File size: 16,696 Bytes
50c36d3
31d04df
50c36d3
9ee602d
50c36d3
31d04df
9ee602d
50c36d3
31d04df
9ee602d
50c36d3
 
9ee602d
 
 
 
 
50c36d3
31d04df
50c36d3
 
 
9ee602d
50c36d3
 
 
 
 
9ee602d
 
50c36d3
9ee602d
50c36d3
9ee602d
50c36d3
 
9ee602d
7a318b6
 
50c36d3
9ee602d
50c36d3
31d04df
9ee602d
50c36d3
9ee602d
50c36d3
 
9ee602d
50c36d3
 
 
 
 
 
 
 
 
cf397ea
50c36d3
 
 
 
 
 
 
9ee602d
 
 
50c36d3
9ee602d
 
 
958c5a5
419ed32
9ee602d
50c36d3
 
 
 
 
 
 
 
 
 
9ee602d
 
50c36d3
 
 
 
 
 
 
9ee602d
 
50c36d3
9ee602d
 
50c36d3
 
 
 
 
 
 
9ee602d
 
50c36d3
 
31b453f
bbf2384
31b453f
6521a1f
bbf2384
6521a1f
 
 
 
 
 
 
31b453f
 
6521a1f
 
 
 
 
 
bbf2384
6521a1f
 
 
31b453f
 
 
 
6521a1f
 
bbf2384
6521a1f
 
 
 
 
 
 
 
 
 
 
 
 
50c36d3
6521a1f
 
 
 
 
 
 
 
 
 
 
50c36d3
31b453f
50c36d3
31b453f
50c36d3
 
 
31b453f
 
50c36d3
bbf2384
31b453f
bbf2384
50c36d3
 
bbf2384
50c36d3
bbf2384
50c36d3
cdee65f
ccd7d7d
f1fea9b
ccd7d7d
 
cdee65f
 
 
bbf2384
50c36d3
bbf2384
50c36d3
 
 
 
bbf2384
50c36d3
 
 
 
 
 
ccd7d7d
f1fea9b
ccd7d7d
 
50c36d3
 
 
 
bbf2384
50c36d3
bbf2384
50c36d3
612f41c
50c36d3
9ee602d
3c2c36c
9ee602d
3c2c36c
50c36d3
 
f9084e6
a9a919c
50c36d3
3c2c36c
ccd7d7d
3c2c36c
ccd7d7d
3c2c36c
f9084e6
 
 
 
 
ccd7d7d
f1fea9b
 
f9084e6
a120f68
f9084e6
 
 
 
 
 
ee1a662
9084ec4
f9084e6
 
3c2c36c
 
 
 
 
 
 
 
 
 
50c36d3
3c2c36c
 
ee1a662
9084ec4
f9084e6
ccd7d7d
f9084e6
c6ff336
ccd7d7d
f9084e6
 
 
 
 
3c2c36c
f1fea9b
 
 
 
 
50c36d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ee602d
50c36d3
419ed32
31d04df
50c36d3
 
31d04df
50c36d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ee602d
50c36d3
 
9ee602d
50c36d3
 
 
 
9ee602d
50c36d3
 
9ee602d
50c36d3
 
 
 
 
9ee602d
50c36d3
 
 
9ee602d
50c36d3
9ee602d
 
 
50c36d3
 
31d04df
 
50c36d3
 
31d04df
50c36d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1fea9b
cdee65f
 
f1fea9b
 
 
cdee65f
95f0309
50c36d3
 
9ee602d
 
50c36d3
 
 
 
 
 
 
cdee65f
50c36d3
ccd7d7d
f1fea9b
ccd7d7d
 
50c36d3
 
 
 
 
 
 
 
 
 
f1fea9b
50c36d3
 
ccd7d7d
f1fea9b
ccd7d7d
 
50c36d3
 
 
 
 
 
 
cdee65f
9ee602d
50c36d3
 
9ee602d
50c36d3
9ee602d
50c36d3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
#============================================================================================
# https://huggingface.co/spaces/projectlosangeles/Orpheus-Humanizing-Transformer
#============================================================================================

print('=' * 70)
print('Orpheus Humanizing Transformer Gradio App')

print('=' * 70)
print('Loading core Orpheus Humanizing Transformer modules...')

import os
import copy

import time as reqtime
import datetime
from pytz import timezone

print('=' * 70)
print('Loading main Orpheus Humanizing Transformer modules...')

os.environ['USE_FLASH_ATTENTION'] = '1'

import torch

torch.set_float32_matmul_precision('high')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.backends.cuda.enable_flash_sdp(True)

from huggingface_hub import hf_hub_download

import TMIDIX

from midi_to_colab_audio import midi_to_colab_audio

from x_transformer_2_3_1 import *

import random

import tqdm

print('=' * 70)
print('Loading aux Orpheus Humanizing Transformer modules...')

import matplotlib.pyplot as plt

import gradio as gr
import spaces

print('=' * 70)
print('PyTorch version:', torch.__version__)
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)

#==================================================================================

MODEL_CHECKPOINT = 'Orpheus_Music_Transformer_Trained_Model_128497_steps_0.6934_loss_0.7927_acc.pth'

SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'

#==================================================================================

print('=' * 70)
print('Instantiating model...')

device_type = 'cuda'
dtype = 'bfloat16'

ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)

SEQ_LEN = 8192
PAD_IDX = 18819

model = TransformerWrapper(num_tokens = PAD_IDX+1,
                           max_seq_len = SEQ_LEN,
                           attn_layers = Decoder(dim = 2048,
                                                 depth = 8,
                                                 heads = 32,
                                                 rotary_pos_emb = True,
                                                 attn_flash = True
                                                 )
                           )

model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)

print('=' * 70)
print('Loading model checkpoint...')      

model_checkpoint = hf_hub_download(repo_id='asigalov61/Orpheus-Music-Transformer', filename=MODEL_CHECKPOINT)

model.load_state_dict(torch.load(model_checkpoint, map_location=device_type, weights_only=True))

model = torch.compile(model, mode='max-autotune')

model.to(device_type)
model.eval()

print('=' * 70)
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)

#==================================================================================

def load_midi(input_midi):

    raw_score = TMIDIX.midi2single_track_ms_score(input_midi)
    
    escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True, apply_sustain=True)
    
    if escore_notes:
    
        escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], sort_drums_last=True)
        
        dscore = TMIDIX.delta_score_notes(escore_notes)
        
        dcscore = TMIDIX.chordify_score([d[1:] for d in dscore])
        
        melody_chords = [18816]
    
        chords = []
        
        #=======================================================
        # MAIN PROCESSING CYCLE
        #=======================================================
        
        for i, c in enumerate(dcscore):
        
            delta_time = c[0][0]
        
            melody_chords.append(delta_time)
    
            cho = []
            
            cho.append(delta_time)
        
            for e in c:
            
                #=======================================================
                
                # Durations
                dur = max(1, min(255, e[1]))
        
                # Patches
                pat = max(0, min(128, e[5]))
                
                # Pitches
                ptc = max(1, min(127, e[3]))
                
                # Velocities
                # Calculating octo-velocity
                
                vel = max(8, min(127, e[4]))
                velocity = round(vel / 15)-1
                
                #=======================================================
                # FINAL NOTE SEQ
                #=======================================================
                
                # Writing final note
                pat_ptc = (128 * pat) + ptc 
                dur_vel = (8 * dur) + velocity
        
                melody_chords.extend([pat_ptc+256, dur_vel+16768]) # 18816
                cho.extend([pat_ptc+256, dur_vel+16768])
    
            chords.append(cho)
        
        print('Done!')
        print('=' * 70)
        print('Score has', len(melody_chords), 'tokens')
        print('Score has', len(chords), 'chords')
        print('=' * 70)

        return melody_chords, chords

    else:
        return None

#==================================================================================

@spaces.GPU
def Humanize_MIDI(input_midi,
                  num_prime_toks,
                  num_hum_notes,
                  humanize_durations,
                  humanize_velocities,
                  model_temperature,
                  model_sampling_top_p
                 ):

    #===============================================================================

    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = reqtime.time()
    print('=' * 70)

    print('=' * 70)
    print('Requested settings:')
    print('=' * 70)
    fn = os.path.basename(input_midi)
    fn1 = fn.split('.')[0]
    print('Input MIDI file name:', fn)
    print('Number of prime tokens:', num_prime_toks)
    print('Number of notes to humanize:', num_hum_notes)
    print('Humanize durations:', humanize_durations)
    print('Humanize velocities:', humanize_velocities)
    print('Model temperature:', model_temperature)
    print('Model top p:', model_sampling_top_p)
   
    print('=' * 70)

    #==================================================================

    if input_midi is not None:

        print('Loading MIDI...')
    
        score, chords = load_midi(input_midi.name)
    
        if score is not None and chords is not None:
            
            print('Sample score tokens', score[:10])
            print('=' * 70)
        
            #==================================================================

            dur_vel_toks_num = len([t for t in score[num_prime_toks:] if 16767 < t < 18816])

            print('Number of tokens to humanize:', dur_vel_toks_num)

            #==================================================================
            
            print('=' * 70)
            print('Generating...')

            final_song = score[:num_prime_toks]

            hn_count = 0
        
            for t in tqdm.tqdm(score[num_prime_toks:]):

                if t < 16767 or t > 18815:
                    final_song.append(t)

                else:

                    fdur = ((t-16768) // 8)
                    fvel = ((t-16768) % 8)

                    x = torch.LongTensor(final_song).to(device_type)
                    
                    with ctx:
                        out = model.generate(x,
                                             1,
                                             temperature=model_temperature,
                                             filter_logits_fn=top_p,
                                             filter_kwargs={'thres': model_sampling_top_p},
                                             return_prime=False,
                                             eos_token=18818,
                                             verbose=False)
        
                    y = out.tolist()[0]

                    gdur = ((y-16768) // 8)
                    gvel = ((y-16768) % 8)                    
                    
                    if humanize_durations:
                        fdur = gdur

                    if humanize_velocities:
                        fvel = gvel
                        
                    dur_vel_tok = ((8 * fdur) + fvel) + 16768
                    
                    final_song.append(dur_vel_tok)

                    hn_count += 1

                    if hn_count == num_hum_notes:
                        break

            #==================================================================
           
            print('=' * 70)
            print('Done!')
            print('=' * 70)
            
            #===============================================================================
            
            print('Rendering results...')
            
            print('=' * 70)
            print('Sample INTs', final_song[:15])
            print('=' * 70)
        
            song_f = []
            
            if len(final_song) != 0:
            
                time = 0
                dur = 1
                vel = 90
                pitch = 60
                channel = 0
                patch = 0
            
                patches = [-1] * 16
            
                channels = [0] * 16
                channels[9] = 1
            
                for ss in final_song:
            
                    if 0 <= ss < 256:
            
                        time += ss * 16
            
                    if 256 <= ss < 16768:
            
                        patch = (ss-256) // 128
            
                        if patch < 128:
            
                            if patch not in patches:
                              if 0 in channels:
                                  cha = channels.index(0)
                                  channels[cha] = 1
                              else:
                                  cha = 15
            
                              patches[cha] = patch
                              channel = patches.index(patch)
                            else:
                              channel = patches.index(patch)
            
                        if patch == 128:
                            channel = 9
            
                        pitch = (ss-256) % 128
            
            
                    if 16768 <= ss < 18816:
            
                        dur = ((ss-16768) // 8) * 16
                        vel = (((ss-16768) % 8)+1) * 15
            
                        song_f.append(['note', time, dur, channel, pitch, vel, patch])
            
                patches = [0 if x==-1 else x for x in patches]

            output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f)
        
            fn1 = "Orpheus-Humanizing-Transformer-Composition"
            
            detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
                                                                      output_signature = 'Orpheus Humanizing Transformer',
                                                                      output_file_name = fn1,
                                                                      track_name='Project Los Angeles',
                                                                      list_of_MIDI_patches=patches
                                                                      )
            
            new_fn = fn1+'.mid'
                    
            
            audio = midi_to_colab_audio(new_fn, 
                                soundfont_path=SOUDFONT_PATH,
                                sample_rate=16000,
                                volume_scale=10,
                                output_for_gradio=True
                                )
            
            print('Done!')
            print('=' * 70)
        
            #========================================================
        
            output_midi = str(new_fn)
            output_audio = (16000, audio)
            output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
        
            print('Output MIDI file name:', output_midi)
            print('=' * 70) 
            
            #========================================================
    
        else:
            return None, None, None
    
        print('-' * 70)
        print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
        print('-' * 70)
        print('Req execution time:', (reqtime.time() - start_time), 'sec')
    
        return output_audio, output_plot, output_midi

    else:
        return None, None, None
    
#==================================================================================

PDT = timezone('US/Pacific')

print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)

#==================================================================================

with gr.Blocks() as demo:

    #==================================================================================

    gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Orpheus Humanizing Transformer</h1>")
    gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Humanize durations and/or velocities in any MIDI score</h1>")
    gr.HTML("""            
            <p> 
                <a href="https://huggingface.co/spaces/projectlosangeles/Orpheus-Humanizing-Transformer?duplicate=true">
                    <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
                </a>
            </p>
            
            for faster execution and endless generation!
            """)
    
    #==================================================================================
    
    gr.Markdown("## Upload source MIDI or select a sample MIDI on the bottom of the page")
    
    input_midi = gr.File(label="Input MIDI", 
                         file_types=[".midi", ".mid", ".kar"]
                        )
    
    gr.Markdown("## Generation options")
    
    humanize_durations = gr.Checkbox(value=False, label="Humanize durations")
    humanize_velocities = gr.Checkbox(value=True, label="Humanize velocities")
    
    num_prime_toks = gr.Slider(0, 1024, value=0, step=1, label="Number of prime tokens")
    num_hum_notes = gr.Slider(128, 2048, value=512, step=1, label="Number of notes to humanize")

    model_temperature = gr.Slider(0.1, 1.5, value=1.2, step=0.01, label="Model temperature")
    model_sampling_top_p = gr.Slider(0.1, 0.99, value=0.96, step=0.01, label="Model sampling top p value")
    
    generate_btn = gr.Button("Generate", variant="primary")

    gr.Markdown("## Generation results")

    output_title = gr.Textbox(label="MIDI melody title")
    output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio")
    output_plot = gr.Plot(label="MIDI score plot")
    output_midi = gr.File(label="MIDI file", file_types=[".mid"])

    generate_btn.click(Humanize_MIDI, 
                       [input_midi,
                        num_prime_toks,
                        num_hum_notes,
                        humanize_durations,
                        humanize_velocities,
                        model_temperature,
                        model_sampling_top_p
                       ], 
                       [output_audio,
                        output_plot,
                        output_midi                          
                       ]
                      )

    gr.Examples(
                [["Sharing The Night Together.kar", 0, 1024, False, True, 0.9, 0.96]
                ],
                [input_midi,
                 num_prime_toks,
                 num_hum_notes,
                 humanize_durations,
                 humanize_velocities,
                 model_temperature,
                 model_sampling_top_p
                ],
                [output_audio,
                 output_plot,
                 output_midi
                ],
                Humanize_MIDI
    )
    
#==================================================================================

demo.launch()

#==================================================================================