fedec65 commited on
Commit
6d891bb
Β·
verified Β·
1 Parent(s): ce87e16

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -47
README.md CHANGED
@@ -1,3 +1,4 @@
 
1
  title: Feedback Topic Sentiment Transformer
2
  emoji: πŸ“Š
3
  colorFrom: blue
@@ -6,60 +7,41 @@ sdk: gradio
6
  sdk_version: 4.19.2
7
  app_file: app.py
8
  pinned: false
9
- license: mit
10
- Feedback Topic & Sentiment Transformer
11
- This tool transforms feedback data with topic and sentiment columns into a binary matrix format where each unique topic becomes a separate column.
12
- Features
13
 
14
- Multi-format Support: Accepts Excel (.xlsx, .xls), CSV, and tab-delimited text files
15
- Flexible Column Detection: Configurable prefixes for topic, sentiment, and category columns
16
- Binary Matrix Output: Transforms topics into columns with 0/1 values
17
- Sentiment Analysis: Associates sentiment scores (positive=1, neutral=0.5, negative=0) with each topic
18
- Data Analysis: Provides insights on topic frequency and sentiment distribution
19
- Download Options: Export results as Excel or CSV files
20
 
21
- How to Use
22
 
23
- Upload your data file containing feedback with topic and sentiment columns
24
- Configure column prefixes to match your data format:
25
 
26
- Topic columns (e.g., [**WORKSHOP] SwissLife Taxonomy)
27
- Sentiment columns (e.g., ABSA:)
28
- Category columns (e.g., Categories:)
 
 
 
29
 
 
30
 
31
- Click "Transform Data" to process your file
32
- Review the analysis (optional) to see topic frequencies and sentiment distributions
33
- Download the transformed file in your preferred format
 
34
 
35
- Input Format
36
- Your input file should have columns structured like:
37
 
38
- Topic columns: Contains the topic/category names
39
- Sentiment columns: Contains sentiment values (positive/negative/neutral)
40
- Text column: Original feedback text (optional)
41
- Recommendation column: Recommendation scores (optional)
 
 
42
 
43
- Output Format
44
- The transformed file will contain:
45
 
46
- feedback_id: Unique identifier for each feedback row
47
- Topic columns: Binary (0/1) indicating topic presence
48
- Sentiment columns: Numeric sentiment scores for each topic
49
- original_text: Preserved from input (if available)
50
- recommendation_score: Preserved from input (if available)
51
-
52
- Example Use Case
53
- Perfect for transforming customer feedback data with multiple topics and sentiments into a format suitable for:
54
-
55
- Machine learning models
56
- Statistical analysis
57
- Topic modeling
58
- Sentiment trend analysis
59
-
60
- Technical Details
61
- Built with:
62
-
63
- Gradio for the web interface
64
- Pandas for data processing
65
- Support for Excel and CSV formats
 
1
+ ---
2
  title: Feedback Topic Sentiment Transformer
3
  emoji: πŸ“Š
4
  colorFrom: blue
 
7
  sdk_version: 4.19.2
8
  app_file: app.py
9
  pinned: false
10
+ ---
 
 
 
11
 
12
+ # Feedback Topic & Sentiment Transformer
 
 
 
 
 
13
 
14
+ Transform feedback data with topic and sentiment columns into a binary matrix format.
15
 
16
+ ## Features
 
17
 
18
+ - Upload Excel, CSV, or tab-delimited files
19
+ - Configure column prefixes for topics, sentiments, and categories
20
+ - Transform topics into binary columns (0/1)
21
+ - Associate sentiment scores with each topic
22
+ - Analyze topic frequency and sentiment distribution
23
+ - Download results as Excel or CSV
24
 
25
+ ## Usage
26
 
27
+ 1. Upload your feedback data file
28
+ 2. Configure column prefixes
29
+ 3. Click "Transform Data"
30
+ 4. Download the transformed file
31
 
32
+ ## Input Format
 
33
 
34
+ Your file should contain:
35
+ - Topic columns (e.g., `[**WORKSHOP] SwissLife Taxonomy`)
36
+ - Sentiment columns (e.g., `ABSA:Sentiment`)
37
+ - Category columns (e.g., `Categories:`)
38
+ - Text column (optional)
39
+ - Recommendation column (optional)
40
 
41
+ ## Output Format
 
42
 
43
+ The transformed file includes:
44
+ - `feedback_id`: Unique identifier
45
+ - Topic columns: Binary values (0/1)
46
+ - Sentiment columns: Scores (1=positive, 0.5=neutral, 0=negative)
47
+ - Original text and recommendation scores (if available)