typescript-chunks / README.md
mciccone's picture
Add/update README
002b88a verified
# typescript-chunks LoRA Models
This repository contains LoRA (Low-Rank Adaptation) models trained on the typescript-chunks dataset.
## Models in this repository:
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=500_seed=123
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=100_seed=123
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=500_seed=123
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=100_seed=123
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr5e-05_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr5e-05_data_size1000_max_steps=500_seed=123
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=100_seed=123
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=500_seed=123
## Usage
To use these LoRA models, you'll need the `peft` library:
```bash
pip install peft transformers torch
```
Example usage:
```python
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load base model
base_model_name = "your-base-model" # Replace with actual base model
model = AutoModelForCausalLM.from_pretrained(base_model_name)
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
# Load LoRA adapter
model = PeftModel.from_pretrained(
model,
"supergoose/typescript-chunks",
subfolder="model_name_here" # Replace with specific model folder
)
# Use the model
inputs = tokenizer("Your prompt here", return_tensors="pt")
outputs = model.generate(**inputs)
```
## Training Details
- Dataset: typescript-chunks
- Training framework: LoRA/PEFT
- Models included: 7 variants
## Files Structure
Each model folder contains:
- `adapter_config.json`: LoRA configuration
- `adapter_model.safetensors`: LoRA weights
- `tokenizer.json`: Tokenizer configuration
- Additional training artifacts
---
*Generated automatically by LoRA uploader script*