Spaces:
Sleeping
Sleeping
File size: 2,700 Bytes
1c38e8c 1360051 4457e86 aab722c a9d8b80 1360051 f973f9e bcd23af 4457e86 1360051 f973f9e 1360051 f973f9e 1360051 a9d8b80 f973f9e 1360051 f973f9e 1360051 a9d8b80 1360051 f973f9e 1360051 f973f9e 1360051 f973f9e 1c38e8c bcd23af f973f9e bcd23af 1360051 f973f9e 1360051 bcd23af 1360051 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import streamlit as st
import tensorflow as tf
import numpy as np
import nltk
import os
from nltk.tokenize import sent_tokenize
from transformers import DistilBertTokenizerFast, TFDistilBertForSequenceClassification
# ๐ Use safe cache directory inside Hugging Face or Docker
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
# ๐ฅ Download NLTK tokenizer
nltk_data_path = "/tmp/nltk_data"
nltk.download("punkt", download_dir=nltk_data_path)
nltk.data.path.append(nltk_data_path)
# ๐ Load tokenizer and model from Hugging Face
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased", cache_dir="/tmp/huggingface")
model = TFDistilBertForSequenceClassification.from_pretrained("sundaram07/distilbert-sentence-classifier", cache_dir="/tmp/huggingface")
# ๐ฎ Predict AI probability for a sentence
def predict_sentence_ai_probability(sentence):
inputs = tokenizer(sentence, return_tensors="tf", truncation=True, padding=True)
outputs = model(inputs)
logits = outputs.logits
prob_ai = tf.sigmoid(logits)[0][0].numpy() # for binary classification
return prob_ai
# ๐ Analyze all sentences
def predict_ai_generated_percentage(text, threshold=0.75):
text = text.strip()
sentences = sent_tokenize(text)
ai_sentence_count = 0
results = []
for sentence in sentences:
prob = predict_sentence_ai_probability(sentence)
is_ai = prob >= threshold
results.append((sentence, prob, is_ai))
if is_ai:
ai_sentence_count += 1
total_sentences = len(sentences)
ai_percentage = (ai_sentence_count / total_sentences) * 100 if total_sentences > 0 else 0.0
return ai_percentage, results
# ๐ Streamlit Web App
st.set_page_config(page_title="AI Detector", layout="wide")
st.title("๐ง AI Content Detector")
st.markdown("This app detects the percentage of **AI-generated content** based on sentence-level analysis using DistilBERT.")
user_input = st.text_area("๐ Paste your text below to check for AI-generated sentences:", height=300)
if st.button("๐ Analyze"):
if not user_input.strip():
st.warning("โ ๏ธ Please enter some text to analyze.")
else:
ai_percentage, analysis_results = predict_ai_generated_percentage(user_input)
st.subheader("๐ Sentence-level Analysis")
for i, (sentence, prob, is_ai) in enumerate(analysis_results, start=1):
label = "๐ข Human" if not is_ai else "๐ด AI"
st.markdown(f"**{i}.** _{sentence}_\n\nโ **Probability AI:** `{prob:.2%}` โ {label}")
st.subheader("๐ Final Result")
st.success(f"Estimated **AI-generated content**: **{ai_percentage:.2f}%**")
|