Spaces:
Sleeping
Sleeping
File size: 10,158 Bytes
444ee18 f978017 444ee18 f978017 444ee18 8b11118 444ee18 374abdb 8b11118 a915b02 f978017 444ee18 f978017 444ee18 f978017 444ee18 ed024cc 374abdb ed024cc 374abdb 444ee18 ed024cc f978017 374abdb 444ee18 374abdb 444ee18 f978017 ed024cc 444ee18 f978017 444ee18 f978017 444ee18 f978017 444ee18 ed024cc 444ee18 ed024cc f978017 374abdb ed024cc 444ee18 f978017 ed024cc f978017 374abdb ed024cc f978017 ed024cc f978017 374abdb ed024cc 374abdb f978017 374abdb ed024cc 374abdb ed024cc f978017 ed024cc 374abdb ed024cc f978017 ed024cc 374abdb ed024cc f978017 374abdb ed024cc 444ee18 ed024cc f978017 ed024cc f978017 8b11118 374abdb 444ee18 374abdb f978017 374abdb 444ee18 f978017 444ee18 f978017 374abdb 444ee18 f978017 444ee18 f978017 ed024cc f978017 ed024cc 444ee18 f978017 444ee18 f978017 444ee18 f978017 374abdb 8b11118 374abdb 444ee18 374abdb 444ee18 374abdb 8b11118 374abdb f978017 374abdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import gradio as gr
import pandas as pd
import numpy as np
import pickle
import json
import tensorflow as tf
from tensorflow.keras.models import model_from_json
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import os
# Set environment variable to avoid oneDNN warnings
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
# Load model artifacts
def load_model_artifacts():
try:
# Load from the same directory where training code saved artifacts
with open('model_architecture.json', 'r') as json_file:
model_json = json_file.read()
model = model_from_json(model_json)
model.load_weights('final_model.h5')
with open('scaler.pkl', 'rb') as f:
scaler = pickle.load(f)
with open('metadata.json', 'r') as f:
metadata = json.load(f)
return model, scaler, metadata
except Exception as e:
raise Exception(f"Error loading model artifacts: {str(e)}")
# Initialize model components
try:
model, scaler, metadata = load_model_artifacts()
feature_names = metadata['feature_names'] # Get feature names from metadata
print(f"β
Model loaded successfully with features: {feature_names}")
except Exception as e:
print(f"β Error loading model: {e}")
model, scaler, metadata = None, None, {}
feature_names = ['Feature_1', 'Feature_2'] # Fallback if metadata not available
def predict_student_eligibility(*args):
try:
if model is None or scaler is None:
return "Model not loaded", "N/A", "N/A", create_error_plot()
# Create input dictionary with correct feature names
input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
input_df = pd.DataFrame([input_data])
# Ensure columns are in correct order
input_df = input_df[feature_names]
# Scale and reshape input
input_scaled = scaler.transform(input_df)
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
probability = float(model.predict(input_reshaped)[0][0])
prediction = "Eligible" if probability > 0.5 else "Not Eligible"
confidence = abs(probability - 0.5) * 2
fig = create_prediction_viz(probability, prediction, input_data)
return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig
except Exception as e:
return f"Error: {str(e)}", "N/A", "N/A", create_error_plot()
def create_error_plot():
fig = go.Figure()
fig.add_annotation(
text="Model not available or error occurred",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False, font=dict(size=20)
)
fig.update_layout(
xaxis={'visible': False},
yaxis={'visible': False},
height=400
)
return fig
def create_prediction_viz(probability, prediction, input_data):
try:
fig = make_subplots(
rows=2, cols=2,
subplot_titles=('Prediction Probability', 'Confidence Meter', 'Input Features', 'Probability Distribution'),
specs=[[{"type": "indicator"}, {"type": "indicator"}],
[{"type": "bar"}, {"type": "scatter"}]]
)
# Prediction probability gauge
fig.add_trace(
go.Indicator(
mode="gauge+number",
value=probability,
title={'text': "Eligibility Probability"},
gauge={
'axis': {'range': [None, 1]},
'bar': {'color': "darkblue"},
'steps': [
{'range': [0, 0.5], 'color': "lightcoral"},
{'range': [0.5, 1], 'color': "lightgreen"}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 0.5
}
}
), row=1, col=1
)
# Confidence meter
confidence = abs(probability - 0.5) * 2
fig.add_trace(
go.Indicator(
mode="gauge+number",
value=confidence,
title={'text': "Prediction Confidence"},
gauge={
'axis': {'range': [None, 1]},
'bar': {'color': "orange"},
'steps': [
{'range': [0, 0.3], 'color': "lightcoral"},
{'range': [0.3, 0.7], 'color': "lightyellow"},
{'range': [0.7, 1], 'color': "lightgreen"}
]
}
), row=1, col=2
)
# Input features bar chart
features = list(input_data.keys())
values = list(input_data.values())
fig.add_trace(
go.Bar(
x=features,
y=values,
name="Input Values",
marker_color="skyblue",
text=values,
textposition='auto'
),
row=2, col=1
)
# Probability distribution
fig.add_trace(
go.Scatter(
x=[0, 1],
y=[probability, probability],
mode='lines+markers',
name="Probability",
line=dict(color="red", width=3),
marker=dict(size=10)
),
row=2, col=2
)
fig.update_layout(
height=800,
showlegend=False,
title_text="Student Eligibility Prediction Dashboard",
title_x=0.5,
margin=dict(l=50, r=50, t=100, b=50)
)
# Update x-axis for probability plot
fig.update_xaxes(title_text="", row=2, col=2, range=[-0.1, 1.1])
fig.update_yaxes(title_text="Probability", row=2, col=2, range=[0, 1])
return fig
except Exception as e:
return create_error_plot()
def batch_predict(file):
try:
if model is None or scaler is None:
return "Model not loaded. Please check if all model files are uploaded.", None
if file is None:
return "Please upload a CSV file.", None
df = pd.read_csv(file)
# Check for required features
missing_features = set(feature_names) - set(df.columns)
if missing_features:
return f"Missing features: {', '.join(missing_features)}", None
# Ensure correct column order
df_features = df[feature_names]
df_scaled = scaler.transform(df_features)
df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1)
probabilities = model.predict(df_reshaped).flatten()
predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities]
results_df = df.copy()
results_df['Probability'] = probabilities
results_df['Prediction'] = predictions
results_df['Confidence'] = np.abs(probabilities - 0.5) * 2
output_file = "batch_predictions.csv"
results_df.to_csv(output_file, index=False)
eligible_count = predictions.count('Eligible')
not_eligible_count = predictions.count('Not Eligible')
summary = f"""Batch Prediction Summary:
βββββββββββββββββββββββββββββββββββββββββ
π Total predictions: {len(results_df)}
β
Eligible: {eligible_count} ({eligible_count / len(predictions) * 100:.1f}%)
β Not Eligible: {not_eligible_count} ({not_eligible_count / len(predictions) * 100:.1f}%)
π Average Probability: {np.mean(probabilities):.4f}
π― Average Confidence: {np.mean(np.abs(probabilities - 0.5) * 2):.4f}
βββββββββββββββββββββββββββββββββββββββββ
Results saved to: {output_file}
"""
return summary, output_file
except Exception as e:
return f"Error processing file: {str(e)}", None
# Gradio UI
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# π Student Eligibility Prediction")
gr.Markdown("This app predicts student eligibility based on academic performance metrics.")
with gr.Tabs():
with gr.Tab("π Single Prediction"):
with gr.Row():
with gr.Column():
inputs = [gr.Number(label=feature, value=75) for feature in feature_names]
predict_btn = gr.Button("Predict", variant="primary")
with gr.Column():
prediction = gr.Textbox(label="Prediction")
probability = gr.Textbox(label="Probability")
confidence = gr.Textbox(label="Confidence")
plot = gr.Plot()
predict_btn.click(
predict_student_eligibility,
inputs=inputs,
outputs=[prediction, probability, confidence, plot]
)
with gr.Tab("π Batch Prediction"):
gr.Markdown("Upload a CSV file with student data to get batch predictions.")
with gr.Row():
with gr.Column():
file_input = gr.File(
label="Upload CSV",
file_types=[".csv"],
type="filepath"
)
batch_btn = gr.Button("Process Batch", variant="primary")
with gr.Column():
batch_output = gr.Textbox(label="Results", lines=10)
download = gr.File(label="Download Predictions")
batch_btn.click(
batch_predict,
inputs=file_input,
outputs=[batch_output, download]
)
# Footer
gr.Markdown("---")
gr.Markdown("> Note: This model was trained on student eligibility data. Ensure your input features match the training data format.")
# Launch app
if __name__ == "__main__":
demo.launch() |