Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -15,6 +15,7 @@ os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
|
15 |
# Load model artifacts
|
16 |
def load_model_artifacts():
|
17 |
try:
|
|
|
18 |
with open('model_architecture.json', 'r') as json_file:
|
19 |
model_json = json_file.read()
|
20 |
model = model_from_json(model_json)
|
@@ -33,21 +34,26 @@ def load_model_artifacts():
|
|
33 |
# Initialize model components
|
34 |
try:
|
35 |
model, scaler, metadata = load_model_artifacts()
|
36 |
-
#
|
37 |
-
feature_names = ['Feature_1', 'Feature_2']
|
38 |
print(f"β
Model loaded successfully with features: {feature_names}")
|
39 |
except Exception as e:
|
40 |
print(f"β Error loading model: {e}")
|
41 |
model, scaler, metadata = None, None, {}
|
42 |
-
feature_names = ['Feature_1', 'Feature_2']
|
43 |
|
44 |
def predict_student_eligibility(*args):
|
45 |
try:
|
46 |
if model is None or scaler is None:
|
47 |
return "Model not loaded", "N/A", "N/A", create_error_plot()
|
48 |
|
|
|
49 |
input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
|
50 |
input_df = pd.DataFrame([input_data])
|
|
|
|
|
|
|
|
|
|
|
51 |
input_scaled = scaler.transform(input_df)
|
52 |
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
|
53 |
|
@@ -85,6 +91,7 @@ def create_prediction_viz(probability, prediction, input_data):
|
|
85 |
[{"type": "bar"}, {"type": "scatter"}]]
|
86 |
)
|
87 |
|
|
|
88 |
fig.add_trace(
|
89 |
go.Indicator(
|
90 |
mode="gauge+number",
|
@@ -106,6 +113,7 @@ def create_prediction_viz(probability, prediction, input_data):
|
|
106 |
), row=1, col=1
|
107 |
)
|
108 |
|
|
|
109 |
confidence = abs(probability - 0.5) * 2
|
110 |
fig.add_trace(
|
111 |
go.Indicator(
|
@@ -124,27 +132,46 @@ def create_prediction_viz(probability, prediction, input_data):
|
|
124 |
), row=1, col=2
|
125 |
)
|
126 |
|
|
|
127 |
features = list(input_data.keys())
|
128 |
values = list(input_data.values())
|
129 |
-
fig.add_trace(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
|
|
131 |
fig.add_trace(
|
132 |
go.Scatter(
|
133 |
-
x=[0, 1],
|
|
|
134 |
mode='lines+markers',
|
135 |
name="Probability",
|
136 |
line=dict(color="red", width=3),
|
137 |
marker=dict(size=10)
|
138 |
-
),
|
|
|
139 |
)
|
140 |
|
141 |
fig.update_layout(
|
142 |
height=800,
|
143 |
showlegend=False,
|
144 |
title_text="Student Eligibility Prediction Dashboard",
|
145 |
-
title_x=0.5
|
|
|
146 |
)
|
147 |
|
|
|
|
|
|
|
|
|
148 |
return fig
|
149 |
except Exception as e:
|
150 |
return create_error_plot()
|
@@ -158,10 +185,13 @@ def batch_predict(file):
|
|
158 |
return "Please upload a CSV file.", None
|
159 |
|
160 |
df = pd.read_csv(file)
|
|
|
|
|
161 |
missing_features = set(feature_names) - set(df.columns)
|
162 |
if missing_features:
|
163 |
-
return f"Missing features: {missing_features}", None
|
164 |
|
|
|
165 |
df_features = df[feature_names]
|
166 |
df_scaled = scaler.transform(df_features)
|
167 |
df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1)
|
@@ -169,7 +199,7 @@ def batch_predict(file):
|
|
169 |
probabilities = model.predict(df_reshaped).flatten()
|
170 |
predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities]
|
171 |
|
172 |
-
results_df =
|
173 |
results_df['Probability'] = probabilities
|
174 |
results_df['Prediction'] = predictions
|
175 |
results_df['Confidence'] = np.abs(probabilities - 0.5) * 2
|
@@ -197,27 +227,52 @@ Results saved to: {output_file}
|
|
197 |
return f"Error processing file: {str(e)}", None
|
198 |
|
199 |
# Gradio UI
|
200 |
-
|
201 |
-
|
202 |
-
with demo:
|
203 |
gr.Markdown("# π Student Eligibility Prediction")
|
|
|
|
|
204 |
with gr.Tabs():
|
205 |
-
with gr.Tab("Single Prediction"):
|
206 |
-
inputs = [gr.Number(label=feature, value=75) for feature in feature_names]
|
207 |
-
predict_btn = gr.Button("Predict")
|
208 |
with gr.Row():
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
212 |
plot = gr.Plot()
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
# Launch app
|
223 |
-
|
|
|
|
15 |
# Load model artifacts
|
16 |
def load_model_artifacts():
|
17 |
try:
|
18 |
+
# Load from the same directory where training code saved artifacts
|
19 |
with open('model_architecture.json', 'r') as json_file:
|
20 |
model_json = json_file.read()
|
21 |
model = model_from_json(model_json)
|
|
|
34 |
# Initialize model components
|
35 |
try:
|
36 |
model, scaler, metadata = load_model_artifacts()
|
37 |
+
feature_names = metadata['feature_names'] # Get feature names from metadata
|
|
|
38 |
print(f"β
Model loaded successfully with features: {feature_names}")
|
39 |
except Exception as e:
|
40 |
print(f"β Error loading model: {e}")
|
41 |
model, scaler, metadata = None, None, {}
|
42 |
+
feature_names = ['Feature_1', 'Feature_2'] # Fallback if metadata not available
|
43 |
|
44 |
def predict_student_eligibility(*args):
|
45 |
try:
|
46 |
if model is None or scaler is None:
|
47 |
return "Model not loaded", "N/A", "N/A", create_error_plot()
|
48 |
|
49 |
+
# Create input dictionary with correct feature names
|
50 |
input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
|
51 |
input_df = pd.DataFrame([input_data])
|
52 |
+
|
53 |
+
# Ensure columns are in correct order
|
54 |
+
input_df = input_df[feature_names]
|
55 |
+
|
56 |
+
# Scale and reshape input
|
57 |
input_scaled = scaler.transform(input_df)
|
58 |
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
|
59 |
|
|
|
91 |
[{"type": "bar"}, {"type": "scatter"}]]
|
92 |
)
|
93 |
|
94 |
+
# Prediction probability gauge
|
95 |
fig.add_trace(
|
96 |
go.Indicator(
|
97 |
mode="gauge+number",
|
|
|
113 |
), row=1, col=1
|
114 |
)
|
115 |
|
116 |
+
# Confidence meter
|
117 |
confidence = abs(probability - 0.5) * 2
|
118 |
fig.add_trace(
|
119 |
go.Indicator(
|
|
|
132 |
), row=1, col=2
|
133 |
)
|
134 |
|
135 |
+
# Input features bar chart
|
136 |
features = list(input_data.keys())
|
137 |
values = list(input_data.values())
|
138 |
+
fig.add_trace(
|
139 |
+
go.Bar(
|
140 |
+
x=features,
|
141 |
+
y=values,
|
142 |
+
name="Input Values",
|
143 |
+
marker_color="skyblue",
|
144 |
+
text=values,
|
145 |
+
textposition='auto'
|
146 |
+
),
|
147 |
+
row=2, col=1
|
148 |
+
)
|
149 |
|
150 |
+
# Probability distribution
|
151 |
fig.add_trace(
|
152 |
go.Scatter(
|
153 |
+
x=[0, 1],
|
154 |
+
y=[probability, probability],
|
155 |
mode='lines+markers',
|
156 |
name="Probability",
|
157 |
line=dict(color="red", width=3),
|
158 |
marker=dict(size=10)
|
159 |
+
),
|
160 |
+
row=2, col=2
|
161 |
)
|
162 |
|
163 |
fig.update_layout(
|
164 |
height=800,
|
165 |
showlegend=False,
|
166 |
title_text="Student Eligibility Prediction Dashboard",
|
167 |
+
title_x=0.5,
|
168 |
+
margin=dict(l=50, r=50, t=100, b=50)
|
169 |
)
|
170 |
|
171 |
+
# Update x-axis for probability plot
|
172 |
+
fig.update_xaxes(title_text="", row=2, col=2, range=[-0.1, 1.1])
|
173 |
+
fig.update_yaxes(title_text="Probability", row=2, col=2, range=[0, 1])
|
174 |
+
|
175 |
return fig
|
176 |
except Exception as e:
|
177 |
return create_error_plot()
|
|
|
185 |
return "Please upload a CSV file.", None
|
186 |
|
187 |
df = pd.read_csv(file)
|
188 |
+
|
189 |
+
# Check for required features
|
190 |
missing_features = set(feature_names) - set(df.columns)
|
191 |
if missing_features:
|
192 |
+
return f"Missing features: {', '.join(missing_features)}", None
|
193 |
|
194 |
+
# Ensure correct column order
|
195 |
df_features = df[feature_names]
|
196 |
df_scaled = scaler.transform(df_features)
|
197 |
df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1)
|
|
|
199 |
probabilities = model.predict(df_reshaped).flatten()
|
200 |
predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities]
|
201 |
|
202 |
+
results_df = df.copy()
|
203 |
results_df['Probability'] = probabilities
|
204 |
results_df['Prediction'] = predictions
|
205 |
results_df['Confidence'] = np.abs(probabilities - 0.5) * 2
|
|
|
227 |
return f"Error processing file: {str(e)}", None
|
228 |
|
229 |
# Gradio UI
|
230 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
|
|
|
231 |
gr.Markdown("# π Student Eligibility Prediction")
|
232 |
+
gr.Markdown("This app predicts student eligibility based on academic performance metrics.")
|
233 |
+
|
234 |
with gr.Tabs():
|
235 |
+
with gr.Tab("π Single Prediction"):
|
|
|
|
|
236 |
with gr.Row():
|
237 |
+
with gr.Column():
|
238 |
+
inputs = [gr.Number(label=feature, value=75) for feature in feature_names]
|
239 |
+
predict_btn = gr.Button("Predict", variant="primary")
|
240 |
+
with gr.Column():
|
241 |
+
prediction = gr.Textbox(label="Prediction")
|
242 |
+
probability = gr.Textbox(label="Probability")
|
243 |
+
confidence = gr.Textbox(label="Confidence")
|
244 |
plot = gr.Plot()
|
245 |
+
|
246 |
+
predict_btn.click(
|
247 |
+
predict_student_eligibility,
|
248 |
+
inputs=inputs,
|
249 |
+
outputs=[prediction, probability, confidence, plot]
|
250 |
+
)
|
251 |
+
|
252 |
+
with gr.Tab("π Batch Prediction"):
|
253 |
+
gr.Markdown("Upload a CSV file with student data to get batch predictions.")
|
254 |
+
with gr.Row():
|
255 |
+
with gr.Column():
|
256 |
+
file_input = gr.File(
|
257 |
+
label="Upload CSV",
|
258 |
+
file_types=[".csv"],
|
259 |
+
type="filepath"
|
260 |
+
)
|
261 |
+
batch_btn = gr.Button("Process Batch", variant="primary")
|
262 |
+
with gr.Column():
|
263 |
+
batch_output = gr.Textbox(label="Results", lines=10)
|
264 |
+
download = gr.File(label="Download Predictions")
|
265 |
+
|
266 |
+
batch_btn.click(
|
267 |
+
batch_predict,
|
268 |
+
inputs=file_input,
|
269 |
+
outputs=[batch_output, download]
|
270 |
+
)
|
271 |
+
|
272 |
+
# Footer
|
273 |
+
gr.Markdown("---")
|
274 |
+
gr.Markdown("> Note: This model was trained on student eligibility data. Ensure your input features match the training data format.")
|
275 |
|
276 |
# Launch app
|
277 |
+
if __name__ == "__main__":
|
278 |
+
demo.launch()
|