sundaram07 commited on
Commit
1360051
Β·
verified Β·
1 Parent(s): e499e37
Files changed (1) hide show
  1. src/streamlit_app.py +52 -38
src/streamlit_app.py CHANGED
@@ -1,40 +1,54 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
1
+
 
 
2
  import streamlit as st
3
+ import tensorflow as tf
4
+ import numpy as np
5
+ import re
6
+ import nltk
7
+
8
+ # Ensure NLTK sentence tokenizer is available
9
+ nltk.download('punkt')
10
+ from nltk.tokenize import sent_tokenize
11
+
12
+ model = tf.keras.models.load_model('my_distilbert_classifier.keras')
13
+
14
+
15
+
16
+
17
+ def predict_sentence_ai_probability(sentence):
18
+ preds = model.predict([sentence])
19
+ prob_ai = tf.sigmoid(preds[0][0]).numpy()
20
+ return prob_ai
21
+
22
+ def predict_ai_generated_percentage(text, threshold=0.75):
23
+ text=text+"."
24
+ sentences = sent_tokenize(text)
25
+ ai_sentence_count = 0
26
+ results = []
27
+
28
+ for sentence in sentences:
29
+ prob = predict_sentence_ai_probability(sentence)
30
+ is_ai = prob >= threshold
31
+ results.append((sentence, prob, is_ai))
32
+ if is_ai:
33
+ ai_sentence_count += 1
34
+
35
+ total_sentences = len(sentences)
36
+ ai_percentage = (ai_sentence_count / total_sentences) * 100 if total_sentences > 0 else 0.0
37
+ return ai_percentage, results
38
+
39
+ st.title("🧠 AI Content Detector")
40
+ st.markdown("This tool detects the percentage of **AI-generated content** in your input text based on sentence-level analysis.")
41
+
42
+ user_input = st.text_area("Paste your text here:", height=300)
43
 
44
+ if st.button("Analyze"):
45
+ if user_input.strip() == "":
46
+ st.warning("Please enter some text to analyze.")
47
+ else:
48
+ ai_percentage, analysis_results = predict_ai_generated_percentage(user_input)
49
+ st.subheader("πŸ” Sentence-level Analysis")
50
+ for i, (sentence, prob, is_ai) in enumerate(analysis_results, start=1):
51
+ label = "🟒 Human" if not is_ai else "πŸ”΄ AI"
52
+ st.markdown(f"**{i}.** _{sentence}_\n\n→ **Probability AI:** `{prob:.2%}` → {label}")
53
+ st.subheader("πŸ“Š Final Result")
54
+ st.success(f"Estimated **AI-generated content**: **{ai_percentage:.2f}%**")