Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,6 @@ from plotly.subplots import make_subplots
|
|
11 |
import os
|
12 |
|
13 |
# Load model artifacts
|
14 |
-
@st.cache_resource
|
15 |
def load_model_artifacts():
|
16 |
try:
|
17 |
# Load the trained model
|
@@ -30,14 +29,24 @@ def load_model_artifacts():
|
|
30 |
raise Exception(f"Error loading model artifacts: {str(e)}")
|
31 |
|
32 |
# Initialize model components
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def predict_student_eligibility(*args):
|
37 |
"""
|
38 |
Predict student eligibility based on input features
|
39 |
"""
|
40 |
try:
|
|
|
|
|
|
|
41 |
# Create input dictionary from gradio inputs
|
42 |
input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
|
43 |
|
@@ -51,7 +60,7 @@ def predict_student_eligibility(*args):
|
|
51 |
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
|
52 |
|
53 |
# Make prediction
|
54 |
-
probability = model.predict(input_reshaped)[0][0]
|
55 |
prediction = "Eligible" if probability > 0.5 else "Not Eligible"
|
56 |
confidence = abs(probability - 0.5) * 2 # Convert to confidence score
|
57 |
|
@@ -61,105 +70,139 @@ def predict_student_eligibility(*args):
|
|
61 |
return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig
|
62 |
|
63 |
except Exception as e:
|
64 |
-
return f"Error: {str(e)}", "N/A", "N/A",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
def create_prediction_viz(probability, prediction, input_data):
|
67 |
"""
|
68 |
Create visualization for prediction results
|
69 |
"""
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
'
|
94 |
-
|
95 |
-
|
|
|
|
|
96 |
}
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
def create_model_info():
|
148 |
"""
|
149 |
Create model information display
|
150 |
"""
|
151 |
-
|
152 |
-
|
153 |
-
<
|
154 |
-
|
155 |
-
<
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
return info_html
|
164 |
|
165 |
def batch_predict(file):
|
@@ -167,6 +210,12 @@ def batch_predict(file):
|
|
167 |
Batch prediction from uploaded CSV file
|
168 |
"""
|
169 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
# Read the uploaded file
|
171 |
df = pd.read_csv(file.name)
|
172 |
|
@@ -199,13 +248,19 @@ def batch_predict(file):
|
|
199 |
results_df.to_csv(output_file, index=False)
|
200 |
|
201 |
# Create summary statistics
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
"""
|
210 |
|
211 |
return summary, output_file
|
@@ -229,6 +284,9 @@ with gr.Blocks(
|
|
229 |
border-radius: 10px;
|
230 |
margin-bottom: 20px;
|
231 |
}
|
|
|
|
|
|
|
232 |
"""
|
233 |
) as demo:
|
234 |
|
@@ -242,66 +300,120 @@ with gr.Blocks(
|
|
242 |
|
243 |
with gr.Tabs():
|
244 |
# Single Prediction Tab
|
245 |
-
with gr.TabItem("Single Prediction"):
|
246 |
gr.Markdown("### Enter student information to predict eligibility")
|
247 |
|
248 |
with gr.Row():
|
249 |
with gr.Column(scale=1):
|
|
|
250 |
# Create input components dynamically based on features
|
251 |
inputs = []
|
252 |
-
for feature in feature_names:
|
253 |
inputs.append(
|
254 |
gr.Number(
|
255 |
-
label=f"{feature}",
|
256 |
-
value=
|
257 |
minimum=0,
|
258 |
maximum=100,
|
259 |
-
step=1
|
|
|
260 |
)
|
261 |
)
|
262 |
|
263 |
-
predict_btn = gr.Button(
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
with gr.Column(scale=2):
|
|
|
266 |
with gr.Row():
|
267 |
-
prediction_output = gr.Textbox(label="Prediction", scale=1)
|
268 |
-
probability_output = gr.Textbox(label="Probability", scale=1)
|
269 |
-
confidence_output = gr.Textbox(label="Confidence", scale=1)
|
270 |
|
271 |
-
prediction_plot = gr.Plot(label="Prediction Visualization")
|
272 |
|
273 |
# Model information
|
274 |
gr.HTML(create_model_info())
|
275 |
|
276 |
# Batch Prediction Tab
|
277 |
-
with gr.TabItem("Batch Prediction"):
|
278 |
gr.Markdown("### Upload a CSV file for batch predictions")
|
279 |
-
gr.Markdown(f"**Required columns:** {', '.join(feature_names)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
|
281 |
with gr.Row():
|
282 |
with gr.Column():
|
283 |
file_input = gr.File(
|
284 |
-
label="Upload CSV File",
|
285 |
file_types=[".csv"],
|
286 |
type="file"
|
287 |
)
|
288 |
-
batch_predict_btn = gr.Button(
|
|
|
|
|
|
|
|
|
289 |
|
290 |
with gr.Column():
|
291 |
-
batch_output = gr.Textbox(
|
292 |
-
|
|
|
|
|
|
|
|
|
293 |
|
294 |
# Model Analytics Tab
|
295 |
-
with gr.TabItem("Model Analytics"):
|
296 |
gr.Markdown("### Model Performance Metrics")
|
297 |
|
298 |
-
|
299 |
-
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
-
#
|
303 |
-
|
304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
306 |
# Event handlers
|
307 |
predict_btn.click(
|
@@ -318,4 +430,8 @@ with gr.Blocks(
|
|
318 |
|
319 |
# Launch the app
|
320 |
if __name__ == "__main__":
|
321 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
11 |
import os
|
12 |
|
13 |
# Load model artifacts
|
|
|
14 |
def load_model_artifacts():
|
15 |
try:
|
16 |
# Load the trained model
|
|
|
29 |
raise Exception(f"Error loading model artifacts: {str(e)}")
|
30 |
|
31 |
# Initialize model components
|
32 |
+
try:
|
33 |
+
model, scaler, metadata = load_model_artifacts()
|
34 |
+
feature_names = metadata['feature_names']
|
35 |
+
print(f"โ
Model loaded successfully with features: {feature_names}")
|
36 |
+
except Exception as e:
|
37 |
+
print(f"โ Error loading model: {e}")
|
38 |
+
# Fallback values for testing
|
39 |
+
model, scaler, metadata = None, None, {}
|
40 |
+
feature_names = ['Feature_1', 'Feature_2', 'Feature_3', 'Feature_4']
|
41 |
|
42 |
def predict_student_eligibility(*args):
|
43 |
"""
|
44 |
Predict student eligibility based on input features
|
45 |
"""
|
46 |
try:
|
47 |
+
if model is None or scaler is None:
|
48 |
+
return "Model not loaded", "N/A", "N/A", create_error_plot()
|
49 |
+
|
50 |
# Create input dictionary from gradio inputs
|
51 |
input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
|
52 |
|
|
|
60 |
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
|
61 |
|
62 |
# Make prediction
|
63 |
+
probability = float(model.predict(input_reshaped)[0][0])
|
64 |
prediction = "Eligible" if probability > 0.5 else "Not Eligible"
|
65 |
confidence = abs(probability - 0.5) * 2 # Convert to confidence score
|
66 |
|
|
|
70 |
return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig
|
71 |
|
72 |
except Exception as e:
|
73 |
+
return f"Error: {str(e)}", "N/A", "N/A", create_error_plot()
|
74 |
+
|
75 |
+
def create_error_plot():
|
76 |
+
"""Create a simple error plot"""
|
77 |
+
fig = go.Figure()
|
78 |
+
fig.add_annotation(
|
79 |
+
text="Model not available or error occurred",
|
80 |
+
xref="paper", yref="paper",
|
81 |
+
x=0.5, y=0.5, xanchor='center', yanchor='middle',
|
82 |
+
showarrow=False, font=dict(size=20)
|
83 |
+
)
|
84 |
+
fig.update_layout(
|
85 |
+
xaxis={'visible': False},
|
86 |
+
yaxis={'visible': False},
|
87 |
+
height=400
|
88 |
+
)
|
89 |
+
return fig
|
90 |
|
91 |
def create_prediction_viz(probability, prediction, input_data):
|
92 |
"""
|
93 |
Create visualization for prediction results
|
94 |
"""
|
95 |
+
try:
|
96 |
+
# Create subplots
|
97 |
+
fig = make_subplots(
|
98 |
+
rows=2, cols=2,
|
99 |
+
subplot_titles=('Prediction Probability', 'Confidence Meter', 'Input Features', 'Probability Distribution'),
|
100 |
+
specs=[[{"type": "indicator"}, {"type": "indicator"}],
|
101 |
+
[{"type": "bar"}, {"type": "scatter"}]]
|
102 |
+
)
|
103 |
+
|
104 |
+
# Prediction probability gauge
|
105 |
+
fig.add_trace(
|
106 |
+
go.Indicator(
|
107 |
+
mode="gauge+number",
|
108 |
+
value=probability,
|
109 |
+
domain={'x': [0, 1], 'y': [0, 1]},
|
110 |
+
title={'text': "Eligibility Probability"},
|
111 |
+
gauge={
|
112 |
+
'axis': {'range': [None, 1]},
|
113 |
+
'bar': {'color': "darkblue"},
|
114 |
+
'steps': [
|
115 |
+
{'range': [0, 0.5], 'color': "lightcoral"},
|
116 |
+
{'range': [0.5, 1], 'color': "lightgreen"}
|
117 |
+
],
|
118 |
+
'threshold': {
|
119 |
+
'line': {'color': "red", 'width': 4},
|
120 |
+
'thickness': 0.75,
|
121 |
+
'value': 0.5
|
122 |
+
}
|
123 |
}
|
124 |
+
),
|
125 |
+
row=1, col=1
|
126 |
+
)
|
127 |
+
|
128 |
+
# Confidence meter
|
129 |
+
confidence = abs(probability - 0.5) * 2
|
130 |
+
fig.add_trace(
|
131 |
+
go.Indicator(
|
132 |
+
mode="gauge+number",
|
133 |
+
value=confidence,
|
134 |
+
domain={'x': [0, 1], 'y': [0, 1]},
|
135 |
+
title={'text': "Prediction Confidence"},
|
136 |
+
gauge={
|
137 |
+
'axis': {'range': [None, 1]},
|
138 |
+
'bar': {'color': "orange"},
|
139 |
+
'steps': [
|
140 |
+
{'range': [0, 0.3], 'color': "lightcoral"},
|
141 |
+
{'range': [0.3, 0.7], 'color': "lightyellow"},
|
142 |
+
{'range': [0.7, 1], 'color': "lightgreen"}
|
143 |
+
]
|
144 |
+
}
|
145 |
+
),
|
146 |
+
row=1, col=2
|
147 |
+
)
|
148 |
+
|
149 |
+
# Input features bar chart
|
150 |
+
features = list(input_data.keys())
|
151 |
+
values = list(input_data.values())
|
152 |
+
|
153 |
+
fig.add_trace(
|
154 |
+
go.Bar(x=features, y=values, name="Input Values", marker_color="skyblue"),
|
155 |
+
row=2, col=1
|
156 |
+
)
|
157 |
+
|
158 |
+
# Simple probability visualization
|
159 |
+
fig.add_trace(
|
160 |
+
go.Scatter(
|
161 |
+
x=[0, 1],
|
162 |
+
y=[probability, probability],
|
163 |
+
mode='lines+markers',
|
164 |
+
name="Probability",
|
165 |
+
line=dict(color="red", width=3),
|
166 |
+
marker=dict(size=10)
|
167 |
+
),
|
168 |
+
row=2, col=2
|
169 |
+
)
|
170 |
+
|
171 |
+
fig.update_layout(
|
172 |
+
height=800,
|
173 |
+
showlegend=False,
|
174 |
+
title_text="Student Eligibility Prediction Dashboard",
|
175 |
+
title_x=0.5
|
176 |
+
)
|
177 |
+
|
178 |
+
return fig
|
179 |
+
except Exception as e:
|
180 |
+
return create_error_plot()
|
181 |
|
182 |
def create_model_info():
|
183 |
"""
|
184 |
Create model information display
|
185 |
"""
|
186 |
+
if metadata:
|
187 |
+
info_html = f"""
|
188 |
+
<div style="padding: 20px; background-color: #f0f2f6; border-radius: 10px; margin: 10px 0;">
|
189 |
+
<h3>๐ค Model Information</h3>
|
190 |
+
<ul>
|
191 |
+
<li><strong>Model Type:</strong> {metadata.get('model_type', 'CNN')}</li>
|
192 |
+
<li><strong>Test Accuracy:</strong> {metadata.get('performance_metrics', {}).get('test_accuracy', 'N/A')}</li>
|
193 |
+
<li><strong>AUC Score:</strong> {metadata.get('performance_metrics', {}).get('auc_score', 'N/A')}</li>
|
194 |
+
<li><strong>Creation Date:</strong> {metadata.get('creation_date', 'N/A')}</li>
|
195 |
+
<li><strong>Features:</strong> {len(feature_names)} input features</li>
|
196 |
+
</ul>
|
197 |
+
</div>
|
198 |
+
"""
|
199 |
+
else:
|
200 |
+
info_html = """
|
201 |
+
<div style="padding: 20px; background-color: #ffebee; border-radius: 10px; margin: 10px 0;">
|
202 |
+
<h3>โ ๏ธ Model Information</h3>
|
203 |
+
<p>Model artifacts not loaded. Please ensure all required files are uploaded.</p>
|
204 |
+
</div>
|
205 |
+
"""
|
206 |
return info_html
|
207 |
|
208 |
def batch_predict(file):
|
|
|
210 |
Batch prediction from uploaded CSV file
|
211 |
"""
|
212 |
try:
|
213 |
+
if model is None or scaler is None:
|
214 |
+
return "Model not loaded. Please check if all model files are uploaded.", None
|
215 |
+
|
216 |
+
if file is None:
|
217 |
+
return "Please upload a CSV file.", None
|
218 |
+
|
219 |
# Read the uploaded file
|
220 |
df = pd.read_csv(file.name)
|
221 |
|
|
|
248 |
results_df.to_csv(output_file, index=False)
|
249 |
|
250 |
# Create summary statistics
|
251 |
+
eligible_count = sum(1 for p in predictions if p == 'Eligible')
|
252 |
+
not_eligible_count = len(predictions) - eligible_count
|
253 |
+
|
254 |
+
summary = f"""Batch Prediction Summary:
|
255 |
+
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
256 |
+
๐ Total predictions: {len(results_df)}
|
257 |
+
โ
Eligible: {eligible_count} ({eligible_count/len(predictions)*100:.1f}%)
|
258 |
+
โ Not Eligible: {not_eligible_count} ({not_eligible_count/len(predictions)*100:.1f}%)
|
259 |
+
๐ Average Probability: {np.mean(probabilities):.4f}
|
260 |
+
๐ฏ Average Confidence: {np.mean(np.abs(probabilities - 0.5) * 2):.4f}
|
261 |
+
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
262 |
+
|
263 |
+
Results saved to: {output_file}
|
264 |
"""
|
265 |
|
266 |
return summary, output_file
|
|
|
284 |
border-radius: 10px;
|
285 |
margin-bottom: 20px;
|
286 |
}
|
287 |
+
.feature-input {
|
288 |
+
margin: 5px 0;
|
289 |
+
}
|
290 |
"""
|
291 |
) as demo:
|
292 |
|
|
|
300 |
|
301 |
with gr.Tabs():
|
302 |
# Single Prediction Tab
|
303 |
+
with gr.TabItem("๐ฎ Single Prediction"):
|
304 |
gr.Markdown("### Enter student information to predict eligibility")
|
305 |
|
306 |
with gr.Row():
|
307 |
with gr.Column(scale=1):
|
308 |
+
gr.Markdown("#### Input Features")
|
309 |
# Create input components dynamically based on features
|
310 |
inputs = []
|
311 |
+
for i, feature in enumerate(feature_names):
|
312 |
inputs.append(
|
313 |
gr.Number(
|
314 |
+
label=f"๐ {feature}",
|
315 |
+
value=75 + i*5, # Different default values
|
316 |
minimum=0,
|
317 |
maximum=100,
|
318 |
+
step=0.1,
|
319 |
+
elem_classes=["feature-input"]
|
320 |
)
|
321 |
)
|
322 |
|
323 |
+
predict_btn = gr.Button(
|
324 |
+
"๐ฎ Predict Eligibility",
|
325 |
+
variant="primary",
|
326 |
+
size="lg",
|
327 |
+
elem_id="predict-btn"
|
328 |
+
)
|
329 |
|
330 |
with gr.Column(scale=2):
|
331 |
+
gr.Markdown("#### Prediction Results")
|
332 |
with gr.Row():
|
333 |
+
prediction_output = gr.Textbox(label="๐ฏ Prediction", scale=1)
|
334 |
+
probability_output = gr.Textbox(label="๐ Probability", scale=1)
|
335 |
+
confidence_output = gr.Textbox(label="๐ฏ Confidence", scale=1)
|
336 |
|
337 |
+
prediction_plot = gr.Plot(label="๐ Prediction Visualization")
|
338 |
|
339 |
# Model information
|
340 |
gr.HTML(create_model_info())
|
341 |
|
342 |
# Batch Prediction Tab
|
343 |
+
with gr.TabItem("๐ Batch Prediction"):
|
344 |
gr.Markdown("### Upload a CSV file for batch predictions")
|
345 |
+
gr.Markdown(f"**Required columns:** `{', '.join(feature_names)}`")
|
346 |
+
|
347 |
+
# Sample CSV format
|
348 |
+
gr.Markdown("""
|
349 |
+
**Example CSV format:**
|
350 |
+
```csv
|
351 |
+
Feature_1,Feature_2,Feature_3,Feature_4
|
352 |
+
85,90,75,88
|
353 |
+
92,78,85,91
|
354 |
+
```
|
355 |
+
""")
|
356 |
|
357 |
with gr.Row():
|
358 |
with gr.Column():
|
359 |
file_input = gr.File(
|
360 |
+
label="๐ Upload CSV File",
|
361 |
file_types=[".csv"],
|
362 |
type="file"
|
363 |
)
|
364 |
+
batch_predict_btn = gr.Button(
|
365 |
+
"๐ Process Batch",
|
366 |
+
variant="primary",
|
367 |
+
size="lg"
|
368 |
+
)
|
369 |
|
370 |
with gr.Column():
|
371 |
+
batch_output = gr.Textbox(
|
372 |
+
label="๐ Batch Results Summary",
|
373 |
+
lines=15,
|
374 |
+
max_lines=20
|
375 |
+
)
|
376 |
+
download_file = gr.File(label="โฌ๏ธ Download Results")
|
377 |
|
378 |
# Model Analytics Tab
|
379 |
+
with gr.TabItem("๐ Model Analytics"):
|
380 |
gr.Markdown("### Model Performance Metrics")
|
381 |
|
382 |
+
if metadata and 'performance_metrics' in metadata:
|
383 |
+
# Performance metrics
|
384 |
+
metrics_data = metadata['performance_metrics']
|
385 |
+
metrics_df = pd.DataFrame([{
|
386 |
+
'Metric': k.replace('_', ' ').title(),
|
387 |
+
'Value': f"{v:.4f}" if isinstance(v, float) else str(v)
|
388 |
+
} for k, v in metrics_data.items()])
|
389 |
+
|
390 |
+
gr.Dataframe(
|
391 |
+
metrics_df,
|
392 |
+
label="๐ฏ Performance Metrics",
|
393 |
+
headers=['Metric', 'Value']
|
394 |
+
)
|
395 |
+
else:
|
396 |
+
gr.Markdown("โ ๏ธ **Performance metrics not available**")
|
397 |
+
|
398 |
+
# Feature information
|
399 |
+
gr.Markdown("### ๐ Model Features")
|
400 |
+
feature_info = pd.DataFrame({
|
401 |
+
'Feature Name': feature_names,
|
402 |
+
'Index': range(len(feature_names)),
|
403 |
+
'Type': ['Numerical'] * len(feature_names)
|
404 |
+
})
|
405 |
+
gr.Dataframe(feature_info, label="Feature Information")
|
406 |
|
407 |
+
# Model architecture info
|
408 |
+
if metadata:
|
409 |
+
gr.Markdown("### ๐๏ธ Model Architecture")
|
410 |
+
arch_info = f"""
|
411 |
+
- **Model Type**: {metadata.get('model_type', 'CNN')}
|
412 |
+
- **Input Shape**: {metadata.get('input_shape', 'N/A')}
|
413 |
+
- **Total Features**: {len(feature_names)}
|
414 |
+
- **Output Classes**: {len(metadata.get('target_classes', {}))}
|
415 |
+
"""
|
416 |
+
gr.Markdown(arch_info)
|
417 |
|
418 |
# Event handlers
|
419 |
predict_btn.click(
|
|
|
430 |
|
431 |
# Launch the app
|
432 |
if __name__ == "__main__":
|
433 |
+
demo.launch(
|
434 |
+
share=False,
|
435 |
+
server_name="0.0.0.0",
|
436 |
+
server_port=7860
|
437 |
+
)
|