import gradio as gr import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import matplotlib.cm as cm from sklearn.utils import shuffle from sklearn.utils import check_random_state from sklearn.linear_model import BayesianRidge theme = gr.themes.Monochrome( primary_hue="indigo", secondary_hue="blue", neutral_hue="slate", ) description = f""" ## Description This demo computes a Bayesian Ridge Regression of Sinusoids. The demo is based on the [scikit-learn docs](https://scikit-learn.org/stable/auto_examples/linear_model/plot_bayesian_ridge_curvefit.html#sphx-glr-auto-examples-linear-model-plot-bayesian-ridge-curvefit-py) """ def func(x): return np.sin(2 * np.pi * x) size = 25 rng = np.random.RandomState(1234) x_train = rng.uniform(0.0, 1.0, size) y_train = func(x_train) + rng.normal(scale=0.1, size=size) x_test = np.linspace(0.0, 1.0, 100) n_order = 3 X_train = np.vander(x_train, n_order + 1, increasing=True) X_test = np.vander(x_test, n_order + 1, increasing=True) reg = BayesianRidge(tol=1e-6, fit_intercept=False, compute_score=True) def curve_fit(): fig, axes = plt.subplots(1, 2, figsize=(8, 4)) for i, ax in enumerate(axes): # Bayesian ridge regression with different initial value pairs if i == 0: init = [1 / np.var(y_train), 1.0] # Default values elif i == 1: init = [1.0, 1e-3] reg.set_params(alpha_init=init[0], lambda_init=init[1]) reg.fit(X_train, y_train) ymean, ystd = reg.predict(X_test, return_std=True) ax.plot(x_test, func(x_test), color="blue", label="sin($2\\pi x$)") ax.scatter(x_train, y_train, s=50, alpha=0.5, label="observation") ax.plot(x_test, ymean, color="red", label="predict mean") ax.fill_between( x_test, ymean - ystd, ymean + ystd, color="pink", alpha=0.5, label="predict std" ) ax.set_ylim(-1.3, 1.3) ax.legend() title = "$\\alpha$_init$={:.2f},\\ \\lambda$_init$={}$".format(init[0], init[1]) if i == 0: title += " (Default)" ax.set_title(title, fontsize=12) text = "$\\alpha={:.1f}$\n$\\lambda={:.3f}$\n$L={:.1f}$".format( reg.alpha_, reg.lambda_, reg.scores_[-1] ) ax.text(0.05, -1.0, text, fontsize=12) return fig with gr.Blocks(theme=theme) as demo: gr.Markdown('''