projectlosangeles's picture
Update app.py
531d622 verified
#============================================================================================
# https://huggingface.co/spaces/projectlosangeles/Orpheus-Humanizing-Transformer
#============================================================================================
print('=' * 70)
print('Orpheus Humanizing Transformer Gradio App')
print('=' * 70)
print('Loading core Orpheus Humanizing Transformer modules...')
import os
import copy
import time as reqtime
import datetime
from pytz import timezone
print('=' * 70)
print('Loading main Orpheus Humanizing Transformer modules...')
os.environ['USE_FLASH_ATTENTION'] = '1'
import torch
torch.set_float32_matmul_precision('high')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.backends.cuda.enable_flash_sdp(True)
from huggingface_hub import hf_hub_download
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_2_3_1 import *
import random
import tqdm
print('=' * 70)
print('Loading aux Orpheus Humanizing Transformer modules...')
import matplotlib.pyplot as plt
import gradio as gr
import spaces
print('=' * 70)
print('PyTorch version:', torch.__version__)
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)
#==================================================================================
MODEL_CHECKPOINT = 'Orpheus_Music_Transformer_Trained_Model_96332_steps_0.82_loss_0.748_acc.pth'
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
#==================================================================================
print('=' * 70)
print('Instantiating model...')
device_type = 'cuda'
dtype = 'bfloat16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 8192
PAD_IDX = 18819
model = TransformerWrapper(num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 2048,
depth = 8,
heads = 32,
rotary_pos_emb = True,
attn_flash = True
)
)
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
model_checkpoint = hf_hub_download(repo_id='asigalov61/Orpheus-Music-Transformer', filename=MODEL_CHECKPOINT)
model.load_state_dict(torch.load(model_checkpoint, map_location=device_type, weights_only=True))
model = torch.compile(model, mode='max-autotune')
model.to(device_type)
model.eval()
print('=' * 70)
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
#==================================================================================
def load_midi(input_midi):
raw_score = TMIDIX.midi2single_track_ms_score(input_midi)
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True, apply_sustain=True)
if escore_notes:
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], sort_drums_last=True)
dscore = TMIDIX.delta_score_notes(escore_notes)
dcscore = TMIDIX.chordify_score([d[1:] for d in dscore])
melody_chords = [18816]
chords = []
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
for i, c in enumerate(dcscore):
delta_time = c[0][0]
melody_chords.append(delta_time)
cho = []
cho.append(delta_time)
for e in c:
#=======================================================
# Durations
dur = max(1, min(255, e[1]))
# Patches
pat = max(0, min(128, e[5]))
# Pitches
ptc = max(1, min(127, e[3]))
# Velocities
# Calculating octo-velocity
vel = max(8, min(127, e[4]))
velocity = round(vel / 15)-1
#=======================================================
# FINAL NOTE SEQ
#=======================================================
# Writing final note
pat_ptc = (128 * pat) + ptc
dur_vel = (8 * dur) + velocity
melody_chords.extend([pat_ptc+256, dur_vel+16768]) # 18816
cho.extend([pat_ptc+256, dur_vel+16768])
chords.append(cho)
print('Done!')
print('=' * 70)
print('Score has', len(melody_chords), 'tokens')
print('Score has', len(chords), 'chords')
print('=' * 70)
return melody_chords, chords
else:
return None
#==================================================================================
@spaces.GPU
def Humanize_MIDI(input_midi,
num_prime_toks,
num_hum_notes,
humanize_durations,
humanize_velocities,
model_temperature,
model_sampling_top_p
):
#===============================================================================
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
print('=' * 70)
print('Requested settings:')
print('=' * 70)
fn = os.path.basename(input_midi)
fn1 = fn.split('.')[0]
print('Input MIDI file name:', fn)
print('Number of prime tokens:', num_prime_toks)
print('Number of notes to humanize:', num_hum_notes)
print('Humanize durations:', humanize_durations)
print('Humanize velocities:', humanize_velocities)
print('Model temperature:', model_temperature)
print('Model top p:', model_sampling_top_p)
print('=' * 70)
#==================================================================
if input_midi is not None:
print('Loading MIDI...')
score, chords = load_midi(input_midi.name)
if score is not None and chords is not None:
print('Sample score tokens', score[:10])
print('=' * 70)
#==================================================================
dur_vel_toks_num = len([t for t in score[num_prime_toks:] if 16767 < t < 18816])
print('Number of tokens to humanize:', dur_vel_toks_num)
#==================================================================
print('=' * 70)
print('Generating...')
final_song = score[:num_prime_toks]
hn_count = 0
for t in tqdm.tqdm(score[num_prime_toks:]):
if t < 16767 or t > 18815:
final_song.append(t)
else:
fdur = ((t-16768) // 8)
fvel = ((t-16768) % 8)
x = torch.LongTensor(final_song).to(device_type)
with ctx:
out = model.generate(x,
1,
temperature=model_temperature,
filter_logits_fn=top_p,
filter_kwargs={'thres': model_sampling_top_p},
return_prime=False,
eos_token=18818,
verbose=False)
y = out.tolist()[0]
gdur = ((y-16768) // 8)
gvel = ((y-16768) % 8)
if humanize_durations:
fdur = gdur
if humanize_velocities:
fvel = gvel
dur_vel_tok = ((8 * fdur) + fvel) + 16768
final_song.append(dur_vel_tok)
hn_count += 1
if hn_count == num_hum_notes:
break
#==================================================================
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', final_song[:15])
print('=' * 70)
song_f = []
if len(final_song) != 0:
time = 0
dur = 1
vel = 90
pitch = 60
channel = 0
patch = 0
patches = [-1] * 16
channels = [0] * 16
channels[9] = 1
for ss in final_song:
if 0 <= ss < 256:
time += ss * 16
if 256 <= ss < 16768:
patch = (ss-256) // 128
if patch < 128:
if patch not in patches:
if 0 in channels:
cha = channels.index(0)
channels[cha] = 1
else:
cha = 15
patches[cha] = patch
channel = patches.index(patch)
else:
channel = patches.index(patch)
if patch == 128:
channel = 9
pitch = (ss-256) % 128
if 16768 <= ss < 18816:
dur = ((ss-16768) // 8) * 16
vel = (((ss-16768) % 8)+1) * 15
song_f.append(['note', time, dur, channel, pitch, vel, patch])
patches = [0 if x==-1 else x for x in patches]
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f)
fn1 = "Orpheus-Humanizing-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
output_signature = 'Orpheus Humanizing Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('=' * 70)
#========================================================
else:
return None, None, None
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_audio, output_plot, output_midi
else:
return None, None, None
#==================================================================================
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
#==================================================================================
with gr.Blocks() as demo:
#==================================================================================
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Orpheus Humanizing Transformer</h1>")
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Humanize durations and/or velocities in any MIDI score</h1>")
gr.HTML("""
<p>
<a href="https://huggingface.co/spaces/projectlosangeles/Orpheus-Humanizing-Transformer?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
</a>
</p>
for faster execution and endless generation!
""")
#==================================================================================
gr.Markdown("## Upload source MIDI or select a sample MIDI on the bottom of the page")
input_midi = gr.File(label="Input MIDI",
file_types=[".midi", ".mid", ".kar"]
)
gr.Markdown("## Generation options")
humanize_durations = gr.Checkbox(value=False, label="Humanize durations")
humanize_velocities = gr.Checkbox(value=True, label="Humanize velocities")
num_prime_toks = gr.Slider(0, 1024, value=0, step=1, label="Number of prime tokens")
num_hum_notes = gr.Slider(128, 2048, value=512, step=1, label="Number of notes to humanize")
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
model_sampling_top_p = gr.Slider(0.1, 0.99, value=0.96, step=0.01, label="Model sampling top p value")
generate_btn = gr.Button("Generate", variant="primary")
gr.Markdown("## Generation results")
output_title = gr.Textbox(label="MIDI melody title")
output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="MIDI score plot")
output_midi = gr.File(label="MIDI file", file_types=[".mid"])
generate_btn.click(Humanize_MIDI,
[input_midi,
num_prime_toks,
num_hum_notes,
humanize_durations,
humanize_velocities,
model_temperature,
model_sampling_top_p
],
[output_audio,
output_plot,
output_midi
]
)
gr.Examples(
[["Sharing The Night Together.kar", 0, 1024, False, True, 0.9, 0.96]
],
[input_midi,
num_prime_toks,
num_hum_notes,
humanize_durations,
humanize_velocities,
model_temperature,
model_sampling_top_p
],
[output_audio,
output_plot,
output_midi
],
Humanize_MIDI
)
#==================================================================================
demo.launch()
#==================================================================================