Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +17 -13
src/streamlit_app.py
CHANGED
@@ -6,24 +6,27 @@ import os
|
|
6 |
from nltk.tokenize import sent_tokenize
|
7 |
from transformers import DistilBertTokenizerFast, TFDistilBertForSequenceClassification
|
8 |
|
9 |
-
#
|
|
|
|
|
|
|
10 |
nltk_data_path = "/tmp/nltk_data"
|
11 |
nltk.download("punkt", download_dir=nltk_data_path)
|
12 |
nltk.data.path.append(nltk_data_path)
|
13 |
|
14 |
-
#
|
15 |
-
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
|
16 |
-
model = TFDistilBertForSequenceClassification.from_pretrained("sundaram07/distilbert-sentence-classifier")
|
17 |
|
18 |
-
#
|
19 |
def predict_sentence_ai_probability(sentence):
|
20 |
inputs = tokenizer(sentence, return_tensors="tf", truncation=True, padding=True)
|
21 |
outputs = model(inputs)
|
22 |
logits = outputs.logits
|
23 |
-
prob_ai = tf.sigmoid(logits)[0][0].numpy() #
|
24 |
return prob_ai
|
25 |
|
26 |
-
# ๐ Analyze
|
27 |
def predict_ai_generated_percentage(text, threshold=0.75):
|
28 |
text = text.strip()
|
29 |
sentences = sent_tokenize(text)
|
@@ -41,19 +44,20 @@ def predict_ai_generated_percentage(text, threshold=0.75):
|
|
41 |
ai_percentage = (ai_sentence_count / total_sentences) * 100 if total_sentences > 0 else 0.0
|
42 |
return ai_percentage, results
|
43 |
|
44 |
-
#
|
|
|
45 |
st.title("๐ง AI Content Detector")
|
46 |
-
st.markdown("This
|
47 |
|
48 |
-
user_input = st.text_area("๐ Paste your text
|
49 |
|
50 |
if st.button("๐ Analyze"):
|
51 |
-
if user_input.strip()
|
52 |
st.warning("โ ๏ธ Please enter some text to analyze.")
|
53 |
else:
|
54 |
ai_percentage, analysis_results = predict_ai_generated_percentage(user_input)
|
55 |
-
|
56 |
-
st.subheader("
|
57 |
for i, (sentence, prob, is_ai) in enumerate(analysis_results, start=1):
|
58 |
label = "๐ข Human" if not is_ai else "๐ด AI"
|
59 |
st.markdown(f"**{i}.** _{sentence}_\n\nโ **Probability AI:** `{prob:.2%}` โ {label}")
|
|
|
6 |
from nltk.tokenize import sent_tokenize
|
7 |
from transformers import DistilBertTokenizerFast, TFDistilBertForSequenceClassification
|
8 |
|
9 |
+
# ๐ Use safe cache directory inside Hugging Face or Docker
|
10 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
11 |
+
|
12 |
+
# ๐ฅ Download NLTK tokenizer
|
13 |
nltk_data_path = "/tmp/nltk_data"
|
14 |
nltk.download("punkt", download_dir=nltk_data_path)
|
15 |
nltk.data.path.append(nltk_data_path)
|
16 |
|
17 |
+
# ๐ Load tokenizer and model from Hugging Face
|
18 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased", cache_dir="/tmp/huggingface")
|
19 |
+
model = TFDistilBertForSequenceClassification.from_pretrained("sundaram07/distilbert-sentence-classifier", cache_dir="/tmp/huggingface")
|
20 |
|
21 |
+
# ๐ฎ Predict AI probability for a sentence
|
22 |
def predict_sentence_ai_probability(sentence):
|
23 |
inputs = tokenizer(sentence, return_tensors="tf", truncation=True, padding=True)
|
24 |
outputs = model(inputs)
|
25 |
logits = outputs.logits
|
26 |
+
prob_ai = tf.sigmoid(logits)[0][0].numpy() # for binary classification
|
27 |
return prob_ai
|
28 |
|
29 |
+
# ๐ Analyze all sentences
|
30 |
def predict_ai_generated_percentage(text, threshold=0.75):
|
31 |
text = text.strip()
|
32 |
sentences = sent_tokenize(text)
|
|
|
44 |
ai_percentage = (ai_sentence_count / total_sentences) * 100 if total_sentences > 0 else 0.0
|
45 |
return ai_percentage, results
|
46 |
|
47 |
+
# ๐ Streamlit Web App
|
48 |
+
st.set_page_config(page_title="AI Detector", layout="wide")
|
49 |
st.title("๐ง AI Content Detector")
|
50 |
+
st.markdown("This app detects the percentage of **AI-generated content** based on sentence-level analysis using DistilBERT.")
|
51 |
|
52 |
+
user_input = st.text_area("๐ Paste your text below to check for AI-generated sentences:", height=300)
|
53 |
|
54 |
if st.button("๐ Analyze"):
|
55 |
+
if not user_input.strip():
|
56 |
st.warning("โ ๏ธ Please enter some text to analyze.")
|
57 |
else:
|
58 |
ai_percentage, analysis_results = predict_ai_generated_percentage(user_input)
|
59 |
+
|
60 |
+
st.subheader("๐ Sentence-level Analysis")
|
61 |
for i, (sentence, prob, is_ai) in enumerate(analysis_results, start=1):
|
62 |
label = "๐ข Human" if not is_ai else "๐ด AI"
|
63 |
st.markdown(f"**{i}.** _{sentence}_\n\nโ **Probability AI:** `{prob:.2%}` โ {label}")
|