Add/update README
Browse files
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# typescript-chunks LoRA Models
|
2 |
+
|
3 |
+
This repository contains LoRA (Low-Rank Adaptation) models trained on the typescript-chunks dataset.
|
4 |
+
|
5 |
+
## Models in this repository:
|
6 |
+
|
7 |
+
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=500_seed=123
|
8 |
+
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=100_seed=123
|
9 |
+
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=500_seed=123
|
10 |
+
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=100_seed=123
|
11 |
+
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr5e-05_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr5e-05_data_size1000_max_steps=500_seed=123
|
12 |
+
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=100_seed=123
|
13 |
+
- `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=500_seed=123
|
14 |
+
|
15 |
+
## Usage
|
16 |
+
|
17 |
+
To use these LoRA models, you'll need the `peft` library:
|
18 |
+
|
19 |
+
```bash
|
20 |
+
pip install peft transformers torch
|
21 |
+
```
|
22 |
+
|
23 |
+
Example usage:
|
24 |
+
|
25 |
+
```python
|
26 |
+
from peft import PeftModel
|
27 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
28 |
+
|
29 |
+
# Load base model
|
30 |
+
base_model_name = "your-base-model" # Replace with actual base model
|
31 |
+
model = AutoModelForCausalLM.from_pretrained(base_model_name)
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
33 |
+
|
34 |
+
# Load LoRA adapter
|
35 |
+
model = PeftModel.from_pretrained(
|
36 |
+
model,
|
37 |
+
"supergoose/typescript-chunks",
|
38 |
+
subfolder="model_name_here" # Replace with specific model folder
|
39 |
+
)
|
40 |
+
|
41 |
+
# Use the model
|
42 |
+
inputs = tokenizer("Your prompt here", return_tensors="pt")
|
43 |
+
outputs = model.generate(**inputs)
|
44 |
+
```
|
45 |
+
|
46 |
+
## Training Details
|
47 |
+
|
48 |
+
- Dataset: typescript-chunks
|
49 |
+
- Training framework: LoRA/PEFT
|
50 |
+
- Models included: 7 variants
|
51 |
+
|
52 |
+
## Files Structure
|
53 |
+
|
54 |
+
Each model folder contains:
|
55 |
+
- `adapter_config.json`: LoRA configuration
|
56 |
+
- `adapter_model.safetensors`: LoRA weights
|
57 |
+
- `tokenizer.json`: Tokenizer configuration
|
58 |
+
- Additional training artifacts
|
59 |
+
|
60 |
+
---
|
61 |
+
*Generated automatically by LoRA uploader script*
|