Spaces:
Sleeping
Sleeping
Create README.md
Browse files
README.md
CHANGED
@@ -1,13 +1,65 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
|
11 |
-
|
|
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
title: Feedback Topic Sentiment Transformer
|
2 |
+
emoji: 📊
|
3 |
+
colorFrom: blue
|
4 |
+
colorTo: green
|
|
|
5 |
sdk: gradio
|
6 |
+
sdk_version: 4.19.2
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
+
license: mit
|
10 |
+
Feedback Topic & Sentiment Transformer
|
11 |
+
This tool transforms feedback data with topic and sentiment columns into a binary matrix format where each unique topic becomes a separate column.
|
12 |
+
Features
|
13 |
|
14 |
+
Multi-format Support: Accepts Excel (.xlsx, .xls), CSV, and tab-delimited text files
|
15 |
+
Flexible Column Detection: Configurable prefixes for topic, sentiment, and category columns
|
16 |
+
Binary Matrix Output: Transforms topics into columns with 0/1 values
|
17 |
+
Sentiment Analysis: Associates sentiment scores (positive=1, neutral=0.5, negative=0) with each topic
|
18 |
+
Data Analysis: Provides insights on topic frequency and sentiment distribution
|
19 |
+
Download Options: Export results as Excel or CSV files
|
20 |
+
|
21 |
+
How to Use
|
22 |
+
|
23 |
+
Upload your data file containing feedback with topic and sentiment columns
|
24 |
+
Configure column prefixes to match your data format:
|
25 |
+
|
26 |
+
Topic columns (e.g., [**WORKSHOP] SwissLife Taxonomy)
|
27 |
+
Sentiment columns (e.g., ABSA:)
|
28 |
+
Category columns (e.g., Categories:)
|
29 |
+
|
30 |
+
|
31 |
+
Click "Transform Data" to process your file
|
32 |
+
Review the analysis (optional) to see topic frequencies and sentiment distributions
|
33 |
+
Download the transformed file in your preferred format
|
34 |
+
|
35 |
+
Input Format
|
36 |
+
Your input file should have columns structured like:
|
37 |
+
|
38 |
+
Topic columns: Contains the topic/category names
|
39 |
+
Sentiment columns: Contains sentiment values (positive/negative/neutral)
|
40 |
+
Text column: Original feedback text (optional)
|
41 |
+
Recommendation column: Recommendation scores (optional)
|
42 |
+
|
43 |
+
Output Format
|
44 |
+
The transformed file will contain:
|
45 |
+
|
46 |
+
feedback_id: Unique identifier for each feedback row
|
47 |
+
Topic columns: Binary (0/1) indicating topic presence
|
48 |
+
Sentiment columns: Numeric sentiment scores for each topic
|
49 |
+
original_text: Preserved from input (if available)
|
50 |
+
recommendation_score: Preserved from input (if available)
|
51 |
+
|
52 |
+
Example Use Case
|
53 |
+
Perfect for transforming customer feedback data with multiple topics and sentiments into a format suitable for:
|
54 |
+
|
55 |
+
Machine learning models
|
56 |
+
Statistical analysis
|
57 |
+
Topic modeling
|
58 |
+
Sentiment trend analysis
|
59 |
+
|
60 |
+
Technical Details
|
61 |
+
Built with:
|
62 |
+
|
63 |
+
Gradio for the web interface
|
64 |
+
Pandas for data processing
|
65 |
+
Support for Excel and CSV formats
|