fedec65 commited on
Commit
ce87e16
·
verified ·
1 Parent(s): f5bcabb

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -9
README.md CHANGED
@@ -1,13 +1,65 @@
1
- ---
2
- title: Spss Formatting
3
- emoji: 🐠
4
- colorFrom: purple
5
- colorTo: yellow
6
  sdk: gradio
7
- sdk_version: 5.34.2
8
  app_file: app.py
9
  pinned: false
10
- short_description: Turn a sandsiv+ export into SPSS format
11
- ---
 
 
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ title: Feedback Topic Sentiment Transformer
2
+ emoji: 📊
3
+ colorFrom: blue
4
+ colorTo: green
 
5
  sdk: gradio
6
+ sdk_version: 4.19.2
7
  app_file: app.py
8
  pinned: false
9
+ license: mit
10
+ Feedback Topic & Sentiment Transformer
11
+ This tool transforms feedback data with topic and sentiment columns into a binary matrix format where each unique topic becomes a separate column.
12
+ Features
13
 
14
+ Multi-format Support: Accepts Excel (.xlsx, .xls), CSV, and tab-delimited text files
15
+ Flexible Column Detection: Configurable prefixes for topic, sentiment, and category columns
16
+ Binary Matrix Output: Transforms topics into columns with 0/1 values
17
+ Sentiment Analysis: Associates sentiment scores (positive=1, neutral=0.5, negative=0) with each topic
18
+ Data Analysis: Provides insights on topic frequency and sentiment distribution
19
+ Download Options: Export results as Excel or CSV files
20
+
21
+ How to Use
22
+
23
+ Upload your data file containing feedback with topic and sentiment columns
24
+ Configure column prefixes to match your data format:
25
+
26
+ Topic columns (e.g., [**WORKSHOP] SwissLife Taxonomy)
27
+ Sentiment columns (e.g., ABSA:)
28
+ Category columns (e.g., Categories:)
29
+
30
+
31
+ Click "Transform Data" to process your file
32
+ Review the analysis (optional) to see topic frequencies and sentiment distributions
33
+ Download the transformed file in your preferred format
34
+
35
+ Input Format
36
+ Your input file should have columns structured like:
37
+
38
+ Topic columns: Contains the topic/category names
39
+ Sentiment columns: Contains sentiment values (positive/negative/neutral)
40
+ Text column: Original feedback text (optional)
41
+ Recommendation column: Recommendation scores (optional)
42
+
43
+ Output Format
44
+ The transformed file will contain:
45
+
46
+ feedback_id: Unique identifier for each feedback row
47
+ Topic columns: Binary (0/1) indicating topic presence
48
+ Sentiment columns: Numeric sentiment scores for each topic
49
+ original_text: Preserved from input (if available)
50
+ recommendation_score: Preserved from input (if available)
51
+
52
+ Example Use Case
53
+ Perfect for transforming customer feedback data with multiple topics and sentiments into a format suitable for:
54
+
55
+ Machine learning models
56
+ Statistical analysis
57
+ Topic modeling
58
+ Sentiment trend analysis
59
+
60
+ Technical Details
61
+ Built with:
62
+
63
+ Gradio for the web interface
64
+ Pandas for data processing
65
+ Support for Excel and CSV formats