jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
from __future__ import annotations
import asyncio
import functools
import glob
import json
import logging
import numbers
import os
import pathlib
import re
import sys
import threading
import time
import traceback
from collections.abc import Mapping
from dataclasses import dataclass, field
from datetime import datetime, timedelta, timezone
from enum import IntEnum
from types import TracebackType
from typing import TYPE_CHECKING, Callable, Sequence, TextIO, TypeVar
import requests
from typing_extensions import Any, Concatenate, Literal, NamedTuple, ParamSpec
import wandb
import wandb.env
import wandb.util
from wandb import trigger
from wandb.apis import internal, public
from wandb.apis.public import Api as PublicApi
from wandb.errors import CommError, UsageError
from wandb.errors.links import url_registry
from wandb.integration.torch import wandb_torch
from wandb.plot import CustomChart, Visualize
from wandb.proto.wandb_deprecated import Deprecated
from wandb.proto.wandb_internal_pb2 import (
MetadataRequest,
MetricRecord,
PollExitResponse,
Result,
RunRecord,
)
from wandb.sdk.artifacts._internal_artifact import InternalArtifact
from wandb.sdk.artifacts.artifact import Artifact
from wandb.sdk.internal import job_builder
from wandb.sdk.lib import asyncio_compat, wb_logging
from wandb.sdk.lib.import_hooks import (
register_post_import_hook,
unregister_post_import_hook,
)
from wandb.sdk.lib.paths import FilePathStr, StrPath
from wandb.util import (
_is_artifact_object,
_is_artifact_string,
_is_artifact_version_weave_dict,
_is_py_requirements_or_dockerfile,
_resolve_aliases,
add_import_hook,
parse_artifact_string,
)
from . import wandb_config, wandb_metric, wandb_summary
from .artifacts._validators import (
MAX_ARTIFACT_METADATA_KEYS,
is_artifact_registry_project,
validate_aliases,
validate_tags,
)
from .data_types._dtypes import TypeRegistry
from .interface.interface import FilesDict, GlobStr, InterfaceBase, PolicyName
from .interface.summary_record import SummaryRecord
from .lib import (
config_util,
deprecate,
filenames,
filesystem,
interrupt,
ipython,
module,
printer,
progress,
proto_util,
redirect,
telemetry,
)
from .lib.exit_hooks import ExitHooks
from .mailbox import (
HandleAbandonedError,
MailboxClosedError,
MailboxHandle,
wait_with_progress,
)
from .wandb_alerts import AlertLevel
from .wandb_metadata import Metadata
from .wandb_settings import Settings
from .wandb_setup import _WandbSetup
if TYPE_CHECKING:
from typing import TypedDict
import torch # type: ignore [import-not-found]
import wandb.apis.public
import wandb.sdk.backend.backend
import wandb.sdk.interface.interface_queue
from wandb.proto.wandb_internal_pb2 import (
GetSummaryResponse,
InternalMessagesResponse,
SampledHistoryResponse,
)
class GitSourceDict(TypedDict):
remote: str
commit: str
entrypoint: list[str]
args: Sequence[str]
class ArtifactSourceDict(TypedDict):
artifact: str
entrypoint: list[str]
args: Sequence[str]
class ImageSourceDict(TypedDict):
image: str
args: Sequence[str]
class JobSourceDict(TypedDict, total=False):
_version: str
source_type: str
source: GitSourceDict | ArtifactSourceDict | ImageSourceDict
input_types: dict[str, Any]
output_types: dict[str, Any]
runtime: str | None
logger = logging.getLogger("wandb")
EXIT_TIMEOUT = 60
RE_LABEL = re.compile(r"[a-zA-Z0-9_-]+$")
class TeardownStage(IntEnum):
EARLY = 1
LATE = 2
class TeardownHook(NamedTuple):
call: Callable[[], None]
stage: TeardownStage
class RunStatusChecker:
"""Periodically polls the background process for relevant updates.
- check if the user has requested a stop.
- check the network status.
- check the run sync status.
"""
_stop_status_lock: threading.Lock
_stop_status_handle: MailboxHandle[Result] | None
_network_status_lock: threading.Lock
_network_status_handle: MailboxHandle[Result] | None
_internal_messages_lock: threading.Lock
_internal_messages_handle: MailboxHandle[Result] | None
def __init__(
self,
run_id: str,
interface: InterfaceBase,
stop_polling_interval: int = 15,
retry_polling_interval: int = 5,
internal_messages_polling_interval: int = 10,
) -> None:
self._run_id = run_id
self._interface = interface
self._stop_polling_interval = stop_polling_interval
self._retry_polling_interval = retry_polling_interval
self._internal_messages_polling_interval = internal_messages_polling_interval
self._join_event = threading.Event()
self._stop_status_lock = threading.Lock()
self._stop_status_handle = None
self._stop_thread = threading.Thread(
target=self.check_stop_status,
name="ChkStopThr",
daemon=True,
)
self._network_status_lock = threading.Lock()
self._network_status_handle = None
self._network_status_thread = threading.Thread(
target=self.check_network_status,
name="NetStatThr",
daemon=True,
)
self._internal_messages_lock = threading.Lock()
self._internal_messages_handle = None
self._internal_messages_thread = threading.Thread(
target=self.check_internal_messages,
name="IntMsgThr",
daemon=True,
)
def start(self) -> None:
self._stop_thread.start()
self._network_status_thread.start()
self._internal_messages_thread.start()
@staticmethod
def _abandon_status_check(
lock: threading.Lock,
handle: MailboxHandle[Result] | None,
):
with lock:
if handle:
handle.abandon()
def _loop_check_status(
self,
*,
lock: threading.Lock,
set_handle: Any,
timeout: int,
request: Any,
process: Any,
) -> None:
local_handle: MailboxHandle[Result] | None = None
join_requested = False
while not join_requested:
time_probe = time.monotonic()
if not local_handle:
try:
local_handle = request()
except MailboxClosedError:
# This can happen if the service process dies.
break
assert local_handle
with lock:
if self._join_event.is_set():
break
set_handle(local_handle)
try:
result = local_handle.wait_or(timeout=timeout)
except HandleAbandonedError:
# This can happen if the service process dies.
break
except TimeoutError:
result = None
with lock:
set_handle(None)
if result:
process(result)
local_handle = None
time_elapsed = time.monotonic() - time_probe
wait_time = max(timeout - time_elapsed, 0)
join_requested = self._join_event.wait(timeout=wait_time)
def check_network_status(self) -> None:
def _process_network_status(result: Result) -> None:
network_status = result.response.network_status_response
for hr in network_status.network_responses:
if (
hr.http_status_code == 200 or hr.http_status_code == 0
): # we use 0 for non-http errors (eg wandb errors)
wandb.termlog(f"{hr.http_response_text}")
else:
wandb.termlog(
f"{hr.http_status_code} encountered ({hr.http_response_text.rstrip()}), retrying request"
)
with wb_logging.log_to_run(self._run_id):
try:
self._loop_check_status(
lock=self._network_status_lock,
set_handle=lambda x: setattr(self, "_network_status_handle", x),
timeout=self._retry_polling_interval,
request=self._interface.deliver_network_status,
process=_process_network_status,
)
except BrokenPipeError:
self._abandon_status_check(
self._network_status_lock,
self._network_status_handle,
)
def check_stop_status(self) -> None:
def _process_stop_status(result: Result) -> None:
stop_status = result.response.stop_status_response
if stop_status.run_should_stop:
# TODO(frz): This check is required
# until WB-3606 is resolved on server side.
if not wandb.agents.pyagent.is_running(): # type: ignore
interrupt.interrupt_main()
return
with wb_logging.log_to_run(self._run_id):
try:
self._loop_check_status(
lock=self._stop_status_lock,
set_handle=lambda x: setattr(self, "_stop_status_handle", x),
timeout=self._stop_polling_interval,
request=self._interface.deliver_stop_status,
process=_process_stop_status,
)
except BrokenPipeError:
self._abandon_status_check(
self._stop_status_lock,
self._stop_status_handle,
)
def check_internal_messages(self) -> None:
def _process_internal_messages(result: Result) -> None:
internal_messages = result.response.internal_messages_response
for msg in internal_messages.messages.warning:
wandb.termwarn(msg)
with wb_logging.log_to_run(self._run_id):
try:
self._loop_check_status(
lock=self._internal_messages_lock,
set_handle=lambda x: setattr(self, "_internal_messages_handle", x),
timeout=self._internal_messages_polling_interval,
request=self._interface.deliver_internal_messages,
process=_process_internal_messages,
)
except BrokenPipeError:
self._abandon_status_check(
self._internal_messages_lock,
self._internal_messages_handle,
)
def stop(self) -> None:
self._join_event.set()
self._abandon_status_check(
self._stop_status_lock,
self._stop_status_handle,
)
self._abandon_status_check(
self._network_status_lock,
self._network_status_handle,
)
self._abandon_status_check(
self._internal_messages_lock,
self._internal_messages_handle,
)
def join(self) -> None:
self.stop()
self._stop_thread.join()
self._network_status_thread.join()
self._internal_messages_thread.join()
_P = ParamSpec("_P")
_T = TypeVar("_T")
def _log_to_run(
func: Callable[Concatenate[Run, _P], _T],
) -> Callable[Concatenate[Run, _P], _T]:
"""Decorate a Run method to set the run ID in the logging context.
Any logs during the execution of the method go to the run's log file
and not to other runs' log files.
This is meant for use on all public methods and some callbacks. Private
methods can be assumed to be called from some public method somewhere.
The general rule is to use it on methods that can be called from a
context that isn't specific to this run (such as all user code or
internal methods that aren't run-specific).
"""
@functools.wraps(func)
def wrapper(self: Run, *args, **kwargs) -> _T:
# In "attach" usage, many properties of the Run are not initially
# populated.
if hasattr(self, "_settings"):
run_id = self._settings.run_id
else:
run_id = self._attach_id
with wb_logging.log_to_run(run_id):
return func(self, *args, **kwargs)
return wrapper
_is_attaching: str = ""
def _attach(
func: Callable[Concatenate[Run, _P], _T],
) -> Callable[Concatenate[Run, _P], _T]:
"""Decorate a Run method to auto-attach when in a new process.
When in a forked process or using a pickled Run instance, this automatically
connects to the service process to "attach" to the existing run.
"""
@functools.wraps(func)
def wrapper(self: Run, *args, **kwargs) -> _T:
global _is_attaching
# The _attach_id attribute is only None when running in the "disable
# service" mode.
#
# Since it is set early in `__init__` and included in the run's pickled
# state, the attribute always exists.
is_using_service = self._attach_id is not None
# The _attach_pid attribute is not pickled, so it might not exist.
# It is set when the run is initialized.
attach_pid = getattr(self, "_attach_pid", None)
if is_using_service and attach_pid != os.getpid():
if _is_attaching:
raise RuntimeError(
f"Trying to attach `{func.__name__}`"
f" while in the middle of attaching `{_is_attaching}`"
)
_is_attaching = func.__name__
try:
wandb._attach(run=self) # type: ignore
finally:
_is_attaching = ""
return func(self, *args, **kwargs)
return wrapper
def _raise_if_finished(
func: Callable[Concatenate[Run, _P], _T],
) -> Callable[Concatenate[Run, _P], _T]:
"""Decorate a Run method to raise an error after the run is finished."""
@functools.wraps(func)
def wrapper_fn(self: Run, *args, **kwargs) -> _T:
if not getattr(self, "_is_finished", False):
return func(self, *args, **kwargs)
message = (
f"Run ({self.id}) is finished. The call to"
f" `{func.__name__}` will be ignored."
f" Please make sure that you are using an active run."
)
raise UsageError(message)
return wrapper_fn
@dataclass
class RunStatus:
sync_items_total: int = field(default=0)
sync_items_pending: int = field(default=0)
sync_time: datetime | None = field(default=None)
class Run:
"""A unit of computation logged by wandb. Typically, this is an ML experiment.
Create a run with `wandb.init()`:
```python
import wandb
run = wandb.init()
```
There is only ever at most one active `wandb.Run` in any process,
and it is accessible as `wandb.run`:
```python
import wandb
assert wandb.run is None
wandb.init()
assert wandb.run is not None
```
anything you log with `wandb.log` will be sent to that run.
If you want to start more runs in the same script or notebook, you'll need to
finish the run that is in-flight. Runs can be finished with `wandb.finish` or
by using them in a `with` block:
```python
import wandb
wandb.init()
wandb.finish()
assert wandb.run is None
with wandb.init() as run:
pass # log data here
assert wandb.run is None
```
See the documentation for `wandb.init` for more on creating runs, or check out
[our guide to `wandb.init`](https://docs.wandb.ai/guides/track/launch).
In distributed training, you can either create a single run in the rank 0 process
and then log information only from that process, or you can create a run in each process,
logging from each separately, and group the results together with the `group` argument
to `wandb.init`. For more details on distributed training with W&B, check out
[our guide](https://docs.wandb.ai/guides/track/log/distributed-training).
Currently, there is a parallel `Run` object in the `wandb.Api`. Eventually these
two objects will be merged.
Attributes:
summary: (Summary) Single values set for each `wandb.log()` key. By
default, summary is set to the last value logged. You can manually
set summary to the best value, like max accuracy, instead of the
final value.
"""
_telemetry_obj: telemetry.TelemetryRecord
_telemetry_obj_active: bool
_telemetry_obj_dirty: bool
_telemetry_obj_flushed: bytes
_teardown_hooks: list[TeardownHook]
_backend: wandb.sdk.backend.backend.Backend | None
_internal_run_interface: wandb.sdk.interface.interface_queue.InterfaceQueue | None
_wl: _WandbSetup | None
_out_redir: redirect.RedirectBase | None
_err_redir: redirect.RedirectBase | None
_redirect_cb: Callable[[str, str], None] | None
_redirect_raw_cb: Callable[[str, str], None] | None
_output_writer: filesystem.CRDedupedFile | None
_atexit_cleanup_called: bool
_hooks: ExitHooks | None
_exit_code: int | None
_run_status_checker: RunStatusChecker | None
_sampled_history: SampledHistoryResponse | None
_final_summary: GetSummaryResponse | None
_poll_exit_handle: MailboxHandle[Result] | None
_poll_exit_response: PollExitResponse | None
_internal_messages_response: InternalMessagesResponse | None
_stdout_slave_fd: int | None
_stderr_slave_fd: int | None
_artifact_slots: list[str]
_init_pid: int
_attach_pid: int
_attach_id: str | None
_is_attached: bool
_is_finished: bool
_settings: Settings
_forked: bool
_launch_artifacts: dict[str, Any] | None
_printer: printer.Printer
summary: wandb_summary.Summary
def __init__(
self,
settings: Settings,
config: dict[str, Any] | None = None,
sweep_config: dict[str, Any] | None = None,
launch_config: dict[str, Any] | None = None,
) -> None:
# pid is set, so we know if this run object was initialized by this process
self._init_pid = os.getpid()
self._attach_id = None
if settings._noop:
# TODO: properly handle setting for disabled mode
self._settings = settings
return
self._init(
settings=settings,
config=config,
sweep_config=sweep_config,
launch_config=launch_config,
)
def _init(
self,
settings: Settings,
config: dict[str, Any] | None = None,
sweep_config: dict[str, Any] | None = None,
launch_config: dict[str, Any] | None = None,
) -> None:
self._settings = settings
self._config = wandb_config.Config()
self._config._set_callback(self._config_callback)
self._config._set_artifact_callback(self._config_artifact_callback)
self._config._set_settings(self._settings)
# The _wandb key is always expected on the run config.
wandb_key = "_wandb"
self._config._update({wandb_key: dict()})
# TODO: perhaps this should be a property that is a noop on a finished run
self.summary = wandb_summary.Summary(
self._summary_get_current_summary_callback,
)
self.summary._set_update_callback(self._summary_update_callback)
self.__metadata: Metadata | None = None
self._step = 0
self._starting_step = 0
self._start_runtime = 0
# TODO: eventually would be nice to make this configurable using self._settings._start_time
# need to test (jhr): if you set start time to 2 days ago and run a test for 15 minutes,
# does the total time get calculated right (not as 2 days and 15 minutes)?
self._start_time = time.time()
self._printer = printer.new_printer(settings)
self._torch_history: wandb_torch.TorchHistory | None = None # type: ignore
self._backend = None
self._internal_run_interface = None
self._wl = None
self._hooks = None
self._teardown_hooks = []
self._output_writer = None
self._out_redir = None
self._err_redir = None
self._stdout_slave_fd = None
self._stderr_slave_fd = None
self._exit_code = None
self._exit_result = None
self._used_artifact_slots: dict[str, str] = {}
# Created when the run "starts".
self._run_status_checker = None
self._sampled_history = None
self._final_summary = None
self._poll_exit_response = None
self._internal_messages_response = None
self._poll_exit_handle = None
# Initialize telemetry object
self._telemetry_obj = telemetry.TelemetryRecord()
self._telemetry_obj_active = False
self._telemetry_obj_flushed = b""
self._telemetry_obj_dirty = False
self._atexit_cleanup_called = False
# Initial scope setup for sentry.
# This might get updated when the actual run comes back.
wandb._sentry.configure_scope(
tags=dict(self._settings),
process_context="user",
)
self._launch_artifact_mapping: dict[str, Any] = {}
self._unique_launch_artifact_sequence_names: dict[str, Any] = {}
# Populate config
config = config or dict()
self._config._update(config, allow_val_change=True, ignore_locked=True)
if sweep_config:
self._config.merge_locked(
sweep_config, user="sweep", _allow_val_change=True
)
if launch_config:
self._config.merge_locked(
launch_config, user="launch", _allow_val_change=True
)
# if run is from a launch queue, add queue id to _wandb config
launch_queue_name = wandb.env.get_launch_queue_name()
if launch_queue_name:
self._config[wandb_key]["launch_queue_name"] = launch_queue_name
launch_queue_entity = wandb.env.get_launch_queue_entity()
if launch_queue_entity:
self._config[wandb_key]["launch_queue_entity"] = launch_queue_entity
launch_trace_id = wandb.env.get_launch_trace_id()
if launch_trace_id:
self._config[wandb_key]["launch_trace_id"] = launch_trace_id
self._attach_id = None
self._is_attached = False
self._is_finished = False
self._attach_pid = os.getpid()
self._forked = False
# for now, use runid as attach id, this could/should be versioned in the future
self._attach_id = self._settings.run_id
def _handle_launch_artifact_overrides(self) -> None:
if self._settings.launch and (os.environ.get("WANDB_ARTIFACTS") is not None):
try:
artifacts: dict[str, Any] = json.loads(
os.environ.get("WANDB_ARTIFACTS", "{}")
)
except (ValueError, SyntaxError):
wandb.termwarn("Malformed WANDB_ARTIFACTS, using original artifacts")
else:
self._initialize_launch_artifact_maps(artifacts)
elif (
self._settings.launch
and self._settings.launch_config_path
and os.path.exists(self._settings.launch_config_path)
):
self.save(self._settings.launch_config_path)
with open(self._settings.launch_config_path) as fp:
launch_config = json.loads(fp.read())
if launch_config.get("overrides", {}).get("artifacts") is not None:
artifacts = launch_config.get("overrides").get("artifacts")
self._initialize_launch_artifact_maps(artifacts)
def _initialize_launch_artifact_maps(self, artifacts: dict[str, Any]) -> None:
for key, item in artifacts.items():
self._launch_artifact_mapping[key] = item
artifact_sequence_tuple_or_slot = key.split(":")
if len(artifact_sequence_tuple_or_slot) == 2:
sequence_name = artifact_sequence_tuple_or_slot[0].split("/")[-1]
if self._unique_launch_artifact_sequence_names.get(sequence_name):
self._unique_launch_artifact_sequence_names.pop(sequence_name)
else:
self._unique_launch_artifact_sequence_names[sequence_name] = item
def _telemetry_callback(self, telem_obj: telemetry.TelemetryRecord) -> None:
if not hasattr(self, "_telemetry_obj") or self._is_finished:
return
self._telemetry_obj.MergeFrom(telem_obj)
self._telemetry_obj_dirty = True
self._telemetry_flush()
def _telemetry_flush(self) -> None:
if not hasattr(self, "_telemetry_obj"):
return
if not self._telemetry_obj_active:
return
if not self._telemetry_obj_dirty:
return
if self._backend and self._backend.interface:
serialized = self._telemetry_obj.SerializeToString()
if serialized == self._telemetry_obj_flushed:
return
self._backend.interface._publish_telemetry(self._telemetry_obj)
self._telemetry_obj_flushed = serialized
self._telemetry_obj_dirty = False
def _freeze(self) -> None:
self._frozen = True
def __setattr__(self, attr: str, value: object) -> None:
if getattr(self, "_frozen", None) and not hasattr(self, attr):
raise Exception(f"Attribute {attr} is not supported on Run object.")
super().__setattr__(attr, value)
def __deepcopy__(self, memo: dict[int, Any]) -> Run:
return self
def __getstate__(self) -> Any:
"""Return run state as a custom pickle."""
# We only pickle in service mode
if not self._settings:
return
_attach_id = self._attach_id
if not _attach_id:
return
return dict(
_attach_id=_attach_id,
_init_pid=self._init_pid,
_is_finished=self._is_finished,
)
def __setstate__(self, state: Any) -> None:
"""Set run state from a custom pickle."""
if not state:
return
_attach_id = state.get("_attach_id")
if not _attach_id:
return
if state["_init_pid"] == os.getpid():
raise RuntimeError("attach in the same process is not supported currently")
self.__dict__.update(state)
@property
def _torch(self) -> wandb_torch.TorchHistory: # type: ignore
if self._torch_history is None:
self._torch_history = wandb_torch.TorchHistory() # type: ignore
return self._torch_history
@property
@_log_to_run
@_attach
def settings(self) -> Settings:
"""A frozen copy of run's Settings object."""
return self._settings.model_copy(deep=True)
@property
@_log_to_run
@_attach
def dir(self) -> str:
"""The directory where files associated with the run are saved."""
return self._settings.files_dir
@property
@_log_to_run
@_attach
def config(self) -> wandb_config.Config:
"""Config object associated with this run."""
return self._config
@property
@_log_to_run
@_attach
def config_static(self) -> wandb_config.ConfigStatic:
return wandb_config.ConfigStatic(self._config)
@property
@_log_to_run
@_attach
def name(self) -> str | None:
"""Display name of the run.
Display names are not guaranteed to be unique and may be descriptive.
By default, they are randomly generated.
"""
return self._settings.run_name
@name.setter
@_log_to_run
@_raise_if_finished
def name(self, name: str) -> None:
with telemetry.context(run=self) as tel:
tel.feature.set_run_name = True
self._settings.run_name = name
if self._backend and self._backend.interface:
self._backend.interface.publish_run(self)
@property
@_log_to_run
@_attach
def notes(self) -> str | None:
"""Notes associated with the run, if there are any.
Notes can be a multiline string and can also use markdown and latex
equations inside `$$`, like `$x + 3$`.
"""
return self._settings.run_notes
@notes.setter
@_log_to_run
@_raise_if_finished
def notes(self, notes: str) -> None:
self._settings.run_notes = notes
if self._backend and self._backend.interface:
self._backend.interface.publish_run(self)
@property
@_log_to_run
@_attach
def tags(self) -> tuple | None:
"""Tags associated with the run, if there are any."""
return self._settings.run_tags or ()
@tags.setter
@_log_to_run
@_raise_if_finished
def tags(self, tags: Sequence) -> None:
with telemetry.context(run=self) as tel:
tel.feature.set_run_tags = True
self._settings.run_tags = tuple(tags)
if self._backend and self._backend.interface:
self._backend.interface.publish_run(self)
@property
@_log_to_run
@_attach
def id(self) -> str:
"""Identifier for this run."""
assert self._settings.run_id is not None
return self._settings.run_id
@property
@_log_to_run
@_attach
def sweep_id(self) -> str | None:
"""Identifier for the sweep associated with the run, if there is one."""
return self._settings.sweep_id
def _get_path(self) -> str:
return "/".join(
e
for e in [
self._settings.entity,
self._settings.project,
self._settings.run_id,
]
if e is not None
)
@property
@_log_to_run
@_attach
def path(self) -> str:
"""Path to the run.
Run paths include entity, project, and run ID, in the format
`entity/project/run_id`.
"""
return self._get_path()
@property
@_log_to_run
@_attach
def start_time(self) -> float:
"""Unix timestamp (in seconds) of when the run started."""
return self._start_time
@property
@_log_to_run
@_attach
def starting_step(self) -> int:
"""The first step of the run."""
return self._starting_step
@property
@_log_to_run
@_attach
def resumed(self) -> bool:
"""True if the run was resumed, False otherwise."""
return self._settings.resumed
@property
@_log_to_run
@_attach
def step(self) -> int:
"""Current value of the step.
This counter is incremented by `wandb.log`.
"""
return self._step
@property
@_log_to_run
@_attach
def offline(self) -> bool:
return self._settings._offline
@property
@_log_to_run
@_attach
def disabled(self) -> bool:
return self._settings._noop
@property
@_log_to_run
@_attach
def group(self) -> str:
"""Name of the group associated with the run.
Setting a group helps the W&B UI organize runs in a sensible way.
If you are doing a distributed training you should give all of the
runs in the training the same group.
If you are doing cross-validation you should give all the cross-validation
folds the same group.
"""
return self._settings.run_group or ""
@property
@_log_to_run
@_attach
def job_type(self) -> str:
return self._settings.run_job_type or ""
def project_name(self) -> str:
"""Name of the W&B project associated with the run.
Note: this method is deprecated and will be removed in a future release.
Please use `run.project` instead.
"""
deprecate.deprecate(
field_name=Deprecated.run__project_name,
warning_message=(
"The project_name method is deprecated and will be removed in a"
" future release. Please use `run.project` instead."
),
)
return self.project
@property
@_log_to_run
@_attach
def project(self) -> str:
"""Name of the W&B project associated with the run."""
assert self._settings.project is not None
return self._settings.project
@_log_to_run
def get_project_url(self) -> str | None:
"""URL of the W&B project associated with the run, if there is one.
Offline runs do not have a project URL.
Note: this method is deprecated and will be removed in a future release.
Please use `run.project_url` instead.
"""
deprecate.deprecate(
field_name=Deprecated.run__get_project_url,
warning_message=(
"The get_project_url method is deprecated and will be removed in a"
" future release. Please use `run.project_url` instead."
),
)
return self.project_url
@property
@_log_to_run
@_attach
def project_url(self) -> str | None:
"""URL of the W&B project associated with the run, if there is one.
Offline runs do not have a project URL.
"""
if self._settings._offline:
wandb.termwarn("URL not available in offline run")
return None
return self._settings.project_url
@_raise_if_finished
@_log_to_run
@_attach
def log_code(
self,
root: str | None = ".",
name: str | None = None,
include_fn: Callable[[str, str], bool]
| Callable[[str], bool] = _is_py_requirements_or_dockerfile,
exclude_fn: Callable[[str, str], bool]
| Callable[[str], bool] = filenames.exclude_wandb_fn,
) -> Artifact | None:
"""Save the current state of your code to a W&B Artifact.
By default, it walks the current directory and logs all files that end with `.py`.
Args:
root: The relative (to `os.getcwd()`) or absolute path to recursively find code from.
name: (str, optional) The name of our code artifact. By default, we'll name
the artifact `source-$PROJECT_ID-$ENTRYPOINT_RELPATH`. There may be scenarios where you want
many runs to share the same artifact. Specifying name allows you to achieve that.
include_fn: A callable that accepts a file path and (optionally) root path and
returns True when it should be included and False otherwise. This
defaults to: `lambda path, root: path.endswith(".py")`
exclude_fn: A callable that accepts a file path and (optionally) root path and
returns `True` when it should be excluded and `False` otherwise. This
defaults to a function that excludes all files within `<root>/.wandb/`
and `<root>/wandb/` directories.
Examples:
Basic usage
```python
run.log_code()
```
Advanced usage
```python
run.log_code(
"../",
include_fn=lambda path: path.endswith(".py") or path.endswith(".ipynb"),
exclude_fn=lambda path, root: os.path.relpath(path, root).startswith(
"cache/"
),
)
```
Returns:
An `Artifact` object if code was logged
"""
if name is None:
if self.settings._jupyter:
notebook_name = None
if self.settings.notebook_name:
notebook_name = self.settings.notebook_name
elif self.settings.x_jupyter_path:
if self.settings.x_jupyter_path.startswith("fileId="):
notebook_name = self.settings.x_jupyter_name
else:
notebook_name = self.settings.x_jupyter_path
name_string = f"{self._settings.project}-{notebook_name}"
else:
name_string = (
f"{self._settings.project}-{self._settings.program_relpath}"
)
name = wandb.util.make_artifact_name_safe(f"source-{name_string}")
art = InternalArtifact(name, "code")
files_added = False
if root is not None:
root = os.path.abspath(root)
for file_path in filenames.filtered_dir(root, include_fn, exclude_fn):
files_added = True
save_name = os.path.relpath(file_path, root)
art.add_file(file_path, name=save_name)
# Add any manually staged files such as ipynb notebooks
for dirpath, _, files in os.walk(self._settings._tmp_code_dir):
for fname in files:
file_path = os.path.join(dirpath, fname)
save_name = os.path.relpath(file_path, self._settings._tmp_code_dir)
files_added = True
art.add_file(file_path, name=save_name)
if not files_added:
wandb.termwarn(
"No relevant files were detected in the specified directory. No code will be logged to your run."
)
return None
artifact = self._log_artifact(art)
self._config.update(
{"_wandb": {"code_path": artifact.name}},
allow_val_change=True,
)
return artifact
@_log_to_run
def get_sweep_url(self) -> str | None:
"""The URL of the sweep associated with the run, if there is one.
Offline runs do not have a sweep URL.
Note: this method is deprecated and will be removed in a future release.
Please use `run.sweep_url` instead.
"""
deprecate.deprecate(
field_name=Deprecated.run__get_sweep_url,
warning_message=(
"The get_sweep_url method is deprecated and will be removed in a"
" future release. Please use `run.sweep_url` instead."
),
)
return self.sweep_url
@property
@_attach
def sweep_url(self) -> str | None:
"""URL of the sweep associated with the run, if there is one.
Offline runs do not have a sweep URL.
"""
if self._settings._offline:
wandb.termwarn("URL not available in offline run")
return None
return self._settings.sweep_url
@_log_to_run
def get_url(self) -> str | None:
"""URL of the W&B run, if there is one.
Offline runs do not have a URL.
Note: this method is deprecated and will be removed in a future release.
Please use `run.url` instead.
"""
deprecate.deprecate(
field_name=Deprecated.run__get_url,
warning_message=(
"The get_url method is deprecated and will be removed in a"
" future release. Please use `run.url` instead."
),
)
return self.url
@property
@_log_to_run
@_attach
def url(self) -> str | None:
"""The url for the W&B run, if there is one.
Offline runs will not have a url.
"""
if self._settings._offline:
wandb.termwarn("URL not available in offline run")
return None
return self._settings.run_url
@property
@_log_to_run
@_attach
def entity(self) -> str:
"""The name of the W&B entity associated with the run.
Entity can be a username or the name of a team or organization.
"""
return self._settings.entity or ""
def _label_internal(
self,
code: str | None = None,
repo: str | None = None,
code_version: str | None = None,
) -> None:
with telemetry.context(run=self) as tel:
if code and RE_LABEL.match(code):
tel.label.code_string = code
if repo and RE_LABEL.match(repo):
tel.label.repo_string = repo
if code_version and RE_LABEL.match(code_version):
tel.label.code_version = code_version
def _label(
self,
code: str | None = None,
repo: str | None = None,
code_version: str | None = None,
**kwargs: str,
) -> None:
if self._settings.label_disable:
return
for k, v in (("code", code), ("repo", repo), ("code_version", code_version)):
if v and not RE_LABEL.match(v):
wandb.termwarn(
f"Label added for '{k}' with invalid identifier '{v}' (ignored).",
repeat=False,
)
for v in kwargs:
wandb.termwarn(
f"Label added for unsupported key {v!r} (ignored).",
repeat=False,
)
self._label_internal(code=code, repo=repo, code_version=code_version)
# update telemetry in the backend immediately for _label() callers
self._telemetry_flush()
def _label_probe_lines(self, lines: list[str]) -> None:
if not lines:
return
parsed = telemetry._parse_label_lines(lines)
if not parsed:
return
label_dict = {}
code = parsed.get("code") or parsed.get("c")
if code:
label_dict["code"] = code
repo = parsed.get("repo") or parsed.get("r")
if repo:
label_dict["repo"] = repo
code_ver = parsed.get("version") or parsed.get("v")
if code_ver:
label_dict["code_version"] = code_ver
self._label_internal(**label_dict)
def _label_probe_main(self) -> None:
m = sys.modules.get("__main__")
if not m:
return
doc = getattr(m, "__doc__", None)
if not doc:
return
doclines = doc.splitlines()
self._label_probe_lines(doclines)
# TODO: annotate jupyter Notebook class
def _label_probe_notebook(self, notebook: Any) -> None:
logger.info("probe notebook")
lines = None
try:
data = notebook.probe_ipynb()
cell0 = data.get("cells", [])[0]
lines = cell0.get("source")
# kaggle returns a string instead of a list
if isinstance(lines, str):
lines = lines.split()
except Exception as e:
logger.info(f"Unable to probe notebook: {e}")
return
if lines:
self._label_probe_lines(lines)
@_log_to_run
@_attach
def display(self, height: int = 420, hidden: bool = False) -> bool:
"""Display this run in jupyter."""
if self._settings.silent:
return False
if not ipython.in_jupyter():
return False
try:
from IPython import display
except ImportError:
wandb.termwarn(".display() only works in jupyter environments")
return False
display.display(display.HTML(self.to_html(height, hidden)))
return True
@_log_to_run
@_attach
def to_html(self, height: int = 420, hidden: bool = False) -> str:
"""Generate HTML containing an iframe displaying the current run."""
url = self._settings.run_url + "?jupyter=true"
style = f"border:none;width:100%;height:{height}px;"
prefix = ""
if hidden:
style += "display:none;"
prefix = ipython.toggle_button()
return prefix + f"<iframe src={url!r} style={style!r}></iframe>"
def _repr_mimebundle_(
self, include: Any | None = None, exclude: Any | None = None
) -> dict[str, str]:
return {"text/html": self.to_html(hidden=True)}
@_log_to_run
@_raise_if_finished
def _config_callback(
self,
key: tuple[str, ...] | str | None = None,
val: Any | None = None,
data: dict[str, object] | None = None,
) -> None:
logger.info(f"config_cb {key} {val} {data}")
if self._backend and self._backend.interface:
self._backend.interface.publish_config(key=key, val=val, data=data)
@_log_to_run
def _config_artifact_callback(
self, key: str, val: str | Artifact | dict
) -> Artifact:
# artifacts can look like dicts as they are passed into the run config
# since the run config stores them on the backend as a dict with fields shown
# in wandb.util.artifact_to_json
if _is_artifact_version_weave_dict(val):
assert isinstance(val, dict)
public_api = self._public_api()
artifact = Artifact._from_id(val["id"], public_api.client)
assert artifact
return self.use_artifact(artifact)
elif _is_artifact_string(val):
# this will never fail, but is required to make mypy happy
assert isinstance(val, str)
artifact_string, base_url, is_id = parse_artifact_string(val)
overrides = {}
if base_url is not None:
overrides = {"base_url": base_url}
public_api = public.Api(overrides)
else:
public_api = self._public_api()
if is_id:
artifact = Artifact._from_id(artifact_string, public_api._client)
else:
artifact = public_api._artifact(name=artifact_string)
# in the future we'll need to support using artifacts from
# different instances of wandb.
assert artifact
return self.use_artifact(artifact)
elif _is_artifact_object(val):
return self.use_artifact(val)
else:
raise ValueError(
f"Cannot call _config_artifact_callback on type {type(val)}"
)
def _set_config_wandb(self, key: str, val: Any) -> None:
self._config_callback(key=("_wandb", key), val=val)
@_log_to_run
@_raise_if_finished
def _summary_update_callback(self, summary_record: SummaryRecord) -> None:
with telemetry.context(run=self) as tel:
tel.feature.set_summary = True
if self._backend and self._backend.interface:
self._backend.interface.publish_summary(self, summary_record)
@_log_to_run
def _summary_get_current_summary_callback(self) -> dict[str, Any]:
if self._is_finished:
# TODO: WB-18420: fetch summary from backend and stage it before run is finished
wandb.termwarn("Summary data not available in finished run")
return {}
if not self._backend or not self._backend.interface:
return {}
handle = self._backend.interface.deliver_get_summary()
try:
result = handle.wait_or(timeout=self._settings.summary_timeout)
except TimeoutError:
return {}
get_summary_response = result.response.get_summary_response
return proto_util.dict_from_proto_list(get_summary_response.item)
@_log_to_run
def _metric_callback(self, metric_record: MetricRecord) -> None:
if self._backend and self._backend.interface:
self._backend.interface._publish_metric(metric_record)
@_log_to_run
def _publish_file(self, fname: str) -> None:
"""Mark a run file to be uploaded with the run.
This is a W&B-internal function: it can be used by other internal
wandb code.
Args:
fname: The path to the file in the run's files directory, relative
to the run's files directory.
"""
if not self._backend or not self._backend.interface:
return
files: FilesDict = dict(files=[(GlobStr(fname), "now")])
self._backend.interface.publish_files(files)
def _pop_all_charts(
self,
data: dict[str, Any],
key_prefix: str | None = None,
) -> dict[str, Any]:
"""Pops all charts from a dictionary including nested charts.
This function will return a mapping of the charts and a dot-separated
key for each chart. Indicating the path to the chart in the data dictionary.
"""
keys_to_remove = set()
charts: dict[str, Any] = {}
for k, v in data.items():
key = f"{key_prefix}.{k}" if key_prefix else k
if isinstance(v, Visualize):
keys_to_remove.add(k)
charts[key] = v
elif isinstance(v, CustomChart):
keys_to_remove.add(k)
charts[key] = v
elif isinstance(v, dict):
nested_charts = self._pop_all_charts(v, key)
charts.update(nested_charts)
for k in keys_to_remove:
data.pop(k)
return charts
def _serialize_custom_charts(
self,
data: dict[str, Any],
) -> dict[str, Any]:
"""Process and replace chart objects with their underlying table values.
This processes the chart objects passed to `run.log()`, replacing their entries
in the given dictionary (which is saved to the run's history) and adding them
to the run's config.
Args:
data: Dictionary containing data that may include plot objects
Plot objects can be nested in dictionaries, which will be processed recursively.
Returns:
The processed dictionary with custom charts transformed into tables.
"""
if not data:
return data
charts = self._pop_all_charts(data)
for k, v in charts.items():
v.set_key(k)
self._config_callback(
val=v.spec.config_value,
key=v.spec.config_key,
)
if isinstance(v, CustomChart):
data[v.spec.table_key] = v.table
elif isinstance(v, Visualize):
data[k] = v.table
return data
@_log_to_run
def _partial_history_callback(
self,
data: dict[str, Any],
step: int | None = None,
commit: bool | None = None,
) -> None:
if not (self._backend and self._backend.interface):
return
data = data.copy() # avoid modifying the original data
# Serialize custom charts before publishing
data = self._serialize_custom_charts(data)
not_using_tensorboard = len(wandb.patched["tensorboard"]) == 0
self._backend.interface.publish_partial_history(
self,
data,
user_step=self._step,
step=step,
flush=commit,
publish_step=not_using_tensorboard,
)
@_log_to_run
def _console_callback(self, name: str, data: str) -> None:
# logger.info("console callback: %s, %s", name, data)
if self._backend and self._backend.interface:
self._backend.interface.publish_output(name, data)
@_log_to_run
@_raise_if_finished
def _console_raw_callback(self, name: str, data: str) -> None:
# logger.info("console callback: %s, %s", name, data)
# NOTE: console output is only allowed on the process which installed the callback
# this will prevent potential corruption in the socket to the service. Other methods
# are protected by the _attach run decorator, but this callback was installed on the
# write function of stdout and stderr streams.
console_pid = getattr(self, "_attach_pid", 0)
if console_pid != os.getpid():
return
if self._backend and self._backend.interface:
self._backend.interface.publish_output_raw(name, data)
@_log_to_run
def _tensorboard_callback(
self, logdir: str, save: bool = True, root_logdir: str = ""
) -> None:
logger.info("tensorboard callback: %s, %s", logdir, save)
if self._backend and self._backend.interface:
self._backend.interface.publish_tbdata(logdir, save, root_logdir)
def _set_library(self, library: _WandbSetup) -> None:
self._wl = library
def _set_backend(self, backend: wandb.sdk.backend.backend.Backend) -> None:
self._backend = backend
def _set_internal_run_interface(
self,
interface: wandb.sdk.interface.interface_queue.InterfaceQueue,
) -> None:
self._internal_run_interface = interface
def _set_teardown_hooks(self, hooks: list[TeardownHook]) -> None:
self._teardown_hooks = hooks
def _set_run_obj(self, run_obj: RunRecord) -> None: # noqa: C901
if run_obj.starting_step:
self._starting_step = run_obj.starting_step
self._step = run_obj.starting_step
if run_obj.start_time:
self._start_time = run_obj.start_time.ToMicroseconds() / 1e6
if run_obj.runtime:
self._start_runtime = run_obj.runtime
# Grab the config from resuming
if run_obj.config:
c_dict = config_util.dict_no_value_from_proto_list(run_obj.config.update)
# We update the config object here without triggering the callback
self._config._update(c_dict, allow_val_change=True, ignore_locked=True)
# Update the summary, this will trigger an un-needed graphql request :(
if run_obj.summary:
summary_dict = {}
for orig in run_obj.summary.update:
summary_dict[orig.key] = json.loads(orig.value_json)
if summary_dict:
self.summary.update(summary_dict)
# update settings from run_obj
if run_obj.run_id:
self._settings.run_id = run_obj.run_id
if run_obj.entity:
self._settings.entity = run_obj.entity
if run_obj.project:
self._settings.project = run_obj.project
if run_obj.run_group:
self._settings.run_group = run_obj.run_group
if run_obj.job_type:
self._settings.run_job_type = run_obj.job_type
if run_obj.display_name:
self._settings.run_name = run_obj.display_name
if run_obj.notes:
self._settings.run_notes = run_obj.notes
if run_obj.tags:
self._settings.run_tags = tuple(run_obj.tags)
if run_obj.sweep_id:
self._settings.sweep_id = run_obj.sweep_id
if run_obj.host:
self._settings.host = run_obj.host
if run_obj.resumed:
self._settings.resumed = run_obj.resumed
if run_obj.git:
if run_obj.git.remote_url:
self._settings.git_remote_url = run_obj.git.remote_url
if run_obj.git.commit:
self._settings.git_commit = run_obj.git.commit
if run_obj.forked:
self._forked = run_obj.forked
wandb._sentry.configure_scope(
process_context="user",
tags=dict(self._settings),
)
def _populate_git_info(self) -> None:
from .lib.gitlib import GitRepo
# Use user provided git info if available otherwise resolve it from the environment
try:
repo = GitRepo(
root=self._settings.git_root,
remote=self._settings.git_remote,
remote_url=self._settings.git_remote_url,
commit=self._settings.git_commit,
lazy=False,
)
self._settings.git_remote_url = repo.remote_url
self._settings.git_commit = repo.last_commit
except Exception:
wandb.termwarn("Cannot find valid git repo associated with this directory.")
def _add_singleton(
self, data_type: str, key: str, value: dict[int | str, str]
) -> None:
"""Store a singleton item to wandb config.
A singleton in this context is a piece of data that is continually
logged with the same value in each history step, but represented
as a single item in the config.
We do this to avoid filling up history with a lot of repeated unnecessary data
Add singleton can be called many times in one run, and it will only be
updated when the value changes. The last value logged will be the one
persisted to the server.
"""
value_extra = {"type": data_type, "key": key, "value": value}
if data_type not in self._config["_wandb"]:
self._config["_wandb"][data_type] = {}
if data_type in self._config["_wandb"][data_type]:
old_value = self._config["_wandb"][data_type][key]
else:
old_value = None
if value_extra != old_value:
self._config["_wandb"][data_type][key] = value_extra
self._config.persist()
def _log(
self,
data: dict[str, Any],
step: int | None = None,
commit: bool | None = None,
) -> None:
if not isinstance(data, Mapping):
raise TypeError("wandb.log must be passed a dictionary")
if any(not isinstance(key, str) for key in data.keys()):
raise TypeError("Key values passed to `wandb.log` must be strings.")
self._partial_history_callback(data, step, commit)
if step is not None:
if os.getpid() != self._init_pid or self._is_attached:
wandb.termwarn(
"Note that setting step in multiprocessing can result in data loss. "
"Please use `run.define_metric(...)` to define a custom metric "
"to log your step values.",
repeat=False,
)
# if step is passed in when tensorboard_sync is used we honor the step passed
# to make decisions about how to close out the history record, but will strip
# this history later on in publish_history()
if len(wandb.patched["tensorboard"]) > 0:
wandb.termwarn(
"Step cannot be set when using tensorboard syncing. "
"Please use `run.define_metric(...)` to define a custom metric "
"to log your step values.",
repeat=False,
)
if step > self._step:
self._step = step
if (step is None and commit is None) or commit:
self._step += 1
@_log_to_run
@_raise_if_finished
@_attach
def log(
self,
data: dict[str, Any],
step: int | None = None,
commit: bool | None = None,
) -> None:
"""Upload run data.
Use `log` to log data from runs, such as scalars, images, video,
histograms, plots, and tables.
See our [guides to logging](https://docs.wandb.ai/guides/track/log) for
live examples, code snippets, best practices, and more.
The most basic usage is `run.log({"train-loss": 0.5, "accuracy": 0.9})`.
This will save the loss and accuracy to the run's history and update
the summary values for these metrics.
Visualize logged data in the workspace at [wandb.ai](https://wandb.ai),
or locally on a [self-hosted instance](https://docs.wandb.ai/guides/hosting)
of the W&B app, or export data to visualize and explore locally, e.g. in
Jupyter notebooks, with [our API](https://docs.wandb.ai/guides/track/public-api-guide).
Logged values don't have to be scalars. Logging any wandb object is supported.
For example `run.log({"example": wandb.Image("myimage.jpg")})` will log an
example image which will be displayed nicely in the W&B UI.
See the [reference documentation](https://docs.wandb.com/ref/python/data-types)
for all of the different supported types or check out our
[guides to logging](https://docs.wandb.ai/guides/track/log) for examples,
from 3D molecular structures and segmentation masks to PR curves and histograms.
You can use `wandb.Table` to log structured data. See our
[guide to logging tables](https://docs.wandb.ai/guides/models/tables/tables-walkthrough)
for details.
The W&B UI organizes metrics with a forward slash (`/`) in their name
into sections named using the text before the final slash. For example,
the following results in two sections named "train" and "validate":
```
run.log(
{
"train/accuracy": 0.9,
"train/loss": 30,
"validate/accuracy": 0.8,
"validate/loss": 20,
}
)
```
Only one level of nesting is supported; `run.log({"a/b/c": 1})`
produces a section named "a/b".
`run.log` is not intended to be called more than a few times per second.
For optimal performance, limit your logging to once every N iterations,
or collect data over multiple iterations and log it in a single step.
### The W&B step
With basic usage, each call to `log` creates a new "step".
The step must always increase, and it is not possible to log
to a previous step.
Note that you can use any metric as the X axis in charts.
In many cases, it is better to treat the W&B step like
you'd treat a timestamp rather than a training step.
```
# Example: log an "epoch" metric for use as an X axis.
run.log({"epoch": 40, "train-loss": 0.5})
```
See also [define_metric](https://docs.wandb.ai/ref/python/run#define_metric).
It is possible to use multiple `log` invocations to log to
the same step with the `step` and `commit` parameters.
The following are all equivalent:
```
# Normal usage:
run.log({"train-loss": 0.5, "accuracy": 0.8})
run.log({"train-loss": 0.4, "accuracy": 0.9})
# Implicit step without auto-incrementing:
run.log({"train-loss": 0.5}, commit=False)
run.log({"accuracy": 0.8})
run.log({"train-loss": 0.4}, commit=False)
run.log({"accuracy": 0.9})
# Explicit step:
run.log({"train-loss": 0.5}, step=current_step)
run.log({"accuracy": 0.8}, step=current_step)
current_step += 1
run.log({"train-loss": 0.4}, step=current_step)
run.log({"accuracy": 0.9}, step=current_step)
```
Args:
data: A `dict` with `str` keys and values that are serializable
Python objects including: `int`, `float` and `string`;
any of the `wandb.data_types`; lists, tuples and NumPy arrays
of serializable Python objects; other `dict`s of this
structure.
step: The step number to log. If `None`, then an implicit
auto-incrementing step is used. See the notes in
the description.
commit: If true, finalize and upload the step. If false, then
accumulate data for the step. See the notes in the description.
If `step` is `None`, then the default is `commit=True`;
otherwise, the default is `commit=False`.
Examples:
For more and more detailed examples, see
[our guides to logging](https://docs.wandb.com/guides/track/log).
### Basic usage
```python
import wandb
run = wandb.init()
run.log({"accuracy": 0.9, "epoch": 5})
```
### Incremental logging
```python
import wandb
run = wandb.init()
run.log({"loss": 0.2}, commit=False)
# Somewhere else when I'm ready to report this step:
run.log({"accuracy": 0.8})
```
### Histogram
```python
import numpy as np
import wandb
# sample gradients at random from normal distribution
gradients = np.random.randn(100, 100)
run = wandb.init()
run.log({"gradients": wandb.Histogram(gradients)})
```
### Image from numpy
```python
import numpy as np
import wandb
run = wandb.init()
examples = []
for i in range(3):
pixels = np.random.randint(low=0, high=256, size=(100, 100, 3))
image = wandb.Image(pixels, caption=f"random field {i}")
examples.append(image)
run.log({"examples": examples})
```
### Image from PIL
```python
import numpy as np
from PIL import Image as PILImage
import wandb
run = wandb.init()
examples = []
for i in range(3):
pixels = np.random.randint(
low=0,
high=256,
size=(100, 100, 3),
dtype=np.uint8,
)
pil_image = PILImage.fromarray(pixels, mode="RGB")
image = wandb.Image(pil_image, caption=f"random field {i}")
examples.append(image)
run.log({"examples": examples})
```
### Video from numpy
```python
import numpy as np
import wandb
run = wandb.init()
# axes are (time, channel, height, width)
frames = np.random.randint(
low=0,
high=256,
size=(10, 3, 100, 100),
dtype=np.uint8,
)
run.log({"video": wandb.Video(frames, fps=4)})
```
### Matplotlib Plot
```python
from matplotlib import pyplot as plt
import numpy as np
import wandb
run = wandb.init()
fig, ax = plt.subplots()
x = np.linspace(0, 10)
y = x * x
ax.plot(x, y) # plot y = x^2
run.log({"chart": fig})
```
### PR Curve
```python
import wandb
run = wandb.init()
run.log({"pr": wandb.plot.pr_curve(y_test, y_probas, labels)})
```
### 3D Object
```python
import wandb
run = wandb.init()
run.log(
{
"generated_samples": [
wandb.Object3D(open("sample.obj")),
wandb.Object3D(open("sample.gltf")),
wandb.Object3D(open("sample.glb")),
]
}
)
```
Raises:
wandb.Error: if called before `wandb.init`
ValueError: if invalid data is passed
"""
if step is not None:
with telemetry.context(run=self) as tel:
tel.feature.set_step_log = True
if self._settings._shared and step is not None:
wandb.termwarn(
"In shared mode, the use of `wandb.log` with the step argument is not supported "
f"and will be ignored. Please refer to {url_registry.url('define-metric')} "
"on how to customize your x-axis.",
repeat=False,
)
self._log(data=data, step=step, commit=commit)
@_log_to_run
@_raise_if_finished
@_attach
def save(
self,
glob_str: str | os.PathLike,
base_path: str | os.PathLike | None = None,
policy: PolicyName = "live",
) -> bool | list[str]:
"""Sync one or more files to W&B.
Relative paths are relative to the current working directory.
A Unix glob, such as "myfiles/*", is expanded at the time `save` is
called regardless of the `policy`. In particular, new files are not
picked up automatically.
A `base_path` may be provided to control the directory structure of
uploaded files. It should be a prefix of `glob_str`, and the directory
structure beneath it is preserved. It's best understood through
examples:
```
wandb.save("these/are/myfiles/*")
# => Saves files in a "these/are/myfiles/" folder in the run.
wandb.save("these/are/myfiles/*", base_path="these")
# => Saves files in an "are/myfiles/" folder in the run.
wandb.save("/User/username/Documents/run123/*.txt")
# => Saves files in a "run123/" folder in the run. See note below.
wandb.save("/User/username/Documents/run123/*.txt", base_path="/User")
# => Saves files in a "username/Documents/run123/" folder in the run.
wandb.save("files/*/saveme.txt")
# => Saves each "saveme.txt" file in an appropriate subdirectory
# of "files/".
```
Note: when given an absolute path or glob and no `base_path`, one
directory level is preserved as in the example above.
Args:
glob_str: A relative or absolute path or Unix glob.
base_path: A path to use to infer a directory structure; see examples.
policy: One of `live`, `now`, or `end`.
* live: upload the file as it changes, overwriting the previous version
* now: upload the file once now
* end: upload file when the run ends
Returns:
Paths to the symlinks created for the matched files.
For historical reasons, this may return a boolean in legacy code.
"""
if isinstance(glob_str, bytes):
# Preserved for backward compatibility: allow bytes inputs.
glob_str = glob_str.decode("utf-8")
if isinstance(glob_str, str) and (glob_str.startswith(("gs://", "s3://"))):
# Provide a better error message for a common misuse.
wandb.termlog(f"{glob_str} is a cloud storage url, can't save file to W&B.")
return []
# NOTE: We use PurePath instead of Path because WindowsPath doesn't
# like asterisks and errors out in resolve(). It also makes logical
# sense: globs aren't real paths, they're just path-like strings.
glob_path = pathlib.PurePath(glob_str)
resolved_glob_path = pathlib.PurePath(os.path.abspath(glob_path))
if base_path is not None:
base_path = pathlib.Path(base_path)
elif not glob_path.is_absolute():
base_path = pathlib.Path(".")
else:
# Absolute glob paths with no base path get special handling.
wandb.termwarn(
"Saving files without folders. If you want to preserve "
"subdirectories pass base_path to wandb.save, i.e. "
'wandb.save("/mnt/folder/file.h5", base_path="/mnt")',
repeat=False,
)
base_path = resolved_glob_path.parent.parent
if policy not in ("live", "end", "now"):
raise ValueError(
'Only "live", "end" and "now" policies are currently supported.'
)
resolved_base_path = pathlib.PurePath(os.path.abspath(base_path))
return self._save(
resolved_glob_path,
resolved_base_path,
policy,
)
def _save(
self,
glob_path: pathlib.PurePath,
base_path: pathlib.PurePath,
policy: PolicyName,
) -> list[str]:
# Can't use is_relative_to() because that's added in Python 3.9,
# but we support down to Python 3.8.
if not str(glob_path).startswith(str(base_path)):
raise ValueError("Glob may not walk above the base path")
if glob_path == base_path:
raise ValueError("Glob cannot be the same as the base path")
relative_glob = glob_path.relative_to(base_path)
if relative_glob.parts[0] == "*":
raise ValueError("Glob may not start with '*' relative to the base path")
relative_glob_str = GlobStr(str(relative_glob))
with telemetry.context(run=self) as tel:
tel.feature.save = True
# Files in the files directory matched by the glob, including old and
# new ones.
globbed_files = set(
pathlib.Path(
self._settings.files_dir,
).glob(relative_glob_str)
)
had_symlinked_files = len(globbed_files) > 0
is_star_glob = "*" in relative_glob_str
# The base_path may itself be a glob, so we can't do
# base_path.glob(relative_glob_str)
for path_str in glob.glob(str(base_path / relative_glob_str)):
source_path = pathlib.Path(path_str).absolute()
# We can't use relative_to() because base_path may be a glob.
relative_path = pathlib.Path(*source_path.parts[len(base_path.parts) :])
target_path = pathlib.Path(self._settings.files_dir, relative_path)
globbed_files.add(target_path)
# If the file is already where it needs to be, don't create a symlink.
if source_path.resolve() == target_path.resolve():
continue
target_path.parent.mkdir(parents=True, exist_ok=True)
# Delete the symlink if it exists.
target_path.unlink(missing_ok=True)
target_path.symlink_to(source_path)
# Inform users that new files aren't detected automatically.
if not had_symlinked_files and is_star_glob:
file_str = f"{len(globbed_files)} file"
if len(globbed_files) > 1:
file_str += "s"
wandb.termwarn(
f"Symlinked {file_str} into the W&B run directory, "
"call wandb.save again to sync new files."
)
files_dict: FilesDict = {
"files": [
(
GlobStr(str(f.relative_to(self._settings.files_dir))),
policy,
)
for f in globbed_files
]
}
if self._backend and self._backend.interface:
self._backend.interface.publish_files(files_dict)
return [str(f) for f in globbed_files]
@_log_to_run
@_attach
def restore(
self,
name: str,
run_path: str | None = None,
replace: bool = False,
root: str | None = None,
) -> None | TextIO:
return restore(
name,
run_path or self._get_path(),
replace,
root or self._settings.files_dir,
)
@_log_to_run
@_attach
def finish(
self,
exit_code: int | None = None,
quiet: bool | None = None,
) -> None:
"""Finish a run and upload any remaining data.
Marks the completion of a W&B run and ensures all data is synced to the server.
The run's final state is determined by its exit conditions and sync status.
Run States:
- Running: Active run that is logging data and/or sending heartbeats.
- Crashed: Run that stopped sending heartbeats unexpectedly.
- Finished: Run completed successfully (`exit_code=0`) with all data synced.
- Failed: Run completed with errors (`exit_code!=0`).
Args:
exit_code: Integer indicating the run's exit status. Use 0 for success,
any other value marks the run as failed.
quiet: Deprecated. Configure logging verbosity using `wandb.Settings(quiet=...)`.
"""
if quiet is not None:
deprecate.deprecate(
field_name=Deprecated.run__finish_quiet,
warning_message=(
"The `quiet` argument to `wandb.run.finish()` is deprecated, "
"use `wandb.Settings(quiet=...)` to set this instead."
),
run=self,
)
return self._finish(exit_code)
@_log_to_run
def _finish(
self,
exit_code: int | None = None,
) -> None:
if self._is_finished:
return
assert self._wl
logger.info(f"finishing run {self._get_path()}")
with telemetry.context(run=self) as tel:
tel.feature.finish = True
# Run hooks that need to happen before the last messages to the
# internal service, like Jupyter hooks.
for hook in self._teardown_hooks:
if hook.stage == TeardownStage.EARLY:
hook.call()
# Early-stage hooks may use methods that require _is_finished
# to be False, so we set this after running those hooks.
self._is_finished = True
self._wl.remove_active_run(self)
try:
self._atexit_cleanup(exit_code=exit_code)
# Run hooks that should happen after the last messages to the
# internal service, like detaching the logger.
for hook in self._teardown_hooks:
if hook.stage == TeardownStage.LATE:
hook.call()
self._teardown_hooks = []
# Inform the service that we're done sending messages for this run.
#
# TODO: Why not do this in _atexit_cleanup()?
if self._settings.run_id:
service = self._wl.assert_service()
service.inform_finish(run_id=self._settings.run_id)
finally:
if wandb.run is self:
module.unset_globals()
wandb._sentry.end_session()
@_log_to_run
@_raise_if_finished
@_attach
def status(
self,
) -> RunStatus:
"""Get sync info from the internal backend, about the current run's sync status."""
if not self._backend or not self._backend.interface:
return RunStatus()
handle_run_status = self._backend.interface.deliver_request_run_status()
result = handle_run_status.wait_or(timeout=None)
sync_data = result.response.run_status_response
sync_time = None
if sync_data.sync_time.seconds:
sync_time = datetime.fromtimestamp(
sync_data.sync_time.seconds + sync_data.sync_time.nanos / 1e9
)
return RunStatus(
sync_items_total=sync_data.sync_items_total,
sync_items_pending=sync_data.sync_items_pending,
sync_time=sync_time,
)
def _add_panel(
self, visualize_key: str, panel_type: str, panel_config: dict
) -> None:
config = {
"panel_type": panel_type,
"panel_config": panel_config,
}
self._config_callback(val=config, key=("_wandb", "visualize", visualize_key))
def _redirect(
self,
stdout_slave_fd: int | None,
stderr_slave_fd: int | None,
console: str | None = None,
) -> None:
if console is None:
console = self._settings.console
# only use raw for service to minimize potential changes
if console == "wrap":
console = "wrap_raw"
logger.info("redirect: %s", console)
out_redir: redirect.RedirectBase
err_redir: redirect.RedirectBase
# raw output handles the output_log writing in the internal process
if console in {"redirect", "wrap_emu"}:
output_log_path = os.path.join(
self._settings.files_dir, filenames.OUTPUT_FNAME
)
# output writer might have been set up, see wrap_fallback case
if not self._output_writer:
self._output_writer = filesystem.CRDedupedFile(
open(output_log_path, "wb")
)
if console == "redirect":
logger.info("Redirecting console.")
out_redir = redirect.Redirect(
src="stdout",
cbs=[
lambda data: self._console_callback("stdout", data),
self._output_writer.write, # type: ignore
],
flush_periodically=(self._settings.mode == "online"),
)
err_redir = redirect.Redirect(
src="stderr",
cbs=[
lambda data: self._console_callback("stderr", data),
self._output_writer.write, # type: ignore
],
flush_periodically=(self._settings.mode == "online"),
)
if os.name == "nt":
def wrap_fallback() -> None:
if self._out_redir:
self._out_redir.uninstall()
if self._err_redir:
self._err_redir.uninstall()
msg = (
"Tensorflow detected. Stream redirection is not supported "
"on Windows when tensorflow is imported. Falling back to "
"wrapping stdout/err."
)
wandb.termlog(msg)
self._redirect(None, None, console="wrap")
add_import_hook("tensorflow", wrap_fallback)
elif console == "wrap_emu":
logger.info("Wrapping output streams.")
out_redir = redirect.StreamWrapper(
src="stdout",
cbs=[
lambda data: self._console_callback("stdout", data),
self._output_writer.write, # type: ignore
],
flush_periodically=(self._settings.mode == "online"),
)
err_redir = redirect.StreamWrapper(
src="stderr",
cbs=[
lambda data: self._console_callback("stderr", data),
self._output_writer.write, # type: ignore
],
flush_periodically=(self._settings.mode == "online"),
)
elif console == "wrap_raw":
logger.info("Wrapping output streams.")
out_redir = redirect.StreamRawWrapper(
src="stdout",
cbs=[
lambda data: self._console_raw_callback("stdout", data),
],
)
err_redir = redirect.StreamRawWrapper(
src="stderr",
cbs=[
lambda data: self._console_raw_callback("stderr", data),
],
)
elif console == "off":
return
else:
raise ValueError("unhandled console")
try:
# save stdout and stderr before installing new write functions
out_redir.install()
err_redir.install()
self._out_redir = out_redir
self._err_redir = err_redir
logger.info("Redirects installed.")
except Exception as e:
wandb.termwarn(f"Failed to redirect: {e}")
logger.exception("Failed to redirect.")
return
def _restore(self) -> None:
logger.info("restore")
# TODO(jhr): drain and shutdown all threads
if self._out_redir:
self._out_redir.uninstall()
if self._err_redir:
self._err_redir.uninstall()
logger.info("restore done")
def _atexit_cleanup(self, exit_code: int | None = None) -> None:
if self._backend is None:
logger.warning("process exited without backend configured")
return
if self._atexit_cleanup_called:
return
self._atexit_cleanup_called = True
exit_code = exit_code or (self._hooks and self._hooks.exit_code) or 0
self._exit_code = exit_code
logger.info(f"got exitcode: {exit_code}")
# Delete this run's "resume" file if the run finished successfully.
#
# This is used by the "auto" resume mode, which resumes from the last
# failed (or unfinished/crashed) run. If we reach this line, then this
# run shouldn't be a candidate for "auto" resume.
if exit_code == 0:
if os.path.exists(self._settings.resume_fname):
os.remove(self._settings.resume_fname)
try:
self._on_finish()
except KeyboardInterrupt:
if not wandb.wandb_agent._is_running(): # type: ignore
wandb.termerror("Control-C detected -- Run data was not synced")
raise
except Exception:
self._console_stop()
logger.exception("Problem finishing run")
wandb.termerror("Problem finishing run")
raise
Run._footer(
sampled_history=self._sampled_history,
final_summary=self._final_summary,
poll_exit_response=self._poll_exit_response,
internal_messages_response=self._internal_messages_response,
settings=self._settings,
printer=self._printer,
)
def _console_start(self) -> None:
logger.info("atexit reg")
self._hooks = ExitHooks()
self._redirect(self._stdout_slave_fd, self._stderr_slave_fd)
def _console_stop(self) -> None:
self._restore()
if self._output_writer:
self._output_writer.close()
self._output_writer = None
def _on_start(self) -> None:
self._header()
if self._settings.save_code and self._settings.code_dir is not None:
self.log_code(self._settings.code_dir)
if self._settings.x_save_requirements:
if self._backend and self._backend.interface:
from wandb.util import working_set
logger.debug(
"Saving list of pip packages installed into the current environment"
)
self._backend.interface.publish_python_packages(working_set())
if self._backend and self._backend.interface and not self._settings._offline:
assert self._settings.run_id
self._run_status_checker = RunStatusChecker(
self._settings.run_id,
interface=self._backend.interface,
)
self._run_status_checker.start()
self._console_start()
self._on_ready()
def _on_attach(self) -> None:
"""Event triggered when run is attached to another run."""
with telemetry.context(run=self) as tel:
tel.feature.attach = True
self._is_attached = True
self._on_ready()
def _register_telemetry_import_hooks(
self,
) -> None:
def _telemetry_import_hook(
run: Run,
module: Any,
) -> None:
with telemetry.context(run=run) as tel:
try:
name = getattr(module, "__name__", None)
if name is not None:
setattr(tel.imports_finish, name, True)
except AttributeError:
return
import_telemetry_set = telemetry.list_telemetry_imports()
import_hook_fn = functools.partial(_telemetry_import_hook, self)
if not self._settings.run_id:
return
for module_name in import_telemetry_set:
register_post_import_hook(
import_hook_fn,
self._settings.run_id,
module_name,
)
def _on_ready(self) -> None:
"""Event triggered when run is ready for the user."""
assert self._wl
self._wl.add_active_run(self)
self._register_telemetry_import_hooks()
# start reporting any telemetry changes
self._telemetry_obj_active = True
self._telemetry_flush()
try:
self._detect_and_apply_job_inputs()
except Exception:
logger.exception("Problem applying launch job inputs")
# object is about to be returned to the user, don't let them modify it
self._freeze()
if not self._settings.resume:
if os.path.exists(self._settings.resume_fname):
os.remove(self._settings.resume_fname)
def _detect_and_apply_job_inputs(self) -> None:
"""If the user has staged launch inputs, apply them to the run."""
from wandb.sdk.launch.inputs.internal import StagedLaunchInputs
StagedLaunchInputs().apply(self)
def _make_job_source_reqs(self) -> tuple[list[str], dict[str, Any], dict[str, Any]]:
from wandb.util import working_set
installed_packages_list = sorted(f"{d.key}=={d.version}" for d in working_set())
input_types = TypeRegistry.type_of(self.config.as_dict()).to_json()
output_types = TypeRegistry.type_of(self.summary._as_dict()).to_json()
return installed_packages_list, input_types, output_types
def _construct_job_artifact(
self,
name: str,
source_dict: JobSourceDict,
installed_packages_list: list[str],
patch_path: os.PathLike | None = None,
) -> Artifact:
job_artifact = InternalArtifact(name, job_builder.JOB_ARTIFACT_TYPE)
if patch_path and os.path.exists(patch_path):
job_artifact.add_file(FilePathStr(str(patch_path)), "diff.patch")
with job_artifact.new_file("requirements.frozen.txt") as f:
f.write("\n".join(installed_packages_list))
with job_artifact.new_file("wandb-job.json") as f:
f.write(json.dumps(source_dict))
return job_artifact
def _create_image_job(
self,
input_types: dict[str, Any],
output_types: dict[str, Any],
installed_packages_list: list[str],
docker_image_name: str | None = None,
args: list[str] | None = None,
) -> Artifact | None:
docker_image_name = docker_image_name or os.getenv("WANDB_DOCKER")
if not docker_image_name:
return None
name = wandb.util.make_artifact_name_safe(f"job-{docker_image_name}")
s_args: Sequence[str] = args if args is not None else self._settings._args
source_info: JobSourceDict = {
"_version": "v0",
"source_type": "image",
"source": {"image": docker_image_name, "args": s_args},
"input_types": input_types,
"output_types": output_types,
"runtime": self._settings._python,
}
job_artifact = self._construct_job_artifact(
name, source_info, installed_packages_list
)
return job_artifact
def _log_job_artifact_with_image(
self, docker_image_name: str, args: list[str] | None = None
) -> Artifact:
packages, in_types, out_types = self._make_job_source_reqs()
job_artifact = self._create_image_job(
in_types,
out_types,
packages,
args=args,
docker_image_name=docker_image_name,
)
assert job_artifact
artifact = self.log_artifact(job_artifact)
if not artifact:
raise wandb.Error(f"Job Artifact log unsuccessful: {artifact}")
else:
return artifact
async def _display_finish_stats(
self,
progress_printer: progress.ProgressPrinter,
) -> None:
last_result: Result | None = None
async def loop_update_printer() -> None:
while True:
if last_result:
progress_printer.update(
[last_result.response.poll_exit_response],
)
await asyncio.sleep(0.1)
async def loop_poll_exit() -> None:
nonlocal last_result
assert self._backend and self._backend.interface
while True:
handle = self._backend.interface.deliver_poll_exit()
time_start = time.monotonic()
last_result = await handle.wait_async(timeout=None)
# Update at most once a second.
time_elapsed = time.monotonic() - time_start
if time_elapsed < 1:
await asyncio.sleep(1 - time_elapsed)
async with asyncio_compat.open_task_group() as task_group:
task_group.start_soon(loop_update_printer())
task_group.start_soon(loop_poll_exit())
def _on_finish(self) -> None:
trigger.call("on_finished")
if self._run_status_checker is not None:
self._run_status_checker.stop()
self._console_stop() # TODO: there's a race here with jupyter console logging
assert self._backend and self._backend.interface
if self._settings.x_update_finish_state:
exit_handle = self._backend.interface.deliver_exit(self._exit_code)
else:
exit_handle = self._backend.interface.deliver_finish_without_exit()
with progress.progress_printer(
self._printer,
default_text="Finishing up...",
) as progress_printer:
# Wait for the run to complete.
wait_with_progress(
exit_handle,
timeout=None,
progress_after=1,
display_progress=functools.partial(
self._display_finish_stats,
progress_printer,
),
)
# Print some final statistics.
poll_exit_handle = self._backend.interface.deliver_poll_exit()
result = poll_exit_handle.wait_or(timeout=None)
progress.print_sync_dedupe_stats(
self._printer,
result.response.poll_exit_response,
)
self._poll_exit_response = result.response.poll_exit_response
internal_messages_handle = self._backend.interface.deliver_internal_messages()
result = internal_messages_handle.wait_or(timeout=None)
self._internal_messages_response = result.response.internal_messages_response
# dispatch all our final requests
final_summary_handle = self._backend.interface.deliver_get_summary()
sampled_history_handle = (
self._backend.interface.deliver_request_sampled_history()
)
result = sampled_history_handle.wait_or(timeout=None)
self._sampled_history = result.response.sampled_history_response
result = final_summary_handle.wait_or(timeout=None)
self._final_summary = result.response.get_summary_response
if self._backend:
self._backend.cleanup()
if self._run_status_checker:
self._run_status_checker.join()
if self._settings.run_id:
self._unregister_telemetry_import_hooks(self._settings.run_id)
@staticmethod
def _unregister_telemetry_import_hooks(run_id: str) -> None:
import_telemetry_set = telemetry.list_telemetry_imports()
for module_name in import_telemetry_set:
unregister_post_import_hook(module_name, run_id)
@_log_to_run
@_raise_if_finished
@_attach
def define_metric(
self,
name: str,
step_metric: str | wandb_metric.Metric | None = None,
step_sync: bool | None = None,
hidden: bool | None = None,
summary: str | None = None,
goal: str | None = None,
overwrite: bool | None = None,
) -> wandb_metric.Metric:
"""Customize metrics logged with `wandb.log()`.
Args:
name: The name of the metric to customize.
step_metric: The name of another metric to serve as the X-axis
for this metric in automatically generated charts.
step_sync: Automatically insert the last value of step_metric into
`run.log()` if it is not provided explicitly. Defaults to True
if step_metric is specified.
hidden: Hide this metric from automatic plots.
summary: Specify aggregate metrics added to summary.
Supported aggregations include "min", "max", "mean", "last",
"best", "copy" and "none". "best" is used together with the
goal parameter. "none" prevents a summary from being generated.
"copy" is deprecated and should not be used.
goal: Specify how to interpret the "best" summary type.
Supported options are "minimize" and "maximize".
overwrite: If false, then this call is merged with previous
`define_metric` calls for the same metric by using their
values for any unspecified parameters. If true, then
unspecified parameters overwrite values specified by
previous calls.
Returns:
An object that represents this call but can otherwise be discarded.
"""
if summary and "copy" in summary:
deprecate.deprecate(
Deprecated.run__define_metric_copy,
"define_metric(summary='copy') is deprecated and will be removed.",
self,
)
if (summary and "best" in summary) or goal is not None:
deprecate.deprecate(
Deprecated.run__define_metric_best_goal,
"define_metric(summary='best', goal=...) is deprecated and will be removed. "
"Use define_metric(summary='min') or define_metric(summary='max') instead.",
self,
)
return self._define_metric(
name,
step_metric,
step_sync,
hidden,
summary,
goal,
overwrite,
)
def _define_metric(
self,
name: str,
step_metric: str | wandb_metric.Metric | None = None,
step_sync: bool | None = None,
hidden: bool | None = None,
summary: str | None = None,
goal: str | None = None,
overwrite: bool | None = None,
) -> wandb_metric.Metric:
if not name:
raise wandb.Error("define_metric() requires non-empty name argument")
if isinstance(step_metric, wandb_metric.Metric):
step_metric = step_metric.name
for arg_name, arg_val, exp_type in (
("name", name, str),
("step_metric", step_metric, str),
("step_sync", step_sync, bool),
("hidden", hidden, bool),
("summary", summary, str),
("goal", goal, str),
("overwrite", overwrite, bool),
):
# NOTE: type checking is broken for isinstance and str
if arg_val is not None and not isinstance(arg_val, exp_type):
arg_type = type(arg_val).__name__
raise wandb.Error(
f"Unhandled define_metric() arg: {arg_name} type: {arg_type}"
)
stripped = name[:-1] if name.endswith("*") else name
if "*" in stripped:
raise wandb.Error(
f"Unhandled define_metric() arg: name (glob suffixes only): {name}"
)
summary_ops: Sequence[str] | None = None
if summary:
summary_items = [s.lower() for s in summary.split(",")]
summary_ops = []
valid = {"min", "max", "mean", "best", "last", "copy", "none"}
# TODO: deprecate copy and best
for i in summary_items:
if i not in valid:
raise wandb.Error(f"Unhandled define_metric() arg: summary op: {i}")
summary_ops.append(i)
with telemetry.context(run=self) as tel:
tel.feature.metric_summary = True
# TODO: deprecate goal
goal_cleaned: str | None = None
if goal is not None:
goal_cleaned = goal[:3].lower()
valid_goal = {"min", "max"}
if goal_cleaned not in valid_goal:
raise wandb.Error(f"Unhandled define_metric() arg: goal: {goal}")
with telemetry.context(run=self) as tel:
tel.feature.metric_goal = True
if hidden:
with telemetry.context(run=self) as tel:
tel.feature.metric_hidden = True
if step_sync:
with telemetry.context(run=self) as tel:
tel.feature.metric_step_sync = True
with telemetry.context(run=self) as tel:
tel.feature.metric = True
m = wandb_metric.Metric(
name=name,
step_metric=step_metric,
step_sync=step_sync,
summary=summary_ops,
hidden=hidden,
goal=goal_cleaned,
overwrite=overwrite,
)
m._set_callback(self._metric_callback)
m._commit()
return m
@_log_to_run
@_attach
def watch(
self,
models: torch.nn.Module | Sequence[torch.nn.Module],
criterion: torch.F | None = None, # type: ignore
log: Literal["gradients", "parameters", "all"] | None = "gradients",
log_freq: int = 1000,
idx: int | None = None,
log_graph: bool = False,
) -> None:
"""Hooks into the given PyTorch model(s) to monitor gradients and the model's computational graph.
This function can track parameters, gradients, or both during training. It should be
extended to support arbitrary machine learning models in the future.
Args:
models (Union[torch.nn.Module, Sequence[torch.nn.Module]]):
A single model or a sequence of models to be monitored.
criterion (Optional[torch.F]):
The loss function being optimized (optional).
log (Optional[Literal["gradients", "parameters", "all"]]):
Specifies whether to log "gradients", "parameters", or "all".
Set to None to disable logging. (default="gradients")
log_freq (int):
Frequency (in batches) to log gradients and parameters. (default=1000)
idx (Optional[int]):
Index used when tracking multiple models with `wandb.watch`. (default=None)
log_graph (bool):
Whether to log the model's computational graph. (default=False)
Raises:
ValueError:
If `wandb.init` has not been called or if any of the models are not instances
of `torch.nn.Module`.
"""
wandb.sdk._watch(self, models, criterion, log, log_freq, idx, log_graph)
@_log_to_run
@_attach
def unwatch(
self, models: torch.nn.Module | Sequence[torch.nn.Module] | None = None
) -> None:
"""Remove pytorch model topology, gradient and parameter hooks.
Args:
models (torch.nn.Module | Sequence[torch.nn.Module]):
Optional list of pytorch models that have had watch called on them
"""
wandb.sdk._unwatch(self, models=models)
def _detach(self) -> None:
pass
@_log_to_run
@_raise_if_finished
@_attach
def link_artifact(
self,
artifact: Artifact,
target_path: str,
aliases: list[str] | None = None,
) -> Artifact | None:
"""Link the given artifact to a portfolio (a promoted collection of artifacts).
The linked artifact will be visible in the UI for the specified portfolio.
Args:
artifact: the (public or local) artifact which will be linked
target_path: `str` - takes the following forms: `{portfolio}`, `{project}/{portfolio}`,
or `{entity}/{project}/{portfolio}`
aliases: `List[str]` - optional alias(es) that will only be applied on this linked artifact
inside the portfolio.
The alias "latest" will always be applied to the latest version of an artifact that is linked.
Returns:
The linked artifact if linking was successful, otherwise None.
"""
portfolio, project, entity = wandb.util._parse_entity_project_item(target_path)
if aliases is None:
aliases = []
if not self._backend or not self._backend.interface:
return None
if artifact.is_draft() and not artifact._is_draft_save_started():
artifact = self._log_artifact(artifact)
if self._settings._offline:
# TODO: implement offline mode + sync
raise NotImplementedError
# Wait until the artifact is committed before trying to link it.
artifact.wait()
organization = ""
if is_artifact_registry_project(project):
organization = entity or self.settings.organization or ""
# In a Registry linking, the entity is used to fetch the organization of the artifact
# therefore the source artifact's entity is passed to the backend
entity = artifact._source_entity
project = project or self.project
entity = entity or self.entity
handle = self._backend.interface.deliver_link_artifact(
artifact,
portfolio,
aliases,
entity,
project,
organization,
)
if artifact._ttl_duration_seconds is not None:
wandb.termwarn(
"Artifact TTL will be disabled for source artifacts that are linked to portfolios."
)
result = handle.wait_or(timeout=None)
response = result.response.link_artifact_response
if response.error_message:
wandb.termerror(response.error_message)
return None
if response.version_index is None:
wandb.termerror(
"Error fetching the linked artifact's version index after linking"
)
return None
try:
artifact_name = f"{entity}/{project}/{portfolio}:v{response.version_index}"
if is_artifact_registry_project(project):
if organization:
artifact_name = f"{organization}/{project}/{portfolio}:v{response.version_index}"
else:
artifact_name = f"{project}/{portfolio}:v{response.version_index}"
linked_artifact = self._public_api()._artifact(artifact_name)
except Exception as e:
wandb.termerror(f"Error fetching link artifact after linking: {e}")
return None
return linked_artifact
@_log_to_run
@_raise_if_finished
@_attach
def use_artifact(
self,
artifact_or_name: str | Artifact,
type: str | None = None,
aliases: list[str] | None = None,
use_as: str | None = None,
) -> Artifact:
"""Declare an artifact as an input to a run.
Call `download` or `file` on the returned object to get the contents locally.
Args:
artifact_or_name: (str or Artifact) An artifact name.
May be prefixed with project/ or entity/project/.
If no entity is specified in the name, the Run or API setting's entity is used.
Valid names can be in the following forms:
- name:version
- name:alias
You can also pass an Artifact object created by calling `wandb.Artifact`
type: (str, optional) The type of artifact to use.
aliases: (list, optional) Aliases to apply to this artifact
use_as: This argument is deprecated and does nothing.
Returns:
An `Artifact` object.
"""
if self._settings._offline:
raise TypeError("Cannot use artifact when in offline mode.")
api = internal.Api(
default_settings={
"entity": self._settings.entity,
"project": self._settings.project,
}
)
api.set_current_run_id(self._settings.run_id)
if use_as is not None:
deprecate.deprecate(
field_name=Deprecated.run__use_artifact_use_as,
warning_message=(
"`use_as` argument is deprecated and does not affect the behaviour of `run.use_artifact`"
),
)
if isinstance(artifact_or_name, str):
name = artifact_or_name
public_api = self._public_api()
artifact = public_api._artifact(type=type, name=name)
if type is not None and type != artifact.type:
raise ValueError(
f"Supplied type {type} does not match type {artifact.type} of artifact {artifact.name}"
)
api.use_artifact(
artifact.id,
entity_name=self._settings.entity,
project_name=self._settings.project,
artifact_entity_name=artifact.entity,
artifact_project_name=artifact.project,
)
else:
artifact = artifact_or_name
if aliases is None:
aliases = []
elif isinstance(aliases, str):
aliases = [aliases]
if isinstance(artifact_or_name, Artifact) and artifact.is_draft():
if use_as is not None:
wandb.termwarn(
"Indicating use_as is not supported when using a draft artifact"
)
self._log_artifact(
artifact,
aliases=aliases,
is_user_created=True,
use_after_commit=True,
)
artifact.wait()
elif isinstance(artifact, Artifact) and not artifact.is_draft():
api.use_artifact(
artifact.id,
artifact_entity_name=artifact.entity,
artifact_project_name=artifact.project,
)
else:
raise ValueError(
'You must pass an artifact name (e.g. "pedestrian-dataset:v1"), '
"an instance of `wandb.Artifact`, or `wandb.Api().artifact()` to `use_artifact`"
)
if self._backend and self._backend.interface:
self._backend.interface.publish_use_artifact(artifact)
return artifact
@_log_to_run
@_raise_if_finished
@_attach
def log_artifact(
self,
artifact_or_path: Artifact | StrPath,
name: str | None = None,
type: str | None = None,
aliases: list[str] | None = None,
tags: list[str] | None = None,
) -> Artifact:
"""Declare an artifact as an output of a run.
Args:
artifact_or_path: (str or Artifact) A path to the contents of this artifact,
can be in the following forms:
- `/local/directory`
- `/local/directory/file.txt`
- `s3://bucket/path`
You can also pass an Artifact object created by calling
`wandb.Artifact`.
name: (str, optional) An artifact name. Valid names can be in the following forms:
- name:version
- name:alias
- digest
This will default to the basename of the path prepended with the current
run id if not specified.
type: (str) The type of artifact to log, examples include `dataset`, `model`
aliases: (list, optional) Aliases to apply to this artifact,
defaults to `["latest"]`
tags: (list, optional) Tags to apply to this artifact, if any.
Returns:
An `Artifact` object.
"""
return self._log_artifact(
artifact_or_path,
name=name,
type=type,
aliases=aliases,
tags=tags,
)
@_log_to_run
@_raise_if_finished
@_attach
def upsert_artifact(
self,
artifact_or_path: Artifact | str,
name: str | None = None,
type: str | None = None,
aliases: list[str] | None = None,
distributed_id: str | None = None,
) -> Artifact:
"""Declare (or append to) a non-finalized artifact as output of a run.
Note that you must call run.finish_artifact() to finalize the artifact.
This is useful when distributed jobs need to all contribute to the same artifact.
Args:
artifact_or_path: (str or Artifact) A path to the contents of this artifact,
can be in the following forms:
- `/local/directory`
- `/local/directory/file.txt`
- `s3://bucket/path`
You can also pass an Artifact object created by calling
`wandb.Artifact`.
name: (str, optional) An artifact name. May be prefixed with entity/project.
Valid names can be in the following forms:
- name:version
- name:alias
- digest
This will default to the basename of the path prepended with the current
run id if not specified.
type: (str) The type of artifact to log, examples include `dataset`, `model`
aliases: (list, optional) Aliases to apply to this artifact,
defaults to `["latest"]`
distributed_id: (string, optional) Unique string that all distributed jobs share. If None,
defaults to the run's group name.
Returns:
An `Artifact` object.
"""
if self._settings.run_group is None and distributed_id is None:
raise TypeError(
"Cannot upsert artifact unless run is in a group or distributed_id is provided"
)
if distributed_id is None:
distributed_id = self._settings.run_group or ""
return self._log_artifact(
artifact_or_path,
name=name,
type=type,
aliases=aliases,
distributed_id=distributed_id,
finalize=False,
)
@_log_to_run
@_raise_if_finished
@_attach
def finish_artifact(
self,
artifact_or_path: Artifact | str,
name: str | None = None,
type: str | None = None,
aliases: list[str] | None = None,
distributed_id: str | None = None,
) -> Artifact:
"""Finishes a non-finalized artifact as output of a run.
Subsequent "upserts" with the same distributed ID will result in a new version.
Args:
artifact_or_path: (str or Artifact) A path to the contents of this artifact,
can be in the following forms:
- `/local/directory`
- `/local/directory/file.txt`
- `s3://bucket/path`
You can also pass an Artifact object created by calling
`wandb.Artifact`.
name: (str, optional) An artifact name. May be prefixed with entity/project.
Valid names can be in the following forms:
- name:version
- name:alias
- digest
This will default to the basename of the path prepended with the current
run id if not specified.
type: (str) The type of artifact to log, examples include `dataset`, `model`
aliases: (list, optional) Aliases to apply to this artifact,
defaults to `["latest"]`
distributed_id: (string, optional) Unique string that all distributed jobs share. If None,
defaults to the run's group name.
Returns:
An `Artifact` object.
"""
if self._settings.run_group is None and distributed_id is None:
raise TypeError(
"Cannot finish artifact unless run is in a group or distributed_id is provided"
)
if distributed_id is None:
distributed_id = self._settings.run_group or ""
return self._log_artifact(
artifact_or_path,
name,
type,
aliases,
distributed_id=distributed_id,
finalize=True,
)
def _log_artifact(
self,
artifact_or_path: Artifact | StrPath,
name: str | None = None,
type: str | None = None,
aliases: list[str] | None = None,
tags: list[str] | None = None,
distributed_id: str | None = None,
finalize: bool = True,
is_user_created: bool = False,
use_after_commit: bool = False,
) -> Artifact:
if self._settings.anonymous in ["allow", "must"]:
wandb.termwarn(
"Artifacts logged anonymously cannot be claimed and expire after 7 days."
)
if not finalize and distributed_id is None:
raise TypeError("Must provide distributed_id if artifact is not finalize")
if aliases is not None:
aliases = validate_aliases(aliases)
# Check if artifact tags are supported
if tags is not None:
tags = validate_tags(tags)
artifact, aliases = self._prepare_artifact(
artifact_or_path, name, type, aliases
)
if len(artifact.metadata) > MAX_ARTIFACT_METADATA_KEYS:
raise ValueError(
f"Artifact must not have more than {MAX_ARTIFACT_METADATA_KEYS} metadata keys."
)
artifact.distributed_id = distributed_id
self._assert_can_log_artifact(artifact)
if self._backend and self._backend.interface:
if not self._settings._offline:
handle = self._backend.interface.deliver_artifact(
self,
artifact,
aliases,
tags,
self.step,
finalize=finalize,
is_user_created=is_user_created,
use_after_commit=use_after_commit,
)
artifact._set_save_handle(handle, self._public_api().client)
else:
self._backend.interface.publish_artifact(
self,
artifact,
aliases,
tags,
finalize=finalize,
is_user_created=is_user_created,
use_after_commit=use_after_commit,
)
elif self._internal_run_interface:
self._internal_run_interface.publish_artifact(
self,
artifact,
aliases,
tags,
finalize=finalize,
is_user_created=is_user_created,
use_after_commit=use_after_commit,
)
return artifact
def _public_api(self, overrides: dict[str, str] | None = None) -> PublicApi:
overrides = {"run": self._settings.run_id} # type: ignore
if not self._settings._offline:
overrides["entity"] = self._settings.entity or ""
overrides["project"] = self._settings.project or ""
return public.Api(overrides)
# TODO(jhr): annotate this
def _assert_can_log_artifact(self, artifact) -> None: # type: ignore
if self._settings._offline:
return
try:
public_api = self._public_api()
entity = public_api.settings["entity"]
project = public_api.settings["project"]
expected_type = Artifact._expected_type(
entity, project, artifact.name, public_api.client
)
except requests.exceptions.RequestException:
# Just return early if there is a network error. This is
# ok, as this function is intended to help catch an invalid
# type early, but not a hard requirement for valid operation.
return
if expected_type is not None and artifact.type != expected_type:
raise ValueError(
f"Artifact {artifact.name} already exists with type '{expected_type}'; "
f"cannot create another with type '{artifact.type}'"
)
if entity and artifact._source_entity and entity != artifact._source_entity:
raise ValueError(
f"Artifact {artifact.name} is owned by entity "
f"'{artifact._source_entity}'; it can't be moved to '{entity}'"
)
if project and artifact._source_project and project != artifact._source_project:
raise ValueError(
f"Artifact {artifact.name} exists in project "
f"'{artifact._source_project}'; it can't be moved to '{project}'"
)
def _prepare_artifact(
self,
artifact_or_path: Artifact | StrPath,
name: str | None = None,
type: str | None = None,
aliases: list[str] | None = None,
) -> tuple[Artifact, list[str]]:
if isinstance(artifact_or_path, (str, os.PathLike)):
name = (
name
or f"run-{self._settings.run_id}-{os.path.basename(artifact_or_path)}"
)
artifact = Artifact(name, type or "unspecified")
if os.path.isfile(artifact_or_path):
artifact.add_file(str(artifact_or_path))
elif os.path.isdir(artifact_or_path):
artifact.add_dir(str(artifact_or_path))
elif "://" in str(artifact_or_path):
artifact.add_reference(str(artifact_or_path))
else:
raise ValueError(
"path must be a file, directory or external"
"reference like s3://bucket/path"
)
else:
artifact = artifact_or_path
if not isinstance(artifact, Artifact):
raise TypeError(
"You must pass an instance of wandb.Artifact or a "
"valid file path to log_artifact"
)
artifact.finalize()
return artifact, _resolve_aliases(aliases)
@_log_to_run
@_raise_if_finished
@_attach
def log_model(
self,
path: StrPath,
name: str | None = None,
aliases: list[str] | None = None,
) -> None:
"""Logs a model artifact containing the contents inside the 'path' to a run and marks it as an output to this run.
Args:
path: (str) A path to the contents of this model,
can be in the following forms:
- `/local/directory`
- `/local/directory/file.txt`
- `s3://bucket/path`
name: (str, optional) A name to assign to the model artifact that the file contents will be added to.
The string must contain only the following alphanumeric characters: dashes, underscores, and dots.
This will default to the basename of the path prepended with the current
run id if not specified.
aliases: (list, optional) Aliases to apply to the created model artifact,
defaults to `["latest"]`
Examples:
```python
run.log_model(
path="/local/directory",
name="my_model_artifact",
aliases=["production"],
)
```
Invalid usage
```python
run.log_model(
path="/local/directory",
name="my_entity/my_project/my_model_artifact",
aliases=["production"],
)
```
Raises:
ValueError: if name has invalid special characters
Returns:
None
"""
self._log_artifact(
artifact_or_path=path, name=name, type="model", aliases=aliases
)
@_log_to_run
@_raise_if_finished
@_attach
def use_model(self, name: str) -> FilePathStr:
"""Download the files logged in a model artifact 'name'.
Args:
name: (str) A model artifact name. 'name' must match the name of an existing logged
model artifact.
May be prefixed with entity/project/. Valid names
can be in the following forms:
- model_artifact_name:version
- model_artifact_name:alias
Examples:
```python
run.use_model(
name="my_model_artifact:latest",
)
run.use_model(
name="my_project/my_model_artifact:v0",
)
run.use_model(
name="my_entity/my_project/my_model_artifact:<digest>",
)
```
Invalid usage
```python
run.use_model(
name="my_entity/my_project/my_model_artifact",
)
```
Raises:
AssertionError: if model artifact 'name' is of a type that does not contain the substring 'model'.
Returns:
path: (str) path to downloaded model artifact file(s).
"""
if self._settings._offline:
# Downloading artifacts is not supported when offline.
raise RuntimeError("`use_model` not supported in offline mode.")
artifact = self.use_artifact(artifact_or_name=name)
if "model" not in str(artifact.type.lower()):
raise AssertionError(
"You can only use this method for 'model' artifacts."
" For an artifact to be a 'model' artifact, its type property"
" must contain the substring 'model'."
)
path = artifact.download()
# If returned directory contains only one file, return path to that file
dir_list = os.listdir(path)
if len(dir_list) == 1:
return FilePathStr(os.path.join(path, dir_list[0]))
return path
@_log_to_run
@_raise_if_finished
@_attach
def link_model(
self,
path: StrPath,
registered_model_name: str,
name: str | None = None,
aliases: list[str] | None = None,
) -> Artifact | None:
"""Log a model artifact version and link it to a registered model in the model registry.
The linked model version will be visible in the UI for the specified registered model.
Steps:
- Check if 'name' model artifact has been logged. If so, use the artifact version that matches the files
located at 'path' or log a new version. Otherwise log files under 'path' as a new model artifact, 'name'
of type 'model'.
- Check if registered model with name 'registered_model_name' exists in the 'model-registry' project.
If not, create a new registered model with name 'registered_model_name'.
- Link version of model artifact 'name' to registered model, 'registered_model_name'.
- Attach aliases from 'aliases' list to the newly linked model artifact version.
Args:
path: (str) A path to the contents of this model,
can be in the following forms:
- `/local/directory`
- `/local/directory/file.txt`
- `s3://bucket/path`
registered_model_name: (str) - the name of the registered model that the model is to be linked to.
A registered model is a collection of model versions linked to the model registry, typically representing a
team's specific ML Task. The entity that this registered model belongs to will be derived from the run
name: (str, optional) - the name of the model artifact that files in 'path' will be logged to. This will
default to the basename of the path prepended with the current run id if not specified.
aliases: (List[str], optional) - alias(es) that will only be applied on this linked artifact
inside the registered model.
The alias "latest" will always be applied to the latest version of an artifact that is linked.
Examples:
```python
run.link_model(
path="/local/directory",
registered_model_name="my_reg_model",
name="my_model_artifact",
aliases=["production"],
)
```
Invalid usage
```python
run.link_model(
path="/local/directory",
registered_model_name="my_entity/my_project/my_reg_model",
name="my_model_artifact",
aliases=["production"],
)
run.link_model(
path="/local/directory",
registered_model_name="my_reg_model",
name="my_entity/my_project/my_model_artifact",
aliases=["production"],
)
```
Raises:
AssertionError: if registered_model_name is a path or
if model artifact 'name' is of a type that does not contain the substring 'model'
ValueError: if name has invalid special characters
Returns:
The linked artifact if linking was successful, otherwise None.
"""
name_parts = registered_model_name.split("/")
if len(name_parts) != 1:
raise AssertionError(
"Please provide only the name of the registered model."
" Do not append the entity or project name."
)
project = "model-registry"
target_path = self.entity + "/" + project + "/" + registered_model_name
public_api = self._public_api()
try:
artifact = public_api._artifact(name=f"{name}:latest")
if "model" not in str(artifact.type.lower()):
raise AssertionError(
"You can only use this method for 'model' artifacts."
" For an artifact to be a 'model' artifact, its type"
" property must contain the substring 'model'."
)
artifact = self._log_artifact(
artifact_or_path=path, name=name, type=artifact.type
)
except (ValueError, CommError):
artifact = self._log_artifact(
artifact_or_path=path, name=name, type="model"
)
return self.link_artifact(
artifact=artifact, target_path=target_path, aliases=aliases
)
@_log_to_run
@_raise_if_finished
@_attach
def alert(
self,
title: str,
text: str,
level: str | AlertLevel | None = None,
wait_duration: int | float | timedelta | None = None,
) -> None:
"""Launch an alert with the given title and text.
Args:
title: (str) The title of the alert, must be less than 64 characters long.
text: (str) The text body of the alert.
level: (str or AlertLevel, optional) The alert level to use, either: `INFO`, `WARN`, or `ERROR`.
wait_duration: (int, float, or timedelta, optional) The time to wait (in seconds) before sending another
alert with this title.
"""
level = level or AlertLevel.INFO
level_str: str = level.value if isinstance(level, AlertLevel) else level
if level_str not in {lev.value for lev in AlertLevel}:
raise ValueError("level must be one of 'INFO', 'WARN', or 'ERROR'")
wait_duration = wait_duration or timedelta(minutes=1)
if isinstance(wait_duration, int) or isinstance(wait_duration, float):
wait_duration = timedelta(seconds=wait_duration)
elif not callable(getattr(wait_duration, "total_seconds", None)):
raise TypeError(
"wait_duration must be an int, float, or datetime.timedelta"
)
wait_duration = int(wait_duration.total_seconds() * 1000)
if self._backend and self._backend.interface:
self._backend.interface.publish_alert(title, text, level_str, wait_duration)
def __enter__(self) -> Run:
return self
def __exit__(
self,
exc_type: type[BaseException],
exc_val: BaseException,
exc_tb: TracebackType,
) -> bool:
exception_raised = exc_type is not None
if exception_raised:
traceback.print_exception(exc_type, exc_val, exc_tb)
exit_code = 1 if exception_raised else 0
self._finish(exit_code=exit_code)
return not exception_raised
@_log_to_run
@_raise_if_finished
@_attach
def mark_preempting(self) -> None:
"""Mark this run as preempting.
Also tells the internal process to immediately report this to server.
"""
if self._backend and self._backend.interface:
self._backend.interface.publish_preempting()
@property
@_log_to_run
@_raise_if_finished
@_attach
def _system_metrics(self) -> dict[str, list[tuple[datetime, float]]]:
"""Returns a dictionary of system metrics.
Returns:
A dictionary of system metrics.
"""
from wandb.proto import wandb_internal_pb2
def pb_to_dict(
system_metrics_pb: wandb_internal_pb2.GetSystemMetricsResponse,
) -> dict[str, list[tuple[datetime, float]]]:
res = {}
for metric, records in system_metrics_pb.system_metrics.items():
measurements = []
for record in records.record:
# Convert timestamp to datetime
dt = datetime.fromtimestamp(
record.timestamp.seconds, tz=timezone.utc
)
dt = dt.replace(microsecond=record.timestamp.nanos // 1000)
measurements.append((dt, record.value))
res[metric] = measurements
return res
if not self._backend or not self._backend.interface:
return {}
handle = self._backend.interface.deliver_get_system_metrics()
try:
result = handle.wait_or(timeout=1)
except TimeoutError:
return {}
else:
try:
response = result.response.get_system_metrics_response
return pb_to_dict(response) if response else {}
except Exception:
logger.exception("Error getting system metrics.")
return {}
@property
@_log_to_run
@_attach
@_raise_if_finished
def _metadata(self) -> Metadata | None:
"""The metadata associated with this run.
NOTE: Automatically collected metadata can be overridden by the user.
"""
if not self._backend or not self._backend.interface:
return self.__metadata
# Initialize the metadata object if it doesn't exist.
if self.__metadata is None:
self.__metadata = Metadata()
self.__metadata._set_callback(self._metadata_callback)
handle = self._backend.interface.deliver_get_system_metadata()
try:
result = handle.wait_or(timeout=1)
except TimeoutError:
logger.exception("Timeout getting run metadata.")
return None
response = result.response.get_system_metadata_response
# Temporarily disable the callback to prevent triggering
# an update call to wandb-core with the callback.
with self.__metadata.disable_callback():
# Values stored in the metadata object take precedence.
self.__metadata.update_from_proto(response.metadata, skip_existing=True)
return self.__metadata
@_log_to_run
@_raise_if_finished
@_attach
def _metadata_callback(
self,
metadata: MetadataRequest,
) -> None:
"""Callback to publish Metadata to wandb-core upon user updates."""
# ignore updates if the attached to another run
if self._is_attached:
wandb.termwarn(
"Metadata updates are ignored when attached to another run.",
repeat=False,
)
return
if self._backend and self._backend.interface:
self._backend.interface.publish_metadata(metadata)
# ------------------------------------------------------------------------------
# HEADER
# ------------------------------------------------------------------------------
def _header(self) -> None:
self._header_wandb_version_info()
self._header_sync_info()
self._header_run_info()
def _header_wandb_version_info(self) -> None:
if self._settings.quiet or self._settings.silent:
return
# TODO: add this to a higher verbosity level
self._printer.display(f"Tracking run with wandb version {wandb.__version__}")
def _header_sync_info(self) -> None:
if self._settings._offline:
self._printer.display(
[
f"W&B syncing is set to {self._printer.code('`offline`')}"
f" in this directory. Run {self._printer.code('`wandb online`')}"
f" or set {self._printer.code('WANDB_MODE=online')}"
" to enable cloud syncing.",
]
)
else:
sync_dir = self._settings.sync_dir
info = [f"Run data is saved locally in {self._printer.files(sync_dir)}"]
if not self._printer.supports_html:
info.append(
f"Run {self._printer.code('`wandb offline`')} to turn off syncing."
)
if not self._settings.quiet and not self._settings.silent:
self._printer.display(info)
def _header_run_info(self) -> None:
settings, printer = self._settings, self._printer
if settings._offline or settings.silent:
return
run_url = settings.run_url
project_url = settings.project_url
sweep_url = settings.sweep_url
run_state_str = (
"Resuming run"
if settings.resumed or settings.resume_from
else "Syncing run"
)
run_name = settings.run_name
if not run_name:
return
if printer.supports_html:
import wandb.jupyter
if not wandb.jupyter.display_if_magic_is_used(self):
run_line = f"<strong>{printer.link(run_url, run_name)}</strong>"
project_line, sweep_line = "", ""
if not settings.quiet:
doc_html = printer.link(url_registry.url("developer-guide"), "docs")
project_html = printer.link(project_url, "Weights & Biases")
project_line = f"to {project_html} ({doc_html})"
if sweep_url:
sweep_line = f"Sweep page: {printer.link(sweep_url, sweep_url)}"
printer.display(
[f"{run_state_str} {run_line} {project_line}", sweep_line],
)
elif run_name:
printer.display(f"{run_state_str} {printer.name(run_name)}")
if not settings.quiet:
# TODO: add verbosity levels and add this to higher levels
printer.display(
f"{printer.emoji('star')} View project at {printer.link(project_url)}"
)
if sweep_url:
printer.display(
f"{printer.emoji('broom')} View sweep at {printer.link(sweep_url)}"
)
printer.display(
f"{printer.emoji('rocket')} View run at {printer.link(run_url)}",
)
if run_name and settings.anonymous in ["allow", "must"]:
printer.display(
(
"Do NOT share these links with anyone."
" They can be used to claim your runs."
),
level="warn",
)
# ------------------------------------------------------------------------------
# FOOTER
# ------------------------------------------------------------------------------
# Note: All the footer methods are static methods since we want to share the printing logic
# with the service execution path that doesn't have access to the run instance
@staticmethod
def _footer(
sampled_history: SampledHistoryResponse | None = None,
final_summary: GetSummaryResponse | None = None,
poll_exit_response: PollExitResponse | None = None,
internal_messages_response: InternalMessagesResponse | None = None,
*,
settings: Settings,
printer: printer.Printer,
) -> None:
Run._footer_history_summary_info(
history=sampled_history,
summary=final_summary,
settings=settings,
printer=printer,
)
Run._footer_sync_info(
poll_exit_response=poll_exit_response,
settings=settings,
printer=printer,
)
Run._footer_log_dir_info(settings=settings, printer=printer)
Run._footer_notify_wandb_core(
settings=settings,
printer=printer,
)
Run._footer_internal_messages(
internal_messages_response=internal_messages_response,
settings=settings,
printer=printer,
)
@staticmethod
def _footer_sync_info(
poll_exit_response: PollExitResponse | None = None,
*,
settings: Settings,
printer: printer.Printer,
) -> None:
if settings.silent:
return
if settings._offline:
if not settings.quiet:
printer.display(
[
"You can sync this run to the cloud by running:",
printer.code(f"wandb sync {settings.sync_dir}"),
],
)
return
info = []
if settings.run_name and settings.run_url:
info.append(
f"{printer.emoji('rocket')} View run {printer.name(settings.run_name)} at: {printer.link(settings.run_url)}"
)
if settings.project_url:
info.append(
f"{printer.emoji('star')} View project at: {printer.link(settings.project_url)}"
)
if poll_exit_response and poll_exit_response.file_counts:
logger.info("logging synced files")
file_counts = poll_exit_response.file_counts
info.append(
f"Synced {file_counts.wandb_count} W&B file(s), {file_counts.media_count} media file(s), "
f"{file_counts.artifact_count} artifact file(s) and {file_counts.other_count} other file(s)",
)
printer.display(info)
@staticmethod
def _footer_log_dir_info(
*,
settings: Settings,
printer: printer.Printer,
) -> None:
if settings.quiet or settings.silent:
return
log_dir = settings.log_user or settings.log_internal
if log_dir:
log_dir = os.path.dirname(log_dir.replace(os.getcwd(), "."))
printer.display(
f"Find logs at: {printer.files(log_dir)}",
)
@staticmethod
def _footer_history_summary_info(
history: SampledHistoryResponse | None = None,
summary: GetSummaryResponse | None = None,
*,
settings: Settings,
printer: printer.Printer,
) -> None:
if settings.quiet or settings.silent:
return
panel = []
# Render history if available
if history:
logger.info("rendering history")
sampled_history = {
item.key: wandb.util.downsample(
item.values_float or item.values_int, 40
)
for item in history.item
if not item.key.startswith("_")
}
history_rows = []
for key, values in sorted(sampled_history.items()):
if any(not isinstance(value, numbers.Number) for value in values):
continue
sparkline = printer.sparklines(values)
if sparkline:
history_rows.append([key, sparkline])
if history_rows:
history_grid = printer.grid(
history_rows,
"Run history:",
)
panel.append(history_grid)
# Render summary if available
if summary:
final_summary = {}
for item in summary.item:
if item.key.startswith("_") or len(item.nested_key) > 0:
continue
final_summary[item.key] = json.loads(item.value_json)
logger.info("rendering summary")
summary_rows = []
for key, value in sorted(final_summary.items()):
# arrays etc. might be too large. for now, we just don't print them
if isinstance(value, str):
value = value[:20] + "..." * (len(value) >= 20)
summary_rows.append([key, value])
elif isinstance(value, numbers.Number):
value = round(value, 5) if isinstance(value, float) else value
summary_rows.append([key, str(value)])
else:
continue
if summary_rows:
summary_grid = printer.grid(
summary_rows,
"Run summary:",
)
panel.append(summary_grid)
if panel:
printer.display(printer.panel(panel))
@staticmethod
def _footer_internal_messages(
internal_messages_response: InternalMessagesResponse | None = None,
*,
settings: Settings,
printer: printer.Printer,
) -> None:
if settings.quiet or settings.silent:
return
if not internal_messages_response:
return
for message in internal_messages_response.messages.warning:
printer.display(message, level="warn")
@staticmethod
def _footer_notify_wandb_core(
*,
settings: Settings,
printer: printer.Printer,
) -> None:
"""Prints a message advertising the upcoming core release."""
if settings.quiet or not settings.x_require_legacy_service:
return
printer.display(
"The legacy backend is deprecated. In future versions, `wandb-core` will become "
"the sole backend service, and the `wandb.require('legacy-service')` flag will be removed. "
f"For more information, visit {url_registry.url('wandb-core')}",
level="warn",
)
# We define this outside of the run context to support restoring before init
def restore(
name: str,
run_path: str | None = None,
replace: bool = False,
root: str | None = None,
) -> None | TextIO:
"""Download the specified file from cloud storage.
File is placed into the current directory or run directory.
By default, will only download the file if it doesn't already exist.
Args:
name: the name of the file
run_path: optional path to a run to pull files from, i.e. `username/project_name/run_id`
if wandb.init has not been called, this is required.
replace: whether to download the file even if it already exists locally
root: the directory to download the file to. Defaults to the current
directory or the run directory if wandb.init was called.
Returns:
None if it can't find the file, otherwise a file object open for reading
Raises:
wandb.CommError: if we can't connect to the wandb backend
ValueError: if the file is not found or can't find run_path
"""
is_disabled = wandb.run is not None and wandb.run.disabled
run = None if is_disabled else wandb.run
if run_path is None:
if run is not None:
run_path = run.path
else:
raise ValueError(
"run_path required when calling wandb.restore before wandb.init"
)
if root is None:
if run is not None:
root = run.dir
api = public.Api()
api_run = api.run(run_path)
if root is None:
root = os.getcwd()
path = os.path.join(root, name)
if os.path.exists(path) and replace is False:
return open(path)
if is_disabled:
return None
files = api_run.files([name])
if len(files) == 0:
return None
# if the file does not exist, the file has an md5 of 0
if files[0].md5 == "0":
raise ValueError(f"File {name} not found in {run_path or root}.")
return files[0].download(root=root, replace=True)
# propagate our doc string to the runs restore method
try:
Run.restore.__doc__ = restore.__doc__
except AttributeError:
pass
def finish(
exit_code: int | None = None,
quiet: bool | None = None,
) -> None:
"""Finish a run and upload any remaining data.
Marks the completion of a W&B run and ensures all data is synced to the server.
The run's final state is determined by its exit conditions and sync status.
Run States:
- Running: Active run that is logging data and/or sending heartbeats.
- Crashed: Run that stopped sending heartbeats unexpectedly.
- Finished: Run completed successfully (`exit_code=0`) with all data synced.
- Failed: Run completed with errors (`exit_code!=0`).
Args:
exit_code: Integer indicating the run's exit status. Use 0 for success,
any other value marks the run as failed.
quiet: Deprecated. Configure logging verbosity using `wandb.Settings(quiet=...)`.
"""
if wandb.run:
wandb.run.finish(exit_code=exit_code, quiet=quiet)