Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.model_selection import train_test_split | |
import matplotlib.cm as cm | |
from sklearn.utils import shuffle | |
from sklearn.utils import check_random_state | |
from sklearn.linear_model import BayesianRidge | |
theme = gr.themes.Monochrome( | |
primary_hue="indigo", | |
secondary_hue="blue", | |
neutral_hue="slate", | |
) | |
description = f""" | |
## Description | |
This demo computes a Bayesian Ridge Regression of Sinusoids. | |
The demo is based on the [scikit-learn docs](https://scikit-learn.org/stable/auto_examples/linear_model/plot_bayesian_ridge_curvefit.html#sphx-glr-auto-examples-linear-model-plot-bayesian-ridge-curvefit-py) | |
""" | |
def func(x): | |
return np.sin(2 * np.pi * x) | |
size = 25 | |
rng = np.random.RandomState(1234) | |
x_train = rng.uniform(0.0, 1.0, size) | |
y_train = func(x_train) + rng.normal(scale=0.1, size=size) | |
x_test = np.linspace(0.0, 1.0, 100) | |
n_order = 3 | |
X_train = np.vander(x_train, n_order + 1, increasing=True) | |
X_test = np.vander(x_test, n_order + 1, increasing=True) | |
reg = BayesianRidge(tol=1e-6, fit_intercept=False, compute_score=True) | |
def curve_fit(): | |
fig, axes = plt.subplots(1, 2, figsize=(8, 4)) | |
for i, ax in enumerate(axes): | |
# Bayesian ridge regression with different initial value pairs | |
if i == 0: | |
init = [1 / np.var(y_train), 1.0] # Default values | |
elif i == 1: | |
init = [1.0, 1e-3] | |
reg.set_params(alpha_init=init[0], lambda_init=init[1]) | |
reg.fit(X_train, y_train) | |
ymean, ystd = reg.predict(X_test, return_std=True) | |
ax.plot(x_test, func(x_test), color="blue", label="sin($2\\pi x$)") | |
ax.scatter(x_train, y_train, s=50, alpha=0.5, label="observation") | |
ax.plot(x_test, ymean, color="red", label="predict mean") | |
ax.fill_between( | |
x_test, ymean - ystd, ymean + ystd, color="pink", alpha=0.5, label="predict std" | |
) | |
ax.set_ylim(-1.3, 1.3) | |
ax.legend() | |
title = "$\\alpha$_init$={:.2f},\\ \\lambda$_init$={}$".format(init[0], init[1]) | |
if i == 0: | |
title += " (Default)" | |
ax.set_title(title, fontsize=12) | |
text = "$\\alpha={:.1f}$\n$\\lambda={:.3f}$\n$L={:.1f}$".format( | |
reg.alpha_, reg.lambda_, reg.scores_[-1] | |
) | |
ax.text(0.05, -1.0, text, fontsize=12) | |
return fig | |
with gr.Blocks(theme=theme) as demo: | |
gr.Markdown(''' | |
<h1 style='text-align: center'>Curve Fitting with Bayesian Ridge Regression π</h1> | |
''') | |
gr.Markdown(description) | |
with gr.Row(): | |
run_button = gr.Button('Fit the Curve') | |
with gr.Row(): | |
plot_result = gr.Plot() | |
run_button.click(fn=curve_fit, inputs=[], outputs=[plot_result]) | |
demo.launch() |