Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,696 Bytes
50c36d3 31d04df 50c36d3 9ee602d 50c36d3 31d04df 9ee602d 50c36d3 31d04df 9ee602d 50c36d3 9ee602d 50c36d3 31d04df 50c36d3 9ee602d 50c36d3 9ee602d 50c36d3 9ee602d 50c36d3 9ee602d 50c36d3 9ee602d 7a318b6 50c36d3 9ee602d 50c36d3 31d04df 9ee602d 50c36d3 9ee602d 50c36d3 9ee602d 50c36d3 cf397ea 50c36d3 9ee602d 50c36d3 9ee602d 958c5a5 419ed32 9ee602d 50c36d3 9ee602d 50c36d3 9ee602d 50c36d3 9ee602d 50c36d3 9ee602d 50c36d3 31b453f bbf2384 31b453f 6521a1f bbf2384 6521a1f 31b453f 6521a1f bbf2384 6521a1f 31b453f 6521a1f bbf2384 6521a1f 50c36d3 6521a1f 50c36d3 31b453f 50c36d3 31b453f 50c36d3 31b453f 50c36d3 bbf2384 31b453f bbf2384 50c36d3 bbf2384 50c36d3 bbf2384 50c36d3 cdee65f ccd7d7d f1fea9b ccd7d7d cdee65f bbf2384 50c36d3 bbf2384 50c36d3 bbf2384 50c36d3 ccd7d7d f1fea9b ccd7d7d 50c36d3 bbf2384 50c36d3 bbf2384 50c36d3 612f41c 50c36d3 9ee602d 3c2c36c 9ee602d 3c2c36c 50c36d3 f9084e6 a9a919c 50c36d3 3c2c36c ccd7d7d 3c2c36c ccd7d7d 3c2c36c f9084e6 ccd7d7d f1fea9b f9084e6 a120f68 f9084e6 ee1a662 9084ec4 f9084e6 3c2c36c 50c36d3 3c2c36c ee1a662 9084ec4 f9084e6 ccd7d7d f9084e6 c6ff336 ccd7d7d f9084e6 3c2c36c f1fea9b 50c36d3 9ee602d 50c36d3 419ed32 31d04df 50c36d3 31d04df 50c36d3 9ee602d 50c36d3 9ee602d 50c36d3 9ee602d 50c36d3 9ee602d 50c36d3 9ee602d 50c36d3 9ee602d 50c36d3 9ee602d 50c36d3 31d04df 50c36d3 31d04df 50c36d3 f1fea9b cdee65f f1fea9b cdee65f 95f0309 50c36d3 9ee602d 50c36d3 cdee65f 50c36d3 ccd7d7d f1fea9b ccd7d7d 50c36d3 f1fea9b 50c36d3 ccd7d7d f1fea9b ccd7d7d 50c36d3 cdee65f 9ee602d 50c36d3 9ee602d 50c36d3 9ee602d 50c36d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
#============================================================================================
# https://huggingface.co/spaces/projectlosangeles/Orpheus-Humanizing-Transformer
#============================================================================================
print('=' * 70)
print('Orpheus Humanizing Transformer Gradio App')
print('=' * 70)
print('Loading core Orpheus Humanizing Transformer modules...')
import os
import copy
import time as reqtime
import datetime
from pytz import timezone
print('=' * 70)
print('Loading main Orpheus Humanizing Transformer modules...')
os.environ['USE_FLASH_ATTENTION'] = '1'
import torch
torch.set_float32_matmul_precision('high')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.backends.cuda.enable_flash_sdp(True)
from huggingface_hub import hf_hub_download
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_2_3_1 import *
import random
import tqdm
print('=' * 70)
print('Loading aux Orpheus Humanizing Transformer modules...')
import matplotlib.pyplot as plt
import gradio as gr
import spaces
print('=' * 70)
print('PyTorch version:', torch.__version__)
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)
#==================================================================================
MODEL_CHECKPOINT = 'Orpheus_Music_Transformer_Trained_Model_128497_steps_0.6934_loss_0.7927_acc.pth'
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
#==================================================================================
print('=' * 70)
print('Instantiating model...')
device_type = 'cuda'
dtype = 'bfloat16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 8192
PAD_IDX = 18819
model = TransformerWrapper(num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 2048,
depth = 8,
heads = 32,
rotary_pos_emb = True,
attn_flash = True
)
)
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
model_checkpoint = hf_hub_download(repo_id='asigalov61/Orpheus-Music-Transformer', filename=MODEL_CHECKPOINT)
model.load_state_dict(torch.load(model_checkpoint, map_location=device_type, weights_only=True))
model = torch.compile(model, mode='max-autotune')
model.to(device_type)
model.eval()
print('=' * 70)
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
#==================================================================================
def load_midi(input_midi):
raw_score = TMIDIX.midi2single_track_ms_score(input_midi)
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True, apply_sustain=True)
if escore_notes:
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], sort_drums_last=True)
dscore = TMIDIX.delta_score_notes(escore_notes)
dcscore = TMIDIX.chordify_score([d[1:] for d in dscore])
melody_chords = [18816]
chords = []
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
for i, c in enumerate(dcscore):
delta_time = c[0][0]
melody_chords.append(delta_time)
cho = []
cho.append(delta_time)
for e in c:
#=======================================================
# Durations
dur = max(1, min(255, e[1]))
# Patches
pat = max(0, min(128, e[5]))
# Pitches
ptc = max(1, min(127, e[3]))
# Velocities
# Calculating octo-velocity
vel = max(8, min(127, e[4]))
velocity = round(vel / 15)-1
#=======================================================
# FINAL NOTE SEQ
#=======================================================
# Writing final note
pat_ptc = (128 * pat) + ptc
dur_vel = (8 * dur) + velocity
melody_chords.extend([pat_ptc+256, dur_vel+16768]) # 18816
cho.extend([pat_ptc+256, dur_vel+16768])
chords.append(cho)
print('Done!')
print('=' * 70)
print('Score has', len(melody_chords), 'tokens')
print('Score has', len(chords), 'chords')
print('=' * 70)
return melody_chords, chords
else:
return None
#==================================================================================
@spaces.GPU
def Humanize_MIDI(input_midi,
num_prime_toks,
num_hum_notes,
humanize_durations,
humanize_velocities,
model_temperature,
model_sampling_top_p
):
#===============================================================================
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
print('=' * 70)
print('Requested settings:')
print('=' * 70)
fn = os.path.basename(input_midi)
fn1 = fn.split('.')[0]
print('Input MIDI file name:', fn)
print('Number of prime tokens:', num_prime_toks)
print('Number of notes to humanize:', num_hum_notes)
print('Humanize durations:', humanize_durations)
print('Humanize velocities:', humanize_velocities)
print('Model temperature:', model_temperature)
print('Model top p:', model_sampling_top_p)
print('=' * 70)
#==================================================================
if input_midi is not None:
print('Loading MIDI...')
score, chords = load_midi(input_midi.name)
if score is not None and chords is not None:
print('Sample score tokens', score[:10])
print('=' * 70)
#==================================================================
dur_vel_toks_num = len([t for t in score[num_prime_toks:] if 16767 < t < 18816])
print('Number of tokens to humanize:', dur_vel_toks_num)
#==================================================================
print('=' * 70)
print('Generating...')
final_song = score[:num_prime_toks]
hn_count = 0
for t in tqdm.tqdm(score[num_prime_toks:]):
if t < 16767 or t > 18815:
final_song.append(t)
else:
fdur = ((t-16768) // 8)
fvel = ((t-16768) % 8)
x = torch.LongTensor(final_song).to(device_type)
with ctx:
out = model.generate(x,
1,
temperature=model_temperature,
filter_logits_fn=top_p,
filter_kwargs={'thres': model_sampling_top_p},
return_prime=False,
eos_token=18818,
verbose=False)
y = out.tolist()[0]
gdur = ((y-16768) // 8)
gvel = ((y-16768) % 8)
if humanize_durations:
fdur = gdur
if humanize_velocities:
fvel = gvel
dur_vel_tok = ((8 * fdur) + fvel) + 16768
final_song.append(dur_vel_tok)
hn_count += 1
if hn_count == num_hum_notes:
break
#==================================================================
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', final_song[:15])
print('=' * 70)
song_f = []
if len(final_song) != 0:
time = 0
dur = 1
vel = 90
pitch = 60
channel = 0
patch = 0
patches = [-1] * 16
channels = [0] * 16
channels[9] = 1
for ss in final_song:
if 0 <= ss < 256:
time += ss * 16
if 256 <= ss < 16768:
patch = (ss-256) // 128
if patch < 128:
if patch not in patches:
if 0 in channels:
cha = channels.index(0)
channels[cha] = 1
else:
cha = 15
patches[cha] = patch
channel = patches.index(patch)
else:
channel = patches.index(patch)
if patch == 128:
channel = 9
pitch = (ss-256) % 128
if 16768 <= ss < 18816:
dur = ((ss-16768) // 8) * 16
vel = (((ss-16768) % 8)+1) * 15
song_f.append(['note', time, dur, channel, pitch, vel, patch])
patches = [0 if x==-1 else x for x in patches]
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f)
fn1 = "Orpheus-Humanizing-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
output_signature = 'Orpheus Humanizing Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('=' * 70)
#========================================================
else:
return None, None, None
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_audio, output_plot, output_midi
else:
return None, None, None
#==================================================================================
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
#==================================================================================
with gr.Blocks() as demo:
#==================================================================================
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Orpheus Humanizing Transformer</h1>")
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Humanize durations and/or velocities in any MIDI score</h1>")
gr.HTML("""
<p>
<a href="https://huggingface.co/spaces/projectlosangeles/Orpheus-Humanizing-Transformer?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
</a>
</p>
for faster execution and endless generation!
""")
#==================================================================================
gr.Markdown("## Upload source MIDI or select a sample MIDI on the bottom of the page")
input_midi = gr.File(label="Input MIDI",
file_types=[".midi", ".mid", ".kar"]
)
gr.Markdown("## Generation options")
humanize_durations = gr.Checkbox(value=False, label="Humanize durations")
humanize_velocities = gr.Checkbox(value=True, label="Humanize velocities")
num_prime_toks = gr.Slider(0, 1024, value=0, step=1, label="Number of prime tokens")
num_hum_notes = gr.Slider(128, 2048, value=512, step=1, label="Number of notes to humanize")
model_temperature = gr.Slider(0.1, 1.5, value=1.2, step=0.01, label="Model temperature")
model_sampling_top_p = gr.Slider(0.1, 0.99, value=0.96, step=0.01, label="Model sampling top p value")
generate_btn = gr.Button("Generate", variant="primary")
gr.Markdown("## Generation results")
output_title = gr.Textbox(label="MIDI melody title")
output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="MIDI score plot")
output_midi = gr.File(label="MIDI file", file_types=[".mid"])
generate_btn.click(Humanize_MIDI,
[input_midi,
num_prime_toks,
num_hum_notes,
humanize_durations,
humanize_velocities,
model_temperature,
model_sampling_top_p
],
[output_audio,
output_plot,
output_midi
]
)
gr.Examples(
[["Sharing The Night Together.kar", 0, 1024, False, True, 0.9, 0.96]
],
[input_midi,
num_prime_toks,
num_hum_notes,
humanize_durations,
humanize_velocities,
model_temperature,
model_sampling_top_p
],
[output_audio,
output_plot,
output_midi
],
Humanize_MIDI
)
#==================================================================================
demo.launch()
#================================================================================== |