_qasm(self, file_path: Union[(str, bytes, int)], header: Optional[str]=None, precision: int=10, qubit_order: ops.QubitOrderOrList=ops.QubitOrder.DEFAULT) -> None: self._to_qasm_output(header, precision, qubit_order).save(file_path)
Save a QASM file equivalent to the circuit. Args: file_path: The location of the file where the qasm will be written. header: A multi-line string that is placed in a comment at the top of the QASM. Defaults to a cirq version specifier. precision: Number of digits to use when representing numbers. qubit_order: Determines how qubits are ordered in the QASM register.
codesearchnet
def _ascending_sort(values, axis, return_argsort=False): dtype = values.dtype if dtype.is_unsigned: offset = dtype.max values_or_indices = _descending_sort(offset - values, axis, return_argsort) return values_or_indices if return_argsort else offset - values_or_indices elif dtype.is_integer: values_or_indices = _descending_sort(-values - 1, axis, return_argsort) return values_or_indices if return_argsort else -values_or_indices - 1 else: values_or_indices = _descending_sort(-values, axis, return_argsort) return values_or_indices if return_argsort else -values_or_indices
Sorts values in ascending order. Args: values: Tensor of numeric values. axis: Index of the axis which values should be sorted along. return_argsort: If False, return the sorted values. If True, return the indices that would sort the values. Returns: The sorted values.
github-repos
def write_message(self, message, timeout): with self._writer_lock: self._transport.write(message.header, timeout.remaining_ms) if timeout.has_expired(): _LOG.warning('Timed out between AdbMessage header and data, sending ' 'data anyway with 10ms timeout') timeout = timeouts.PolledTimeout.from_millis(10) self._transport.write(message.data, timeout.remaining_ms)
Send the given message over this transport. Args: message: The AdbMessage to send. timeout: Use this timeout for the entire write operation, it should be an instance of timeouts.PolledTimeout.
juraj-google-style
def from_pkcs12(cls, key, email, scopes, subject=None, passphrase=PKCS12_PASSPHRASE): key = OpenSSL.crypto.load_pkcs12(key, passphrase).get_privatekey() return cls(key=key, email=email, scopes=scopes, subject=subject)
Alternate constructor intended for using .p12 files. Args: key (dict) - Parsed JSON with service account credentials. email (str) - Service account email. scopes (Union[str, collections.Iterable[str]]) - List of permissions that the application requests. subject (str) - The email address of the user for which the application is requesting delegated access. passphrase (str) - Passphrase of private key file. Google generates .p12 files secured with fixed 'notasecret' passphrase, so if you didn't change it it's fine to omit this parameter. Returns: ServiceAccount
codesearchnet
def CallDhclient(interfaces, logger, dhclient_script=None): logger.info('Enabling the Ethernet interfaces %s.', interfaces) dhclient_command = ['dhclient'] if (dhclient_script and os.path.exists(dhclient_script)): dhclient_command += ['-sf', dhclient_script] try: subprocess.check_call(((dhclient_command + ['-x']) + interfaces)) subprocess.check_call((dhclient_command + interfaces)) except subprocess.CalledProcessError: logger.warning('Could not enable interfaces %s.', interfaces)
Configure the network interfaces using dhclient. Args: interfaces: list of string, the output device names to enable. logger: logger object, used to write to SysLog and serial port. dhclient_script: string, the path to a dhclient script used by dhclient.
codesearchnet
class SpQRConfig(QuantizationConfigMixin): def __init__(self, bits: int=3, beta1: int=16, beta2: int=16, shapes: Optional[Dict[str, int]]=None, modules_to_not_convert: Optional[List[str]]=None, **kwargs): if shapes is None: shapes = {} self.shapes = shapes self.quant_method = QuantizationMethod.SPQR self.bits = bits self.beta1 = beta1 self.beta2 = beta2 self.modules_to_not_convert = modules_to_not_convert self.post_init() def post_init(self): if not isinstance(self.bits, int): raise TypeError('bits must be an int') if not isinstance(self.beta1, int): raise TypeError('beta1 must be an int') if not isinstance(self.beta2, int): raise TypeError('beta2 must be an int') if self.bits != 3: raise ValueError('SpQR currently only supports bits = 3') if self.beta1 != 16: raise ValueError('SpQR currently only supports beta1 = 16') if self.beta2 != 16: raise ValueError('SpQR currently only supports beta2 = 16') if not isinstance(self.shapes, dict): raise TypeError('shapes must be a dict')
This is a wrapper class about `spqr` parameters. Refer to the original publication for more details. Args: bits (`int`, *optional*, defaults to 3): Specifies the bit count for the weights and first order zero-points and scales. Currently only bits = 3 is supported. beta1 (`int`, *optional*, defaults to 16): SpQR tile width. Currently only beta1 = 16 is supported. beta2 (`int`, *optional*, defaults to 16): SpQR tile height. Currently only beta2 = 16 is supported. shapes (`Optional`, *optional*): A dictionary holding the shape of each object. We need this because it's impossible to deduce the exact size of the parameters just from bits, beta1, beta2. modules_to_not_convert (`Optional[List[str]]`, *optional*): Optionally, provides a list of full paths of `nn.Linear` weight parameters that shall not be quantized. Defaults to None. kwargs (`Dict[str, Any]`, *optional*): Additional parameters from which to initialize the configuration object.
github-repos
def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]]=None) -> List[int]: if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A REALM sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
github-repos
def unlock_kinetis(jlink): if not jlink.connected(): raise ValueError('No target to unlock.') method = UNLOCK_METHODS.get(jlink.tif, None) if method is None: raise NotImplementedError('Unsupported target interface for unlock.') return method(jlink)
Unlock for Freescale Kinetis K40 or K60 device. Args: jlink (JLink): an instance of a J-Link that is connected to a target. Returns: ``True`` if the device was successfully unlocked, otherwise ``False``. Raises: ValueError: if the J-Link is not connected to a target.
juraj-google-style
def get(cls, session, team_id): return cls(('/teams/%d.json' % team_id), singleton=True, session=session)
Return a specific team. Args: session (requests.sessions.Session): Authenticated session. team_id (int): The ID of the team to get. Returns: helpscout.models.Person: A person singleton representing the team, if existing. Otherwise ``None``.
codesearchnet
def icao(msg): DF = df(msg) if (DF in (11, 17, 18)): addr = msg[2:8] elif (DF in (0, 4, 5, 16, 20, 21)): c0 = bin2int(crc(msg, encode=True)) c1 = hex2int(msg[(- 6):]) addr = ('%06X' % (c0 ^ c1)) else: addr = None return addr
Calculate the ICAO address from an Mode-S message with DF4, DF5, DF20, DF21 Args: msg (String): 28 bytes hexadecimal message string Returns: String: ICAO address in 6 bytes hexadecimal string
codesearchnet
def load_keys(): consumer_key = os.environ.get('CONSUMER_KEY') consumer_secret = os.environ.get('CONSUMER_SECRET') access_token = os.environ.get('ACCESS_TOKEN') access_token_secret = os.environ.get('ACCESS_TOKEN_SECRET') return (consumer_key, consumer_secret, access_token, access_token_secret)
Loads Twitter keys. Returns: tuple: consumer_key, consumer_secret, access_token, access_token_secret
codesearchnet
def _process_intersects_filter_directive(filter_operation_info, location, context, parameters): filtered_field_type = filter_operation_info.field_type filtered_field_name = filter_operation_info.field_name argument_inferred_type = strip_non_null_from_type(filtered_field_type) if (not isinstance(argument_inferred_type, GraphQLList)): raise GraphQLCompilationError(u'Cannot apply "intersects" to non-list type {}'.format(filtered_field_type)) (argument_expression, non_existence_expression) = _represent_argument(location, context, parameters[0], argument_inferred_type) filter_predicate = expressions.BinaryComposition(u'intersects', expressions.LocalField(filtered_field_name), argument_expression) if (non_existence_expression is not None): filter_predicate = expressions.BinaryComposition(u'||', non_existence_expression, filter_predicate) return blocks.Filter(filter_predicate)
Return a Filter basic block that checks if the directive arg and the field intersect. Args: filter_operation_info: FilterOperationInfo object, containing the directive and field info of the field where the filter is to be applied. location: Location where this filter is used. context: dict, various per-compilation data (e.g. declared tags, whether the current block is optional, etc.). May be mutated in-place in this function! parameters: list of 1 element, specifying the collection in which the value must exist; if the collection is optional and missing, the check will return True Returns: a Filter basic block that performs the intersects check
codesearchnet
def read(self, input_buffer, kmip_version=enums.KMIPVersion.KMIP_1_3): if (kmip_version < enums.KMIPVersion.KMIP_1_3): raise exceptions.VersionNotSupported('KMIP {} does not support the CapabilityInformation object.'.format(kmip_version.value)) super(CapabilityInformation, self).read(input_buffer, kmip_version=kmip_version) local_buffer = utils.BytearrayStream(input_buffer.read(self.length)) if self.is_tag_next(enums.Tags.STREAMING_CAPABILITY, local_buffer): streaming_capability = primitives.Boolean(tag=enums.Tags.STREAMING_CAPABILITY) streaming_capability.read(local_buffer, kmip_version=kmip_version) self._streaming_capability = streaming_capability if self.is_tag_next(enums.Tags.ASYNCHRONOUS_CAPABILITY, local_buffer): asynchronous_capability = primitives.Boolean(tag=enums.Tags.ASYNCHRONOUS_CAPABILITY) asynchronous_capability.read(local_buffer, kmip_version=kmip_version) self._asynchronous_capability = asynchronous_capability if self.is_tag_next(enums.Tags.ATTESTATION_CAPABILITY, local_buffer): attestation_capability = primitives.Boolean(tag=enums.Tags.ATTESTATION_CAPABILITY) attestation_capability.read(local_buffer, kmip_version=kmip_version) self._attestation_capability = attestation_capability if (kmip_version >= enums.KMIPVersion.KMIP_1_4): if self.is_tag_next(enums.Tags.BATCH_UNDO_CAPABILITY, local_buffer): batch_undo_capability = primitives.Boolean(tag=enums.Tags.BATCH_UNDO_CAPABILITY) batch_undo_capability.read(local_buffer, kmip_version=kmip_version) self._batch_continue_capability = batch_undo_capability if self.is_tag_next(enums.Tags.BATCH_CONTINUE_CAPABILITY, local_buffer): batch_continue_capability = primitives.Boolean(tag=enums.Tags.BATCH_CONTINUE_CAPABILITY) batch_continue_capability.read(local_buffer, kmip_version=kmip_version) self._batch_continue_capability = batch_continue_capability if self.is_tag_next(enums.Tags.UNWRAP_MODE, local_buffer): unwrap_mode = primitives.Enumeration(enums.UnwrapMode, tag=enums.Tags.UNWRAP_MODE) unwrap_mode.read(local_buffer, kmip_version=kmip_version) self._unwrap_mode = unwrap_mode if self.is_tag_next(enums.Tags.DESTROY_ACTION, local_buffer): destroy_action = primitives.Enumeration(enums.DestroyAction, tag=enums.Tags.DESTROY_ACTION) destroy_action.read(local_buffer, kmip_version=kmip_version) self._destroy_action = destroy_action if self.is_tag_next(enums.Tags.SHREDDING_ALGORITHM, local_buffer): shredding_algorithm = primitives.Enumeration(enums.ShreddingAlgorithm, tag=enums.Tags.SHREDDING_ALGORITHM) shredding_algorithm.read(local_buffer, kmip_version=kmip_version) self._shredding_algorithm = shredding_algorithm if self.is_tag_next(enums.Tags.RNG_MODE, local_buffer): rng_mode = primitives.Enumeration(enums.RNGMode, tag=enums.Tags.RNG_MODE) rng_mode.read(local_buffer, kmip_version=kmip_version) self._rng_mode = rng_mode self.is_oversized(local_buffer)
Read the data encoding the CapabilityInformation structure and decode it into its constituent parts. Args: input_buffer (stream): A data stream containing encoded object data, supporting a read method; usually a BytearrayStream object. kmip_version (KMIPVersion): An enumeration defining the KMIP version with which the object will be decoded. Optional, defaults to KMIP 2.0. Raises: VersionNotSupported: Raised when a KMIP version is provided that does not support the CapabilityInformation structure.
codesearchnet
def from_string(cls, prjs): def parse(v): try: return int(v) except ValueError: pass try: return float(v) except ValueError: return v parts = [o.lstrip('+') for o in prjs.strip().split()] items = map( lambda kv: len(kv) == 2 and (kv[0], parse(kv[1])) or (kv[0], True), (p.split('=') for p in parts)) return cls({k: v for k, v in items if '+'+k in PROJ4_PARAMS.keys()})
Turn a PROJ.4 string into a mapping of parameters. Bare parameters like "+no_defs" are given a value of ``True``. All keys are checked against the ``all_proj_keys`` list. Args: prjs (str): A PROJ4 string.
juraj-google-style
def get(url, max_backoff=32, verbose=False, **kwargs): sleep_seconds = 1 while (sleep_seconds <= max_backoff): try: response = requests.get(url, **{**{'timeout': 30}, **kwargs}) if (400 <= response.status_code < 500): return None if (200 <= response.status_code < 400): return response except RequestException as e: if verbose: print(str(e)) time.sleep(sleep_seconds) sleep_seconds *= 2 return None
Adding retries to requests.get with exponential backoff. Args: url (str): The URL to fetch max_backoff (int): The number of seconds to sleep at maximums verbose (bool): Whether to print exceptions. Returns: Response: For successful requests return requests' response. `None` otherwise.
codesearchnet
def create_token_type_ids_from_sequences(self, token_ids_0: List[int], token_ids_1: Optional[List[int]]=None) -> List[int]: sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
Create a mask from the two sequences passed to be used in a sequence-pair classification task. LED does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros.
github-repos
def _build_encryption_key_information(self, value): if value is None: return None if not isinstance(value, dict): raise TypeError("Encryption key information must be a dictionary.") cryptographic_parameters = value.get('cryptographic_parameters') if cryptographic_parameters: cryptographic_parameters = self._build_cryptographic_parameters( cryptographic_parameters ) encryption_key_information = cobjects.EncryptionKeyInformation( unique_identifier=value.get('unique_identifier'), cryptographic_parameters=cryptographic_parameters ) return encryption_key_information
Build an EncryptionKeyInformation struct from a dictionary. Args: value (dict): A dictionary containing the key/value pairs for a EncryptionKeyInformation struct. Returns: EncryptionKeyInformation: an EncryptionKeyInformation struct Raises: TypeError: if the input argument is invalid
juraj-google-style
def call(self, inputs): del inputs latent_code = ed.MultivariateNormalDiag(loc=tf.zeros(self.latent_size), sample_shape=1, name="latent_code") state = self.lstm.zero_state(1, dtype=tf.float32) t = 0 productions = [] stack = [self.grammar.start_symbol] while stack: symbol = stack.pop() net, state = self.lstm(latent_code, state) logits = (self.output_layer(net) + self.grammar.mask(symbol, on_value=0., off_value=-1e9)) production = ed.OneHotCategorical(logits=logits, name="production_" + str(t)) _, rhs = self.grammar.production_rules[tf.argmax( input=production, axis=-1)] for symbol in rhs: if symbol in self.grammar.nonterminal_symbols: stack.append(symbol) productions.append(production) t += 1 return tf.stack(productions, axis=1)
Runs the model forward to generate a sequence of productions. Args: inputs: Unused. Returns: productions: Tensor of shape [1, num_productions, num_production_rules]. Slices along the `num_productions` dimension represent one-hot vectors.
juraj-google-style
def variable(dims=1): if dims == 1: return Poly({(1,): 1}, dim=1, shape=()) return Poly({ tuple(indices): indices for indices in numpy.eye(dims, dtype=int) }, dim=dims, shape=(dims,))
Simple constructor to create single variables to create polynomials. Args: dims (int): Number of dimensions in the array. Returns: (Poly): Polynomial array with unit components in each dimension. Examples: >>> print(variable()) q0 >>> print(variable(3)) [q0, q1, q2]
juraj-google-style
def AddItem(self, item, f=(lambda x: x)): with self._mutex: if ((len(self.items) < self._max_size) or (self._max_size == 0)): self.items.append(f(item)) else: r = self._random.randint(0, self._num_items_seen) if (r < self._max_size): self.items.pop(r) self.items.append(f(item)) elif self.always_keep_last: self.items[(- 1)] = f(item) self._num_items_seen += 1
Add an item to the ReservoirBucket, replacing an old item if necessary. The new item is guaranteed to be added to the bucket, and to be the last element in the bucket. If the bucket has reached capacity, then an old item will be replaced. With probability (_max_size/_num_items_seen) a random item in the bucket will be popped out and the new item will be appended to the end. With probability (1 - _max_size/_num_items_seen) the last item in the bucket will be replaced. Since the O(n) replacements occur with O(1/_num_items_seen) likelihood, the amortized runtime is O(1). Args: item: The item to add to the bucket. f: A function to transform item before addition, if it will be kept in the reservoir.
codesearchnet
def product_name(self): buf = (ctypes.c_char * self.MAX_BUF_SIZE)() self._dll.JLINKARM_EMU_GetProductName(buf, self.MAX_BUF_SIZE) return ctypes.string_at(buf).decode()
Returns the product name of the connected J-Link. Args: self (JLink): the ``JLink`` instance Returns: Product name.
juraj-google-style
def install(self, connection, partition, table_name=None, columns=None, materialize=False, logger=None): partition.localize() self._add_partition(connection, partition) fdw_table = partition.vid view_table = '{}_v'.format(fdw_table) if materialize: with connection.cursor() as cursor: view_exists = self._relation_exists(connection, view_table) if view_exists: logger.debug( 'Materialized view of the partition already exists.\n partition: {}, view: {}' .format(partition.name, view_table)) else: query = 'CREATE MATERIALIZED VIEW {} AS SELECT * FROM {};'\ .format(view_table, fdw_table) logger.debug( 'Creating new materialized view of the partition.' '\n partition: {}, view: {}, query: {}' .format(partition.name, view_table, query)) cursor.execute(query) cursor.execute('COMMIT;') final_table = view_table if materialize else fdw_table with connection.cursor() as cursor: view_q = "CREATE VIEW IF NOT EXISTS {} AS SELECT * FROM {} ".format(partition.vid, final_table) cursor.execute(view_q) cursor.execute('COMMIT;') return partition.vid
Creates FDW or materialize view for given partition. Args: connection: connection to postgresql partition (orm.Partition): materialize (boolean): if True, create read-only table. If False create virtual table. Returns: str: name of the created table.
juraj-google-style
def retryable(a_func, retry_options, **kwargs): delay_mult = retry_options.backoff_settings.retry_delay_multiplier max_delay_millis = retry_options.backoff_settings.max_retry_delay_millis has_timeout_settings = _has_timeout_settings(retry_options.backoff_settings) if has_timeout_settings: timeout_mult = retry_options.backoff_settings.rpc_timeout_multiplier max_timeout = (retry_options.backoff_settings.max_rpc_timeout_millis / _MILLIS_PER_SECOND) total_timeout = (retry_options.backoff_settings.total_timeout_millis / _MILLIS_PER_SECOND) def inner(*args): 'Equivalent to ``a_func``, but retries upon transient failure.\n\n Retrying is done through an exponential backoff algorithm configured\n by the options in ``retry``.\n ' delay = retry_options.backoff_settings.initial_retry_delay_millis exc = errors.RetryError('Retry total timeout exceeded before anyresponse was received') if has_timeout_settings: timeout = (retry_options.backoff_settings.initial_rpc_timeout_millis / _MILLIS_PER_SECOND) now = time.time() deadline = (now + total_timeout) else: timeout = None deadline = None while ((deadline is None) or (now < deadline)): try: to_call = add_timeout_arg(a_func, timeout, **kwargs) return to_call(*args) except Exception as exception: code = config.exc_to_code(exception) if (code not in retry_options.retry_codes): raise errors.RetryError('Exception occurred in retry method that was not classified as transient', exception) exc = errors.RetryError('Retry total timeout exceeded with exception', exception) to_sleep = random.uniform(0, (delay * 2)) time.sleep((to_sleep / _MILLIS_PER_SECOND)) delay = min((delay * delay_mult), max_delay_millis) if has_timeout_settings: now = time.time() timeout = min((timeout * timeout_mult), max_timeout, (deadline - now)) raise exc return inner
Creates a function equivalent to a_func, but that retries on certain exceptions. Args: a_func (callable): A callable. retry_options (RetryOptions): Configures the exceptions upon which the callable should retry, and the parameters to the exponential backoff retry algorithm. kwargs: Addtional arguments passed through to the callable. Returns: Callable: A function that will retry on exception.
codesearchnet
def sub_annotations_for_parameterized_class(self, cls: abstract.ParameterizedClass, annotations: dict[str, abstract.BaseValue]) -> dict[str, abstract.BaseValue]: formal_type_parameters = cls.get_formal_type_parameters() def get_type_parameter_subst(annotation: abstract.BaseValue) -> abstract.BaseValue | None: for name in (f'{cls.full_name}.{annotation.name}', f'{cls.name}.{annotation.name}'): if name in formal_type_parameters: return formal_type_parameters[name] return annotation return {name: self._do_sub_one_annotation(self.ctx.root_node, annot, get_type_parameter_subst) for name, annot in annotations.items()}
Apply type parameter substitutions to a dictionary of annotations. Args: cls: ParameterizedClass that defines type parameter substitutions. annotations: A dictionary of annotations to which type parameter substition should be applied. Returns: Annotations with type parameters substituted.
github-repos
def get_cso_dataframe(self): assert (self.jco is not None) assert (self.pst is not None) weights = self.pst.observation_data.loc[(self.jco.to_dataframe().index, 'weight')].copy().values cso = (np.diag(np.sqrt(self.qhalfx.x.dot(self.qhalfx.x.T))) / float((self.pst.npar - 1))) cso_df = pd.DataFrame.from_dict({'obnme': self.jco.to_dataframe().index, 'cso': cso}) cso_df.index = cso_df['obnme'] cso_df.drop('obnme', axis=1, inplace=True) return cso_df
get a dataframe of composite observation sensitivity, as returned by PEST in the seo file. Note that this formulation deviates slightly from the PEST documentation in that the values are divided by (npar-1) rather than by (npar). The equation is cso_j = ((Q^1/2*J*J^T*Q^1/2)^1/2)_jj/(NPAR-1) Returns: cso : pandas.DataFrame
codesearchnet
def get_compliance_preview(self): uri = '{}/compliance-preview'.format(self.data['uri']) return self._helper.do_get(uri)
Gets the preview of manual and automatic updates required to make the server profile consistent with its template. Returns: dict: Server profile compliance preview.
codesearchnet
def save_image(figure, filename): path = os.path.join(IMAGES_DIR, filename) figure.savefig(path, bbox_inches='tight') plt.close(figure)
Save an image to the docs images directory. Args: filename (str): The name of the file (not containing directory info).
codesearchnet
def ParseCacheEntry(self, file_object, block_offset): cache_entry_map = self._GetDataTypeMap('chrome_cache_entry') try: cache_entry, _ = self._ReadStructureFromFileObject( file_object, block_offset, cache_entry_map) except (ValueError, errors.ParseError) as exception: raise errors.UnableToParseFile(( 'Unable to parse cache entry at offset: 0x{0:08x} with error: ' '{1!s}').format(block_offset, exception)) cache_entry_object = CacheEntry() cache_entry_object.hash = cache_entry.hash cache_entry_object.next = CacheAddress(cache_entry.next_address) cache_entry_object.rankings_node = CacheAddress( cache_entry.rankings_node_address) cache_entry_object.creation_time = cache_entry.creation_time byte_array = cache_entry.key byte_string = bytes(bytearray(byte_array)) cache_entry_object.key, _, _ = byte_string.partition(b'\x00') try: cache_entry_object.original_url = cache_entry_object.key.decode('ascii') except UnicodeDecodeError as exception: raise errors.ParseError( 'Unable to decode original URL in key with error: {0!s}'.format( exception)) return cache_entry_object
Parses a cache entry. Args: file_object (dfvfs.FileIO): a file-like object to read from. block_offset (int): block offset of the cache entry. Returns: CacheEntry: cache entry. Raises: ParseError: if the cache entry cannot be read.
juraj-google-style
def _on_pass(self, record): msg = record.details if msg: logging.info(msg) self.on_pass(record)
Proxy function to guarantee the base implementation of on_pass is called. Args: record: records.TestResultRecord, a copy of the test record for this test, containing all information of the test execution including exception objects.
github-repos
def default(fields=None, count=5): projection = Sampling._create_projection(fields) return (lambda sql: ('SELECT %s FROM (%s) LIMIT %d' % (projection, sql, count)))
Provides a simple default sampling strategy which limits the result set by a count. Args: fields: an optional list of field names to retrieve. count: optional number of rows to limit the sampled results to. Returns: A sampling function that can be applied to get a random sampling.
codesearchnet
def hardware_status(self): stat = structs.JLinkHardwareStatus() res = self._dll.JLINKARM_GetHWStatus(ctypes.byref(stat)) if res == 1: raise errors.JLinkException('Error in reading hardware status.') return stat
Retrieves and returns the hardware status. Args: self (JLink): the ``JLink`` instance Returns: A ``JLinkHardwareStatus`` describing the J-Link hardware.
juraj-google-style
def __init__(self, tcex): self.tcex = tcex self._request = self.tcex.request(self.tcex.session) self._request.content_type = 'application/json' self._api_branch = None self._api_branch_base = None self._api_entity = None self._api_uri = None self._case_preference = 'sensitive' self._custom = False self._http_method = 'GET' self._filters = [] self._filter_or = False self._name = None self._parsable = False self._paginate = True self._paginate_count = 0 self._parent = None self._request_entity = None self._request_uri = None self._result_count = None self._result_limit = 500 self._result_start = 0 self._stream = False self._status_codes = {} self._value_fields = [] self.owner = self.tcex.args.api_default_org
Initialize the Class properties. Args: tcex (object): Instance of TcEx.
juraj-google-style
def get_subdomain(url): if (url not in URLHelper.__cache): URLHelper.__cache[url] = urlparse(url) return '.'.join(URLHelper.__cache[url].netloc.split('.')[:(- 2)])
Get the subdomain of the given URL. Args: url (str): The URL to get the subdomain from. Returns: str: The subdomain(s)
codesearchnet
def parse_done(self, buf: memoryview) -> Tuple[(bool, memoryview)]: match = self._pattern.match(buf) if (not match): raise NotParseable(buf) done = (match.group(1).upper() == self.continuation) buf = buf[match.end(0):] return (done, buf)
Parse the continuation line sent by the client to end the ``IDLE`` command. Args: buf: The continuation line to parse.
codesearchnet
def kde(self, term, bandwidth=2000, samples=1000, kernel='gaussian'): terms = np.array(self.terms[term])[:, np.newaxis] kde = KernelDensity(kernel=kernel, bandwidth=bandwidth).fit(terms) x_axis = np.linspace(0, len(self.tokens), samples)[:, np.newaxis] scores = kde.score_samples(x_axis) return np.exp(scores) * (len(self.tokens) / samples)
Estimate the kernel density of the instances of term in the text. Args: term (str): A stemmed term. bandwidth (int): The kernel bandwidth. samples (int): The number of evenly-spaced sample points. kernel (str): The kernel function. Returns: np.array: The density estimate.
juraj-google-style
def _pad_for_batching(self, pixel_values: List[torch.Tensor], image_sizes: List[List[int]]): max_shape = (max([size[0] for size in image_sizes]), max([size[1] for size in image_sizes])) pixel_values = [torch.nn.functional.pad(image, pad=(0, max_shape[1] - size[1], 0, max_shape[0] - size[0])) for image, size in zip(pixel_values, image_sizes)] return torch.stack(pixel_values)
Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches. Args: pixel_values (`List[torch.Tensor]`): An array of pixel values of each images of shape (`batch_size`, `channels`, `height`, `width`) image_sizes (`List[List[int]]`): A list of sizes for each image in `pixel_values` in (height, width) format. Returns: List[`torch.Tensor`]: The padded images.
github-repos
def to_json(self, include_body=False): message = { 'emailId': self.email_id, 'timestamp': isoformat(self.timestamp), 'subsystem': self.subsystem, 'subject': self.subject, 'sender': self.sender, 'recipients': self.recipients, 'uuid': self.uuid, 'messageHtml': None, 'messageText': None } if include_body: message['messageHtml'] = self.message_html message['messageText'] = self.message_text return message
Exports the object to a JSON friendly dict Args: include_body (bool): Include the body of the message in the output Returns: Dict representation of object type
juraj-google-style
def export_default_probes(path, module_name = '', raise_errors = False): raise NotImplementedError import b26_toolkit.b26_toolkit.instruments as instruments from pylabcontrol.core import Probe for name, obj in inspect.getmembers(instruments): if inspect.isclass(obj): try: instrument = obj() print(('--- created ', obj.__name__, ' -- ')) for probe_name, probe_info in instrument._PROBES.items(): probe = Probe(instrument, probe_name, info = probe_info) filename = os.path.join(path, '{:s}.b26'.format(instrument.name)) probe.save(filename) except: print(('failed to create probe file for: {:s}'.format(obj.__name__))) print(('failed to create probe file for: {:s}'.format(obj.__name__)))
NOT IMPLEMENTED YET tries to instantiate all the instruments that are imported in /instruments/__init__.py and the probes of each instrument that could be instantiated into a .b26 file in the folder path Args: path: target path for .b26 files
juraj-google-style
def _google_section(line_info): colon_index = line_info.remaining.find(':') possible_title = line_info.remaining[:colon_index] return _section_from_possible_title(possible_title)
Checks whether the current line is the start of a new Google-style section. This docstring is a Google-style docstring. Google-style sections look like this: Section Name: section body goes here Args: line_info: Information about the current line. Returns: A Section type if one matches, or None if no section type matches.
github-repos
def get(self, group=None, backend=None): from .options import Store, Options keywords = {} groups = Options._option_groups if group is None else [group] backend = backend if backend else Store.current_backend for group in groups: optsobj = Store.lookup_options(backend, self._obj, group) keywords = dict(keywords, **optsobj.kwargs) return Options(**keywords)
Returns the corresponding Options object. Args: group: The options group. Flattens across groups if None. backend: Current backend if None otherwise chosen backend. Returns: Options object associated with the object containing the applied option keywords.
juraj-google-style
def _as_document(self, dataset): assert isinstance(dataset, Dataset) doc = super(self.__class__, self)._as_document(dataset) doc['keywords'] = doc['keywords'].replace('-', '_') doc['doc'] = doc['doc'].replace('-', '_') doc['title'] = doc['title'].replace('-', '_') return doc
Converts dataset to document indexed by to FTS index. Args: dataset (orm.Dataset): dataset to convert. Returns: dict with structure matches to BaseDatasetIndex._schema.
juraj-google-style
def conv_output_shape(input_shape, kernel_shape, strides, padding): dims = range(len(kernel_shape)) output_shape = [conv_output_length(input_shape[d], kernel_shape[d], padding, strides[d]) for d in dims] output_shape = tuple([0 if input_shape[d] == 0 else output_shape[d] for d in dims]) return output_shape
Return the output shape of an N-D convolution. Forces dimensions where input is empty (size 0) to remain empty. Args: input_shape: tuple of size N: `(d_in1, ..., d_inN)`, spatial shape of the input. kernel_shape: tuple of size N, spatial shape of the convolutional kernel / receptive field. strides: tuple of size N, strides along each spatial dimension. padding: type of padding, string `"same"` or `"valid"`. `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. Returns: tuple of size N: `(d_out1, ..., d_outN)`, spatial shape of the output.
github-repos