Spaces:
Running
on
Zero
Running
on
Zero
#============================================================================================ | |
# https://huggingface.co/spaces/projectlosangeles/Orpheus-Humanizing-Transformer | |
#============================================================================================ | |
print('=' * 70) | |
print('Orpheus Humanizing Transformer Gradio App') | |
print('=' * 70) | |
print('Loading core Orpheus Humanizing Transformer modules...') | |
import os | |
import copy | |
import time as reqtime | |
import datetime | |
from pytz import timezone | |
print('=' * 70) | |
print('Loading main Orpheus Humanizing Transformer modules...') | |
os.environ['USE_FLASH_ATTENTION'] = '1' | |
import torch | |
torch.set_float32_matmul_precision('high') | |
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul | |
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn | |
torch.backends.cuda.enable_flash_sdp(True) | |
from huggingface_hub import hf_hub_download | |
import TMIDIX | |
from midi_to_colab_audio import midi_to_colab_audio | |
from x_transformer_2_3_1 import * | |
import random | |
import tqdm | |
print('=' * 70) | |
print('Loading aux Orpheus Humanizing Transformer modules...') | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
import spaces | |
print('=' * 70) | |
print('PyTorch version:', torch.__version__) | |
print('=' * 70) | |
print('Done!') | |
print('Enjoy! :)') | |
print('=' * 70) | |
#================================================================================== | |
MODEL_CHECKPOINT = 'Orpheus_Music_Transformer_Trained_Model_96332_steps_0.82_loss_0.748_acc.pth' | |
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' | |
#================================================================================== | |
print('=' * 70) | |
print('Instantiating model...') | |
device_type = 'cuda' | |
dtype = 'bfloat16' | |
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] | |
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) | |
SEQ_LEN = 8192 | |
PAD_IDX = 18819 | |
model = TransformerWrapper(num_tokens = PAD_IDX+1, | |
max_seq_len = SEQ_LEN, | |
attn_layers = Decoder(dim = 2048, | |
depth = 8, | |
heads = 32, | |
rotary_pos_emb = True, | |
attn_flash = True | |
) | |
) | |
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) | |
print('=' * 70) | |
print('Loading model checkpoint...') | |
model_checkpoint = hf_hub_download(repo_id='asigalov61/Orpheus-Music-Transformer', filename=MODEL_CHECKPOINT) | |
model.load_state_dict(torch.load(model_checkpoint, map_location=device_type, weights_only=True)) | |
model = torch.compile(model, mode='max-autotune') | |
model.to(device_type) | |
model.eval() | |
print('=' * 70) | |
print('Done!') | |
print('=' * 70) | |
print('Model will use', dtype, 'precision...') | |
print('=' * 70) | |
#================================================================================== | |
def load_midi(input_midi): | |
raw_score = TMIDIX.midi2single_track_ms_score(input_midi) | |
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True, apply_sustain=True) | |
if escore_notes: | |
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], sort_drums_last=True) | |
dscore = TMIDIX.delta_score_notes(escore_notes) | |
dcscore = TMIDIX.chordify_score([d[1:] for d in dscore]) | |
melody_chords = [18816] | |
chords = [] | |
#======================================================= | |
# MAIN PROCESSING CYCLE | |
#======================================================= | |
for i, c in enumerate(dcscore): | |
delta_time = c[0][0] | |
melody_chords.append(delta_time) | |
cho = [] | |
cho.append(delta_time) | |
for e in c: | |
#======================================================= | |
# Durations | |
dur = max(1, min(255, e[1])) | |
# Patches | |
pat = max(0, min(128, e[5])) | |
# Pitches | |
ptc = max(1, min(127, e[3])) | |
# Velocities | |
# Calculating octo-velocity | |
vel = max(8, min(127, e[4])) | |
velocity = round(vel / 15)-1 | |
#======================================================= | |
# FINAL NOTE SEQ | |
#======================================================= | |
# Writing final note | |
pat_ptc = (128 * pat) + ptc | |
dur_vel = (8 * dur) + velocity | |
melody_chords.extend([pat_ptc+256, dur_vel+16768]) # 18816 | |
cho.extend([pat_ptc+256, dur_vel+16768]) | |
chords.append(cho) | |
print('Done!') | |
print('=' * 70) | |
print('Score has', len(melody_chords), 'tokens') | |
print('Score has', len(chords), 'chords') | |
print('=' * 70) | |
return melody_chords, chords | |
else: | |
return None | |
#================================================================================== | |
def Humanize_MIDI(input_midi, | |
num_prime_toks, | |
num_hum_notes, | |
humanize_durations, | |
humanize_velocities, | |
model_temperature, | |
model_sampling_top_p | |
): | |
#=============================================================================== | |
print('=' * 70) | |
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
start_time = reqtime.time() | |
print('=' * 70) | |
print('=' * 70) | |
print('Requested settings:') | |
print('=' * 70) | |
fn = os.path.basename(input_midi) | |
fn1 = fn.split('.')[0] | |
print('Input MIDI file name:', fn) | |
print('Number of prime tokens:', num_prime_toks) | |
print('Number of notes to humanize:', num_hum_notes) | |
print('Humanize durations:', humanize_durations) | |
print('Humanize velocities:', humanize_velocities) | |
print('Model temperature:', model_temperature) | |
print('Model top p:', model_sampling_top_p) | |
print('=' * 70) | |
#================================================================== | |
if input_midi is not None: | |
print('Loading MIDI...') | |
score, chords = load_midi(input_midi.name) | |
if score is not None and chords is not None: | |
print('Sample score tokens', score[:10]) | |
print('=' * 70) | |
#================================================================== | |
dur_vel_toks_num = len([t for t in score[num_prime_toks:] if 16767 < t < 18816]) | |
print('Number of tokens to humanize:', dur_vel_toks_num) | |
#================================================================== | |
print('=' * 70) | |
print('Generating...') | |
final_song = score[:num_prime_toks] | |
hn_count = 0 | |
for t in tqdm.tqdm(score[num_prime_toks:]): | |
if t < 16767 or t > 18815: | |
final_song.append(t) | |
else: | |
fdur = ((t-16768) // 8) | |
fvel = ((t-16768) % 8) | |
x = torch.LongTensor(final_song).to(device_type) | |
with ctx: | |
out = model.generate(x, | |
1, | |
temperature=model_temperature, | |
filter_logits_fn=top_p, | |
filter_kwargs={'thres': model_sampling_top_p}, | |
return_prime=False, | |
eos_token=18818, | |
verbose=False) | |
y = out.tolist()[0] | |
gdur = ((y-16768) // 8) | |
gvel = ((y-16768) % 8) | |
if humanize_durations: | |
fdur = gdur | |
if humanize_velocities: | |
fvel = gvel | |
dur_vel_tok = ((8 * fdur) + fvel) + 16768 | |
final_song.append(dur_vel_tok) | |
hn_count += 1 | |
if hn_count == num_hum_notes: | |
break | |
#================================================================== | |
print('=' * 70) | |
print('Done!') | |
print('=' * 70) | |
#=============================================================================== | |
print('Rendering results...') | |
print('=' * 70) | |
print('Sample INTs', final_song[:15]) | |
print('=' * 70) | |
song_f = [] | |
if len(final_song) != 0: | |
time = 0 | |
dur = 1 | |
vel = 90 | |
pitch = 60 | |
channel = 0 | |
patch = 0 | |
patches = [-1] * 16 | |
channels = [0] * 16 | |
channels[9] = 1 | |
for ss in final_song: | |
if 0 <= ss < 256: | |
time += ss * 16 | |
if 256 <= ss < 16768: | |
patch = (ss-256) // 128 | |
if patch < 128: | |
if patch not in patches: | |
if 0 in channels: | |
cha = channels.index(0) | |
channels[cha] = 1 | |
else: | |
cha = 15 | |
patches[cha] = patch | |
channel = patches.index(patch) | |
else: | |
channel = patches.index(patch) | |
if patch == 128: | |
channel = 9 | |
pitch = (ss-256) % 128 | |
if 16768 <= ss < 18816: | |
dur = ((ss-16768) // 8) * 16 | |
vel = (((ss-16768) % 8)+1) * 15 | |
song_f.append(['note', time, dur, channel, pitch, vel, patch]) | |
patches = [0 if x==-1 else x for x in patches] | |
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f) | |
fn1 = "Orpheus-Humanizing-Transformer-Composition" | |
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score, | |
output_signature = 'Orpheus Humanizing Transformer', | |
output_file_name = fn1, | |
track_name='Project Los Angeles', | |
list_of_MIDI_patches=patches | |
) | |
new_fn = fn1+'.mid' | |
audio = midi_to_colab_audio(new_fn, | |
soundfont_path=SOUDFONT_PATH, | |
sample_rate=16000, | |
volume_scale=10, | |
output_for_gradio=True | |
) | |
print('Done!') | |
print('=' * 70) | |
#======================================================== | |
output_midi = str(new_fn) | |
output_audio = (16000, audio) | |
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) | |
print('Output MIDI file name:', output_midi) | |
print('=' * 70) | |
#======================================================== | |
else: | |
return None, None, None | |
print('-' * 70) | |
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('-' * 70) | |
print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
return output_audio, output_plot, output_midi | |
else: | |
return None, None, None | |
#================================================================================== | |
PDT = timezone('US/Pacific') | |
print('=' * 70) | |
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('=' * 70) | |
#================================================================================== | |
with gr.Blocks() as demo: | |
#================================================================================== | |
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Orpheus Humanizing Transformer</h1>") | |
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Humanize durations and/or velocities in any MIDI score</h1>") | |
gr.HTML(""" | |
<p> | |
<a href="https://huggingface.co/spaces/projectlosangeles/Orpheus-Humanizing-Transformer?duplicate=true"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face"> | |
</a> | |
</p> | |
for faster execution and endless generation! | |
""") | |
#================================================================================== | |
gr.Markdown("## Upload source MIDI or select a sample MIDI on the bottom of the page") | |
input_midi = gr.File(label="Input MIDI", | |
file_types=[".midi", ".mid", ".kar"] | |
) | |
gr.Markdown("## Generation options") | |
humanize_durations = gr.Checkbox(value=False, label="Humanize durations") | |
humanize_velocities = gr.Checkbox(value=True, label="Humanize velocities") | |
num_prime_toks = gr.Slider(0, 1024, value=0, step=1, label="Number of prime tokens") | |
num_hum_notes = gr.Slider(128, 2048, value=512, step=1, label="Number of notes to humanize") | |
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature") | |
model_sampling_top_p = gr.Slider(0.1, 0.99, value=0.96, step=0.01, label="Model sampling top p value") | |
generate_btn = gr.Button("Generate", variant="primary") | |
gr.Markdown("## Generation results") | |
output_title = gr.Textbox(label="MIDI melody title") | |
output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio") | |
output_plot = gr.Plot(label="MIDI score plot") | |
output_midi = gr.File(label="MIDI file", file_types=[".mid"]) | |
generate_btn.click(Humanize_MIDI, | |
[input_midi, | |
num_prime_toks, | |
num_hum_notes, | |
humanize_durations, | |
humanize_velocities, | |
model_temperature, | |
model_sampling_top_p | |
], | |
[output_audio, | |
output_plot, | |
output_midi | |
] | |
) | |
gr.Examples( | |
[["Sharing The Night Together.kar", 0, 1024, False, True, 0.9, 0.96] | |
], | |
[input_midi, | |
num_prime_toks, | |
num_hum_notes, | |
humanize_durations, | |
humanize_velocities, | |
model_temperature, | |
model_sampling_top_p | |
], | |
[output_audio, | |
output_plot, | |
output_midi | |
], | |
Humanize_MIDI | |
) | |
#================================================================================== | |
demo.launch() | |
#================================================================================== |