File size: 2,772 Bytes
11a95b4
 
 
 
 
 
 
 
9f47792
11a95b4
 
 
 
 
 
 
 
 
 
9f47792
11a95b4
9f47792
 
11a95b4
9f47792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11a95b4
9f47792
 
 
 
 
11a95b4
9f47792
 
 
 
 
 
 
 
11a95b4
9f47792
 
 
11a95b4
 
 
9f47792
11a95b4
 
 
 
9f47792
11a95b4
9f47792
 
11a95b4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

import matplotlib.cm as cm
from sklearn.utils import shuffle
from sklearn.utils import check_random_state
from sklearn.linear_model import BayesianRidge

theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
)

description = f"""
## Description

This demo computes a Bayesian Ridge Regression of Sinusoids.

The demo is based on the [scikit-learn docs](https://scikit-learn.org/stable/auto_examples/linear_model/plot_bayesian_ridge_curvefit.html#sphx-glr-auto-examples-linear-model-plot-bayesian-ridge-curvefit-py)
"""

def func(x):
    return np.sin(2 * np.pi * x)


size = 25
rng = np.random.RandomState(1234)
x_train = rng.uniform(0.0, 1.0, size)
y_train = func(x_train) + rng.normal(scale=0.1, size=size)
x_test = np.linspace(0.0, 1.0, 100)

n_order = 3
X_train = np.vander(x_train, n_order + 1, increasing=True)
X_test = np.vander(x_test, n_order + 1, increasing=True)
reg = BayesianRidge(tol=1e-6, fit_intercept=False, compute_score=True)

def curve_fit():
    fig, axes = plt.subplots(1, 2, figsize=(8, 4))
    for i, ax in enumerate(axes):
    # Bayesian ridge regression with different initial value pairs
        if i == 0:
            init = [1 / np.var(y_train), 1.0]  # Default values
        elif i == 1:
            init = [1.0, 1e-3]
            reg.set_params(alpha_init=init[0], lambda_init=init[1])
        reg.fit(X_train, y_train)
        ymean, ystd = reg.predict(X_test, return_std=True)
    
        ax.plot(x_test, func(x_test), color="blue", label="sin($2\\pi x$)")
        ax.scatter(x_train, y_train, s=50, alpha=0.5, label="observation")
        ax.plot(x_test, ymean, color="red", label="predict mean")
        ax.fill_between(
            x_test, ymean - ystd, ymean + ystd, color="pink", alpha=0.5, label="predict std"
        )
        ax.set_ylim(-1.3, 1.3)
        ax.legend()
        title = "$\\alpha$_init$={:.2f},\\ \\lambda$_init$={}$".format(init[0], init[1])
        if i == 0:
            title += " (Default)"
        ax.set_title(title, fontsize=12)
        text = "$\\alpha={:.1f}$\n$\\lambda={:.3f}$\n$L={:.1f}$".format(
            reg.alpha_, reg.lambda_, reg.scores_[-1]
        )
        ax.text(0.05, -1.0, text, fontsize=12)
    return fig


with gr.Blocks(theme=theme) as demo:
    gr.Markdown('''
            <h1 style='text-align: center'>Curve Fitting with Bayesian Ridge Regression πŸ“ˆ</h1>
        ''')
    gr.Markdown(description)

    with gr.Row():
        run_button = gr.Button('Fit the Curve')
    with gr.Row():
        plot_result = gr.Plot()
    run_button.click(fn=curve_fit, inputs=[], outputs=[plot_result])

demo.launch()