|
# typescript-chunks LoRA Models |
|
|
|
This repository contains LoRA (Low-Rank Adaptation) models trained on the typescript-chunks dataset. |
|
|
|
## Models in this repository: |
|
|
|
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=500_seed=123 |
|
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=100_seed=123 |
|
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=500_seed=123 |
|
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=100_seed=123 |
|
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr5e-05_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr5e-05_data_size1000_max_steps=500_seed=123 |
|
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=100_seed=123 |
|
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=500_seed=123 |
|
|
|
## Usage |
|
|
|
To use these LoRA models, you'll need the `peft` library: |
|
|
|
```bash |
|
pip install peft transformers torch |
|
``` |
|
|
|
Example usage: |
|
|
|
```python |
|
from peft import PeftModel |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
# Load base model |
|
base_model_name = "your-base-model" # Replace with actual base model |
|
model = AutoModelForCausalLM.from_pretrained(base_model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(base_model_name) |
|
|
|
# Load LoRA adapter |
|
model = PeftModel.from_pretrained( |
|
model, |
|
"supergoose/typescript-chunks", |
|
subfolder="model_name_here" # Replace with specific model folder |
|
) |
|
|
|
# Use the model |
|
inputs = tokenizer("Your prompt here", return_tensors="pt") |
|
outputs = model.generate(**inputs) |
|
``` |
|
|
|
## Training Details |
|
|
|
- Dataset: typescript-chunks |
|
- Training framework: LoRA/PEFT |
|
- Models included: 7 variants |
|
|
|
## Files Structure |
|
|
|
Each model folder contains: |
|
- `adapter_config.json`: LoRA configuration |
|
- `adapter_model.safetensors`: LoRA weights |
|
- `tokenizer.json`: Tokenizer configuration |
|
- Additional training artifacts |
|
|
|
--- |
|
*Generated automatically by LoRA uploader script* |
|
|