Spaces:
Running
Running
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
title: Feedback Topic Sentiment Transformer
|
2 |
emoji: π
|
3 |
colorFrom: blue
|
@@ -6,60 +7,41 @@ sdk: gradio
|
|
6 |
sdk_version: 4.19.2
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
-
|
10 |
-
Feedback Topic & Sentiment Transformer
|
11 |
-
This tool transforms feedback data with topic and sentiment columns into a binary matrix format where each unique topic becomes a separate column.
|
12 |
-
Features
|
13 |
|
14 |
-
|
15 |
-
Flexible Column Detection: Configurable prefixes for topic, sentiment, and category columns
|
16 |
-
Binary Matrix Output: Transforms topics into columns with 0/1 values
|
17 |
-
Sentiment Analysis: Associates sentiment scores (positive=1, neutral=0.5, negative=0) with each topic
|
18 |
-
Data Analysis: Provides insights on topic frequency and sentiment distribution
|
19 |
-
Download Options: Export results as Excel or CSV files
|
20 |
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
Configure column prefixes to match your data format:
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
29 |
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
34 |
|
35 |
-
Input Format
|
36 |
-
Your input file should have columns structured like:
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
42 |
|
43 |
-
Output Format
|
44 |
-
The transformed file will contain:
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
Example Use Case
|
53 |
-
Perfect for transforming customer feedback data with multiple topics and sentiments into a format suitable for:
|
54 |
-
|
55 |
-
Machine learning models
|
56 |
-
Statistical analysis
|
57 |
-
Topic modeling
|
58 |
-
Sentiment trend analysis
|
59 |
-
|
60 |
-
Technical Details
|
61 |
-
Built with:
|
62 |
-
|
63 |
-
Gradio for the web interface
|
64 |
-
Pandas for data processing
|
65 |
-
Support for Excel and CSV formats
|
|
|
1 |
+
---
|
2 |
title: Feedback Topic Sentiment Transformer
|
3 |
emoji: π
|
4 |
colorFrom: blue
|
|
|
7 |
sdk_version: 4.19.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
---
|
|
|
|
|
|
|
11 |
|
12 |
+
# Feedback Topic & Sentiment Transformer
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
Transform feedback data with topic and sentiment columns into a binary matrix format.
|
15 |
|
16 |
+
## Features
|
|
|
17 |
|
18 |
+
- Upload Excel, CSV, or tab-delimited files
|
19 |
+
- Configure column prefixes for topics, sentiments, and categories
|
20 |
+
- Transform topics into binary columns (0/1)
|
21 |
+
- Associate sentiment scores with each topic
|
22 |
+
- Analyze topic frequency and sentiment distribution
|
23 |
+
- Download results as Excel or CSV
|
24 |
|
25 |
+
## Usage
|
26 |
|
27 |
+
1. Upload your feedback data file
|
28 |
+
2. Configure column prefixes
|
29 |
+
3. Click "Transform Data"
|
30 |
+
4. Download the transformed file
|
31 |
|
32 |
+
## Input Format
|
|
|
33 |
|
34 |
+
Your file should contain:
|
35 |
+
- Topic columns (e.g., `[**WORKSHOP] SwissLife Taxonomy`)
|
36 |
+
- Sentiment columns (e.g., `ABSA:Sentiment`)
|
37 |
+
- Category columns (e.g., `Categories:`)
|
38 |
+
- Text column (optional)
|
39 |
+
- Recommendation column (optional)
|
40 |
|
41 |
+
## Output Format
|
|
|
42 |
|
43 |
+
The transformed file includes:
|
44 |
+
- `feedback_id`: Unique identifier
|
45 |
+
- Topic columns: Binary values (0/1)
|
46 |
+
- Sentiment columns: Scores (1=positive, 0.5=neutral, 0=negative)
|
47 |
+
- Original text and recommendation scores (if available)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|