#============================================================================================ # https://huggingface.co/spaces/projectlosangeles/Orpheus-Humanizing-Transformer #============================================================================================ print('=' * 70) print('Orpheus Humanizing Transformer Gradio App') print('=' * 70) print('Loading core Orpheus Humanizing Transformer modules...') import os import copy import time as reqtime import datetime from pytz import timezone print('=' * 70) print('Loading main Orpheus Humanizing Transformer modules...') os.environ['USE_FLASH_ATTENTION'] = '1' import torch torch.set_float32_matmul_precision('high') torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn torch.backends.cuda.enable_flash_sdp(True) from huggingface_hub import hf_hub_download import TMIDIX from midi_to_colab_audio import midi_to_colab_audio from x_transformer_2_3_1 import * import random import tqdm print('=' * 70) print('Loading aux Orpheus Humanizing Transformer modules...') import matplotlib.pyplot as plt import gradio as gr import spaces print('=' * 70) print('PyTorch version:', torch.__version__) print('=' * 70) print('Done!') print('Enjoy! :)') print('=' * 70) #================================================================================== MODEL_CHECKPOINT = 'Orpheus_Music_Transformer_Trained_Model_128497_steps_0.6934_loss_0.7927_acc.pth' SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' #================================================================================== print('=' * 70) print('Instantiating model...') device_type = 'cuda' dtype = 'bfloat16' ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) SEQ_LEN = 8192 PAD_IDX = 18819 model = TransformerWrapper(num_tokens = PAD_IDX+1, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 2048, depth = 8, heads = 32, rotary_pos_emb = True, attn_flash = True ) ) model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) print('=' * 70) print('Loading model checkpoint...') model_checkpoint = hf_hub_download(repo_id='asigalov61/Orpheus-Music-Transformer', filename=MODEL_CHECKPOINT) model.load_state_dict(torch.load(model_checkpoint, map_location=device_type, weights_only=True)) model = torch.compile(model, mode='max-autotune') model.to(device_type) model.eval() print('=' * 70) print('Done!') print('=' * 70) print('Model will use', dtype, 'precision...') print('=' * 70) #================================================================================== def load_midi(input_midi): raw_score = TMIDIX.midi2single_track_ms_score(input_midi) escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True, apply_sustain=True) if escore_notes: escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], sort_drums_last=True) dscore = TMIDIX.delta_score_notes(escore_notes) dcscore = TMIDIX.chordify_score([d[1:] for d in dscore]) melody_chords = [18816] chords = [] #======================================================= # MAIN PROCESSING CYCLE #======================================================= for i, c in enumerate(dcscore): delta_time = c[0][0] melody_chords.append(delta_time) cho = [] cho.append(delta_time) for e in c: #======================================================= # Durations dur = max(1, min(255, e[1])) # Patches pat = max(0, min(128, e[5])) # Pitches ptc = max(1, min(127, e[3])) # Velocities # Calculating octo-velocity vel = max(8, min(127, e[4])) velocity = round(vel / 15)-1 #======================================================= # FINAL NOTE SEQ #======================================================= # Writing final note pat_ptc = (128 * pat) + ptc dur_vel = (8 * dur) + velocity melody_chords.extend([pat_ptc+256, dur_vel+16768]) # 18816 cho.extend([pat_ptc+256, dur_vel+16768]) chords.append(cho) print('Done!') print('=' * 70) print('Score has', len(melody_chords), 'tokens') print('Score has', len(chords), 'chords') print('=' * 70) return melody_chords, chords else: return None #================================================================================== @spaces.GPU def Humanize_MIDI(input_midi, num_prime_toks, num_hum_notes, humanize_durations, humanize_velocities, model_temperature, model_sampling_top_p ): #=============================================================================== print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('=' * 70) print('=' * 70) print('Requested settings:') print('=' * 70) fn = os.path.basename(input_midi) fn1 = fn.split('.')[0] print('Input MIDI file name:', fn) print('Number of prime tokens:', num_prime_toks) print('Number of notes to humanize:', num_hum_notes) print('Humanize durations:', humanize_durations) print('Humanize velocities:', humanize_velocities) print('Model temperature:', model_temperature) print('Model top p:', model_sampling_top_p) print('=' * 70) #================================================================== if input_midi is not None: print('Loading MIDI...') score, chords = load_midi(input_midi.name) if score is not None and chords is not None: print('Sample score tokens', score[:10]) print('=' * 70) #================================================================== dur_vel_toks_num = len([t for t in score[num_prime_toks:] if 16767 < t < 18816]) print('Number of tokens to humanize:', dur_vel_toks_num) #================================================================== print('=' * 70) print('Generating...') final_song = score[:num_prime_toks] hn_count = 0 for t in tqdm.tqdm(score[num_prime_toks:]): if t < 16767 or t > 18815: final_song.append(t) else: fdur = ((t-16768) // 8) fvel = ((t-16768) % 8) x = torch.LongTensor(final_song).to(device_type) with ctx: out = model.generate(x, 1, temperature=model_temperature, filter_logits_fn=top_p, filter_kwargs={'thres': model_sampling_top_p}, return_prime=False, eos_token=18818, verbose=False) y = out.tolist()[0] gdur = ((y-16768) // 8) gvel = ((y-16768) % 8) if humanize_durations: fdur = gdur if humanize_velocities: fvel = gvel dur_vel_tok = ((8 * fdur) + fvel) + 16768 final_song.append(dur_vel_tok) hn_count += 1 if hn_count == num_hum_notes: break #================================================================== print('=' * 70) print('Done!') print('=' * 70) #=============================================================================== print('Rendering results...') print('=' * 70) print('Sample INTs', final_song[:15]) print('=' * 70) song_f = [] if len(final_song) != 0: time = 0 dur = 1 vel = 90 pitch = 60 channel = 0 patch = 0 patches = [-1] * 16 channels = [0] * 16 channels[9] = 1 for ss in final_song: if 0 <= ss < 256: time += ss * 16 if 256 <= ss < 16768: patch = (ss-256) // 128 if patch < 128: if patch not in patches: if 0 in channels: cha = channels.index(0) channels[cha] = 1 else: cha = 15 patches[cha] = patch channel = patches.index(patch) else: channel = patches.index(patch) if patch == 128: channel = 9 pitch = (ss-256) % 128 if 16768 <= ss < 18816: dur = ((ss-16768) // 8) * 16 vel = (((ss-16768) % 8)+1) * 15 song_f.append(['note', time, dur, channel, pitch, vel, patch]) patches = [0 if x==-1 else x for x in patches] output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f) fn1 = "Orpheus-Humanizing-Transformer-Composition" detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score, output_signature = 'Orpheus Humanizing Transformer', output_file_name = fn1, track_name='Project Los Angeles', list_of_MIDI_patches=patches ) new_fn = fn1+'.mid' audio = midi_to_colab_audio(new_fn, soundfont_path=SOUDFONT_PATH, sample_rate=16000, volume_scale=10, output_for_gradio=True ) print('Done!') print('=' * 70) #======================================================== output_midi = str(new_fn) output_audio = (16000, audio) output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) print('Output MIDI file name:', output_midi) print('=' * 70) #======================================================== else: return None, None, None print('-' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (reqtime.time() - start_time), 'sec') return output_audio, output_plot, output_midi else: return None, None, None #================================================================================== PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) #================================================================================== with gr.Blocks() as demo: #================================================================================== gr.Markdown("

Orpheus Humanizing Transformer

") gr.Markdown("

Humanize durations and/or velocities in any MIDI score

") gr.HTML("""

Duplicate in Hugging Face

for faster execution and endless generation! """) #================================================================================== gr.Markdown("## Upload source MIDI or select a sample MIDI on the bottom of the page") input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"] ) gr.Markdown("## Generation options") humanize_durations = gr.Checkbox(value=False, label="Humanize durations") humanize_velocities = gr.Checkbox(value=True, label="Humanize velocities") num_prime_toks = gr.Slider(0, 1024, value=0, step=1, label="Number of prime tokens") num_hum_notes = gr.Slider(128, 2048, value=512, step=1, label="Number of notes to humanize") model_temperature = gr.Slider(0.1, 1.5, value=1.2, step=0.01, label="Model temperature") model_sampling_top_p = gr.Slider(0.1, 0.99, value=0.96, step=0.01, label="Model sampling top p value") generate_btn = gr.Button("Generate", variant="primary") gr.Markdown("## Generation results") output_title = gr.Textbox(label="MIDI melody title") output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio") output_plot = gr.Plot(label="MIDI score plot") output_midi = gr.File(label="MIDI file", file_types=[".mid"]) generate_btn.click(Humanize_MIDI, [input_midi, num_prime_toks, num_hum_notes, humanize_durations, humanize_velocities, model_temperature, model_sampling_top_p ], [output_audio, output_plot, output_midi ] ) gr.Examples( [["Sharing The Night Together.kar", 0, 1024, False, True, 0.9, 0.96] ], [input_midi, num_prime_toks, num_hum_notes, humanize_durations, humanize_velocities, model_temperature, model_sampling_top_p ], [output_audio, output_plot, output_midi ], Humanize_MIDI ) #================================================================================== demo.launch() #==================================================================================