Spaces:
Sleeping
Sleeping
File size: 1,215 Bytes
6d891bb ce87e16 4ff500a ce87e16 4ff500a 6d891bb 4ff500a 6d891bb ce87e16 6d891bb ce87e16 6d891bb ce87e16 6d891bb ce87e16 6d891bb ce87e16 6d891bb ce87e16 6d891bb ce87e16 6d891bb ce87e16 6d891bb ce87e16 6d891bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
title: Feedback Topic Sentiment Transformer
emoji: π
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 4.19.2
app_file: app.py
pinned: false
---
# Feedback Topic & Sentiment Transformer
Transform feedback data with topic and sentiment columns into a binary matrix format.
## Features
- Upload Excel, CSV, or tab-delimited files
- Configure column prefixes for topics, sentiments, and categories
- Transform topics into binary columns (0/1)
- Associate sentiment scores with each topic
- Analyze topic frequency and sentiment distribution
- Download results as Excel or CSV
## Usage
1. Upload your feedback data file
2. Configure column prefixes
3. Click "Transform Data"
4. Download the transformed file
## Input Format
Your file should contain:
- Topic columns (e.g., `[**WORKSHOP] SwissLife Taxonomy`)
- Sentiment columns (e.g., `ABSA:Sentiment`)
- Category columns (e.g., `Categories:`)
- Text column (optional)
- Recommendation column (optional)
## Output Format
The transformed file includes:
- `feedback_id`: Unique identifier
- Topic columns: Binary values (0/1)
- Sentiment columns: Scores (1=positive, 0.5=neutral, 0=negative)
- Original text and recommendation scores (if available) |