from __future__ import annotations import asyncio import functools import glob import json import logging import numbers import os import pathlib import re import sys import threading import time import traceback from collections.abc import Mapping from dataclasses import dataclass, field from datetime import datetime, timedelta, timezone from enum import IntEnum from types import TracebackType from typing import TYPE_CHECKING, Callable, Sequence, TextIO, TypeVar import requests from typing_extensions import Any, Concatenate, Literal, NamedTuple, ParamSpec import wandb import wandb.env import wandb.util from wandb import trigger from wandb.apis import internal, public from wandb.apis.public import Api as PublicApi from wandb.errors import CommError, UsageError from wandb.errors.links import url_registry from wandb.integration.torch import wandb_torch from wandb.plot import CustomChart, Visualize from wandb.proto.wandb_deprecated import Deprecated from wandb.proto.wandb_internal_pb2 import ( MetadataRequest, MetricRecord, PollExitResponse, Result, RunRecord, ) from wandb.sdk.artifacts._internal_artifact import InternalArtifact from wandb.sdk.artifacts.artifact import Artifact from wandb.sdk.internal import job_builder from wandb.sdk.lib import asyncio_compat, wb_logging from wandb.sdk.lib.import_hooks import ( register_post_import_hook, unregister_post_import_hook, ) from wandb.sdk.lib.paths import FilePathStr, StrPath from wandb.util import ( _is_artifact_object, _is_artifact_string, _is_artifact_version_weave_dict, _is_py_requirements_or_dockerfile, _resolve_aliases, add_import_hook, parse_artifact_string, ) from . import wandb_config, wandb_metric, wandb_summary from .artifacts._validators import ( MAX_ARTIFACT_METADATA_KEYS, is_artifact_registry_project, validate_aliases, validate_tags, ) from .data_types._dtypes import TypeRegistry from .interface.interface import FilesDict, GlobStr, InterfaceBase, PolicyName from .interface.summary_record import SummaryRecord from .lib import ( config_util, deprecate, filenames, filesystem, interrupt, ipython, module, printer, progress, proto_util, redirect, telemetry, ) from .lib.exit_hooks import ExitHooks from .mailbox import ( HandleAbandonedError, MailboxClosedError, MailboxHandle, wait_with_progress, ) from .wandb_alerts import AlertLevel from .wandb_metadata import Metadata from .wandb_settings import Settings from .wandb_setup import _WandbSetup if TYPE_CHECKING: from typing import TypedDict import torch # type: ignore [import-not-found] import wandb.apis.public import wandb.sdk.backend.backend import wandb.sdk.interface.interface_queue from wandb.proto.wandb_internal_pb2 import ( GetSummaryResponse, InternalMessagesResponse, SampledHistoryResponse, ) class GitSourceDict(TypedDict): remote: str commit: str entrypoint: list[str] args: Sequence[str] class ArtifactSourceDict(TypedDict): artifact: str entrypoint: list[str] args: Sequence[str] class ImageSourceDict(TypedDict): image: str args: Sequence[str] class JobSourceDict(TypedDict, total=False): _version: str source_type: str source: GitSourceDict | ArtifactSourceDict | ImageSourceDict input_types: dict[str, Any] output_types: dict[str, Any] runtime: str | None logger = logging.getLogger("wandb") EXIT_TIMEOUT = 60 RE_LABEL = re.compile(r"[a-zA-Z0-9_-]+$") class TeardownStage(IntEnum): EARLY = 1 LATE = 2 class TeardownHook(NamedTuple): call: Callable[[], None] stage: TeardownStage class RunStatusChecker: """Periodically polls the background process for relevant updates. - check if the user has requested a stop. - check the network status. - check the run sync status. """ _stop_status_lock: threading.Lock _stop_status_handle: MailboxHandle[Result] | None _network_status_lock: threading.Lock _network_status_handle: MailboxHandle[Result] | None _internal_messages_lock: threading.Lock _internal_messages_handle: MailboxHandle[Result] | None def __init__( self, run_id: str, interface: InterfaceBase, stop_polling_interval: int = 15, retry_polling_interval: int = 5, internal_messages_polling_interval: int = 10, ) -> None: self._run_id = run_id self._interface = interface self._stop_polling_interval = stop_polling_interval self._retry_polling_interval = retry_polling_interval self._internal_messages_polling_interval = internal_messages_polling_interval self._join_event = threading.Event() self._stop_status_lock = threading.Lock() self._stop_status_handle = None self._stop_thread = threading.Thread( target=self.check_stop_status, name="ChkStopThr", daemon=True, ) self._network_status_lock = threading.Lock() self._network_status_handle = None self._network_status_thread = threading.Thread( target=self.check_network_status, name="NetStatThr", daemon=True, ) self._internal_messages_lock = threading.Lock() self._internal_messages_handle = None self._internal_messages_thread = threading.Thread( target=self.check_internal_messages, name="IntMsgThr", daemon=True, ) def start(self) -> None: self._stop_thread.start() self._network_status_thread.start() self._internal_messages_thread.start() @staticmethod def _abandon_status_check( lock: threading.Lock, handle: MailboxHandle[Result] | None, ): with lock: if handle: handle.abandon() def _loop_check_status( self, *, lock: threading.Lock, set_handle: Any, timeout: int, request: Any, process: Any, ) -> None: local_handle: MailboxHandle[Result] | None = None join_requested = False while not join_requested: time_probe = time.monotonic() if not local_handle: try: local_handle = request() except MailboxClosedError: # This can happen if the service process dies. break assert local_handle with lock: if self._join_event.is_set(): break set_handle(local_handle) try: result = local_handle.wait_or(timeout=timeout) except HandleAbandonedError: # This can happen if the service process dies. break except TimeoutError: result = None with lock: set_handle(None) if result: process(result) local_handle = None time_elapsed = time.monotonic() - time_probe wait_time = max(timeout - time_elapsed, 0) join_requested = self._join_event.wait(timeout=wait_time) def check_network_status(self) -> None: def _process_network_status(result: Result) -> None: network_status = result.response.network_status_response for hr in network_status.network_responses: if ( hr.http_status_code == 200 or hr.http_status_code == 0 ): # we use 0 for non-http errors (eg wandb errors) wandb.termlog(f"{hr.http_response_text}") else: wandb.termlog( f"{hr.http_status_code} encountered ({hr.http_response_text.rstrip()}), retrying request" ) with wb_logging.log_to_run(self._run_id): try: self._loop_check_status( lock=self._network_status_lock, set_handle=lambda x: setattr(self, "_network_status_handle", x), timeout=self._retry_polling_interval, request=self._interface.deliver_network_status, process=_process_network_status, ) except BrokenPipeError: self._abandon_status_check( self._network_status_lock, self._network_status_handle, ) def check_stop_status(self) -> None: def _process_stop_status(result: Result) -> None: stop_status = result.response.stop_status_response if stop_status.run_should_stop: # TODO(frz): This check is required # until WB-3606 is resolved on server side. if not wandb.agents.pyagent.is_running(): # type: ignore interrupt.interrupt_main() return with wb_logging.log_to_run(self._run_id): try: self._loop_check_status( lock=self._stop_status_lock, set_handle=lambda x: setattr(self, "_stop_status_handle", x), timeout=self._stop_polling_interval, request=self._interface.deliver_stop_status, process=_process_stop_status, ) except BrokenPipeError: self._abandon_status_check( self._stop_status_lock, self._stop_status_handle, ) def check_internal_messages(self) -> None: def _process_internal_messages(result: Result) -> None: internal_messages = result.response.internal_messages_response for msg in internal_messages.messages.warning: wandb.termwarn(msg) with wb_logging.log_to_run(self._run_id): try: self._loop_check_status( lock=self._internal_messages_lock, set_handle=lambda x: setattr(self, "_internal_messages_handle", x), timeout=self._internal_messages_polling_interval, request=self._interface.deliver_internal_messages, process=_process_internal_messages, ) except BrokenPipeError: self._abandon_status_check( self._internal_messages_lock, self._internal_messages_handle, ) def stop(self) -> None: self._join_event.set() self._abandon_status_check( self._stop_status_lock, self._stop_status_handle, ) self._abandon_status_check( self._network_status_lock, self._network_status_handle, ) self._abandon_status_check( self._internal_messages_lock, self._internal_messages_handle, ) def join(self) -> None: self.stop() self._stop_thread.join() self._network_status_thread.join() self._internal_messages_thread.join() _P = ParamSpec("_P") _T = TypeVar("_T") def _log_to_run( func: Callable[Concatenate[Run, _P], _T], ) -> Callable[Concatenate[Run, _P], _T]: """Decorate a Run method to set the run ID in the logging context. Any logs during the execution of the method go to the run's log file and not to other runs' log files. This is meant for use on all public methods and some callbacks. Private methods can be assumed to be called from some public method somewhere. The general rule is to use it on methods that can be called from a context that isn't specific to this run (such as all user code or internal methods that aren't run-specific). """ @functools.wraps(func) def wrapper(self: Run, *args, **kwargs) -> _T: # In "attach" usage, many properties of the Run are not initially # populated. if hasattr(self, "_settings"): run_id = self._settings.run_id else: run_id = self._attach_id with wb_logging.log_to_run(run_id): return func(self, *args, **kwargs) return wrapper _is_attaching: str = "" def _attach( func: Callable[Concatenate[Run, _P], _T], ) -> Callable[Concatenate[Run, _P], _T]: """Decorate a Run method to auto-attach when in a new process. When in a forked process or using a pickled Run instance, this automatically connects to the service process to "attach" to the existing run. """ @functools.wraps(func) def wrapper(self: Run, *args, **kwargs) -> _T: global _is_attaching # The _attach_id attribute is only None when running in the "disable # service" mode. # # Since it is set early in `__init__` and included in the run's pickled # state, the attribute always exists. is_using_service = self._attach_id is not None # The _attach_pid attribute is not pickled, so it might not exist. # It is set when the run is initialized. attach_pid = getattr(self, "_attach_pid", None) if is_using_service and attach_pid != os.getpid(): if _is_attaching: raise RuntimeError( f"Trying to attach `{func.__name__}`" f" while in the middle of attaching `{_is_attaching}`" ) _is_attaching = func.__name__ try: wandb._attach(run=self) # type: ignore finally: _is_attaching = "" return func(self, *args, **kwargs) return wrapper def _raise_if_finished( func: Callable[Concatenate[Run, _P], _T], ) -> Callable[Concatenate[Run, _P], _T]: """Decorate a Run method to raise an error after the run is finished.""" @functools.wraps(func) def wrapper_fn(self: Run, *args, **kwargs) -> _T: if not getattr(self, "_is_finished", False): return func(self, *args, **kwargs) message = ( f"Run ({self.id}) is finished. The call to" f" `{func.__name__}` will be ignored." f" Please make sure that you are using an active run." ) raise UsageError(message) return wrapper_fn @dataclass class RunStatus: sync_items_total: int = field(default=0) sync_items_pending: int = field(default=0) sync_time: datetime | None = field(default=None) class Run: """A unit of computation logged by wandb. Typically, this is an ML experiment. Create a run with `wandb.init()`: ```python import wandb run = wandb.init() ``` There is only ever at most one active `wandb.Run` in any process, and it is accessible as `wandb.run`: ```python import wandb assert wandb.run is None wandb.init() assert wandb.run is not None ``` anything you log with `wandb.log` will be sent to that run. If you want to start more runs in the same script or notebook, you'll need to finish the run that is in-flight. Runs can be finished with `wandb.finish` or by using them in a `with` block: ```python import wandb wandb.init() wandb.finish() assert wandb.run is None with wandb.init() as run: pass # log data here assert wandb.run is None ``` See the documentation for `wandb.init` for more on creating runs, or check out [our guide to `wandb.init`](https://docs.wandb.ai/guides/track/launch). In distributed training, you can either create a single run in the rank 0 process and then log information only from that process, or you can create a run in each process, logging from each separately, and group the results together with the `group` argument to `wandb.init`. For more details on distributed training with W&B, check out [our guide](https://docs.wandb.ai/guides/track/log/distributed-training). Currently, there is a parallel `Run` object in the `wandb.Api`. Eventually these two objects will be merged. Attributes: summary: (Summary) Single values set for each `wandb.log()` key. By default, summary is set to the last value logged. You can manually set summary to the best value, like max accuracy, instead of the final value. """ _telemetry_obj: telemetry.TelemetryRecord _telemetry_obj_active: bool _telemetry_obj_dirty: bool _telemetry_obj_flushed: bytes _teardown_hooks: list[TeardownHook] _backend: wandb.sdk.backend.backend.Backend | None _internal_run_interface: wandb.sdk.interface.interface_queue.InterfaceQueue | None _wl: _WandbSetup | None _out_redir: redirect.RedirectBase | None _err_redir: redirect.RedirectBase | None _redirect_cb: Callable[[str, str], None] | None _redirect_raw_cb: Callable[[str, str], None] | None _output_writer: filesystem.CRDedupedFile | None _atexit_cleanup_called: bool _hooks: ExitHooks | None _exit_code: int | None _run_status_checker: RunStatusChecker | None _sampled_history: SampledHistoryResponse | None _final_summary: GetSummaryResponse | None _poll_exit_handle: MailboxHandle[Result] | None _poll_exit_response: PollExitResponse | None _internal_messages_response: InternalMessagesResponse | None _stdout_slave_fd: int | None _stderr_slave_fd: int | None _artifact_slots: list[str] _init_pid: int _attach_pid: int _attach_id: str | None _is_attached: bool _is_finished: bool _settings: Settings _forked: bool _launch_artifacts: dict[str, Any] | None _printer: printer.Printer summary: wandb_summary.Summary def __init__( self, settings: Settings, config: dict[str, Any] | None = None, sweep_config: dict[str, Any] | None = None, launch_config: dict[str, Any] | None = None, ) -> None: # pid is set, so we know if this run object was initialized by this process self._init_pid = os.getpid() self._attach_id = None if settings._noop: # TODO: properly handle setting for disabled mode self._settings = settings return self._init( settings=settings, config=config, sweep_config=sweep_config, launch_config=launch_config, ) def _init( self, settings: Settings, config: dict[str, Any] | None = None, sweep_config: dict[str, Any] | None = None, launch_config: dict[str, Any] | None = None, ) -> None: self._settings = settings self._config = wandb_config.Config() self._config._set_callback(self._config_callback) self._config._set_artifact_callback(self._config_artifact_callback) self._config._set_settings(self._settings) # The _wandb key is always expected on the run config. wandb_key = "_wandb" self._config._update({wandb_key: dict()}) # TODO: perhaps this should be a property that is a noop on a finished run self.summary = wandb_summary.Summary( self._summary_get_current_summary_callback, ) self.summary._set_update_callback(self._summary_update_callback) self.__metadata: Metadata | None = None self._step = 0 self._starting_step = 0 self._start_runtime = 0 # TODO: eventually would be nice to make this configurable using self._settings._start_time # need to test (jhr): if you set start time to 2 days ago and run a test for 15 minutes, # does the total time get calculated right (not as 2 days and 15 minutes)? self._start_time = time.time() self._printer = printer.new_printer(settings) self._torch_history: wandb_torch.TorchHistory | None = None # type: ignore self._backend = None self._internal_run_interface = None self._wl = None self._hooks = None self._teardown_hooks = [] self._output_writer = None self._out_redir = None self._err_redir = None self._stdout_slave_fd = None self._stderr_slave_fd = None self._exit_code = None self._exit_result = None self._used_artifact_slots: dict[str, str] = {} # Created when the run "starts". self._run_status_checker = None self._sampled_history = None self._final_summary = None self._poll_exit_response = None self._internal_messages_response = None self._poll_exit_handle = None # Initialize telemetry object self._telemetry_obj = telemetry.TelemetryRecord() self._telemetry_obj_active = False self._telemetry_obj_flushed = b"" self._telemetry_obj_dirty = False self._atexit_cleanup_called = False # Initial scope setup for sentry. # This might get updated when the actual run comes back. wandb._sentry.configure_scope( tags=dict(self._settings), process_context="user", ) self._launch_artifact_mapping: dict[str, Any] = {} self._unique_launch_artifact_sequence_names: dict[str, Any] = {} # Populate config config = config or dict() self._config._update(config, allow_val_change=True, ignore_locked=True) if sweep_config: self._config.merge_locked( sweep_config, user="sweep", _allow_val_change=True ) if launch_config: self._config.merge_locked( launch_config, user="launch", _allow_val_change=True ) # if run is from a launch queue, add queue id to _wandb config launch_queue_name = wandb.env.get_launch_queue_name() if launch_queue_name: self._config[wandb_key]["launch_queue_name"] = launch_queue_name launch_queue_entity = wandb.env.get_launch_queue_entity() if launch_queue_entity: self._config[wandb_key]["launch_queue_entity"] = launch_queue_entity launch_trace_id = wandb.env.get_launch_trace_id() if launch_trace_id: self._config[wandb_key]["launch_trace_id"] = launch_trace_id self._attach_id = None self._is_attached = False self._is_finished = False self._attach_pid = os.getpid() self._forked = False # for now, use runid as attach id, this could/should be versioned in the future self._attach_id = self._settings.run_id def _handle_launch_artifact_overrides(self) -> None: if self._settings.launch and (os.environ.get("WANDB_ARTIFACTS") is not None): try: artifacts: dict[str, Any] = json.loads( os.environ.get("WANDB_ARTIFACTS", "{}") ) except (ValueError, SyntaxError): wandb.termwarn("Malformed WANDB_ARTIFACTS, using original artifacts") else: self._initialize_launch_artifact_maps(artifacts) elif ( self._settings.launch and self._settings.launch_config_path and os.path.exists(self._settings.launch_config_path) ): self.save(self._settings.launch_config_path) with open(self._settings.launch_config_path) as fp: launch_config = json.loads(fp.read()) if launch_config.get("overrides", {}).get("artifacts") is not None: artifacts = launch_config.get("overrides").get("artifacts") self._initialize_launch_artifact_maps(artifacts) def _initialize_launch_artifact_maps(self, artifacts: dict[str, Any]) -> None: for key, item in artifacts.items(): self._launch_artifact_mapping[key] = item artifact_sequence_tuple_or_slot = key.split(":") if len(artifact_sequence_tuple_or_slot) == 2: sequence_name = artifact_sequence_tuple_or_slot[0].split("/")[-1] if self._unique_launch_artifact_sequence_names.get(sequence_name): self._unique_launch_artifact_sequence_names.pop(sequence_name) else: self._unique_launch_artifact_sequence_names[sequence_name] = item def _telemetry_callback(self, telem_obj: telemetry.TelemetryRecord) -> None: if not hasattr(self, "_telemetry_obj") or self._is_finished: return self._telemetry_obj.MergeFrom(telem_obj) self._telemetry_obj_dirty = True self._telemetry_flush() def _telemetry_flush(self) -> None: if not hasattr(self, "_telemetry_obj"): return if not self._telemetry_obj_active: return if not self._telemetry_obj_dirty: return if self._backend and self._backend.interface: serialized = self._telemetry_obj.SerializeToString() if serialized == self._telemetry_obj_flushed: return self._backend.interface._publish_telemetry(self._telemetry_obj) self._telemetry_obj_flushed = serialized self._telemetry_obj_dirty = False def _freeze(self) -> None: self._frozen = True def __setattr__(self, attr: str, value: object) -> None: if getattr(self, "_frozen", None) and not hasattr(self, attr): raise Exception(f"Attribute {attr} is not supported on Run object.") super().__setattr__(attr, value) def __deepcopy__(self, memo: dict[int, Any]) -> Run: return self def __getstate__(self) -> Any: """Return run state as a custom pickle.""" # We only pickle in service mode if not self._settings: return _attach_id = self._attach_id if not _attach_id: return return dict( _attach_id=_attach_id, _init_pid=self._init_pid, _is_finished=self._is_finished, ) def __setstate__(self, state: Any) -> None: """Set run state from a custom pickle.""" if not state: return _attach_id = state.get("_attach_id") if not _attach_id: return if state["_init_pid"] == os.getpid(): raise RuntimeError("attach in the same process is not supported currently") self.__dict__.update(state) @property def _torch(self) -> wandb_torch.TorchHistory: # type: ignore if self._torch_history is None: self._torch_history = wandb_torch.TorchHistory() # type: ignore return self._torch_history @property @_log_to_run @_attach def settings(self) -> Settings: """A frozen copy of run's Settings object.""" return self._settings.model_copy(deep=True) @property @_log_to_run @_attach def dir(self) -> str: """The directory where files associated with the run are saved.""" return self._settings.files_dir @property @_log_to_run @_attach def config(self) -> wandb_config.Config: """Config object associated with this run.""" return self._config @property @_log_to_run @_attach def config_static(self) -> wandb_config.ConfigStatic: return wandb_config.ConfigStatic(self._config) @property @_log_to_run @_attach def name(self) -> str | None: """Display name of the run. Display names are not guaranteed to be unique and may be descriptive. By default, they are randomly generated. """ return self._settings.run_name @name.setter @_log_to_run @_raise_if_finished def name(self, name: str) -> None: with telemetry.context(run=self) as tel: tel.feature.set_run_name = True self._settings.run_name = name if self._backend and self._backend.interface: self._backend.interface.publish_run(self) @property @_log_to_run @_attach def notes(self) -> str | None: """Notes associated with the run, if there are any. Notes can be a multiline string and can also use markdown and latex equations inside `$$`, like `$x + 3$`. """ return self._settings.run_notes @notes.setter @_log_to_run @_raise_if_finished def notes(self, notes: str) -> None: self._settings.run_notes = notes if self._backend and self._backend.interface: self._backend.interface.publish_run(self) @property @_log_to_run @_attach def tags(self) -> tuple | None: """Tags associated with the run, if there are any.""" return self._settings.run_tags or () @tags.setter @_log_to_run @_raise_if_finished def tags(self, tags: Sequence) -> None: with telemetry.context(run=self) as tel: tel.feature.set_run_tags = True self._settings.run_tags = tuple(tags) if self._backend and self._backend.interface: self._backend.interface.publish_run(self) @property @_log_to_run @_attach def id(self) -> str: """Identifier for this run.""" assert self._settings.run_id is not None return self._settings.run_id @property @_log_to_run @_attach def sweep_id(self) -> str | None: """Identifier for the sweep associated with the run, if there is one.""" return self._settings.sweep_id def _get_path(self) -> str: return "/".join( e for e in [ self._settings.entity, self._settings.project, self._settings.run_id, ] if e is not None ) @property @_log_to_run @_attach def path(self) -> str: """Path to the run. Run paths include entity, project, and run ID, in the format `entity/project/run_id`. """ return self._get_path() @property @_log_to_run @_attach def start_time(self) -> float: """Unix timestamp (in seconds) of when the run started.""" return self._start_time @property @_log_to_run @_attach def starting_step(self) -> int: """The first step of the run.""" return self._starting_step @property @_log_to_run @_attach def resumed(self) -> bool: """True if the run was resumed, False otherwise.""" return self._settings.resumed @property @_log_to_run @_attach def step(self) -> int: """Current value of the step. This counter is incremented by `wandb.log`. """ return self._step @property @_log_to_run @_attach def offline(self) -> bool: return self._settings._offline @property @_log_to_run @_attach def disabled(self) -> bool: return self._settings._noop @property @_log_to_run @_attach def group(self) -> str: """Name of the group associated with the run. Setting a group helps the W&B UI organize runs in a sensible way. If you are doing a distributed training you should give all of the runs in the training the same group. If you are doing cross-validation you should give all the cross-validation folds the same group. """ return self._settings.run_group or "" @property @_log_to_run @_attach def job_type(self) -> str: return self._settings.run_job_type or "" def project_name(self) -> str: """Name of the W&B project associated with the run. Note: this method is deprecated and will be removed in a future release. Please use `run.project` instead. """ deprecate.deprecate( field_name=Deprecated.run__project_name, warning_message=( "The project_name method is deprecated and will be removed in a" " future release. Please use `run.project` instead." ), ) return self.project @property @_log_to_run @_attach def project(self) -> str: """Name of the W&B project associated with the run.""" assert self._settings.project is not None return self._settings.project @_log_to_run def get_project_url(self) -> str | None: """URL of the W&B project associated with the run, if there is one. Offline runs do not have a project URL. Note: this method is deprecated and will be removed in a future release. Please use `run.project_url` instead. """ deprecate.deprecate( field_name=Deprecated.run__get_project_url, warning_message=( "The get_project_url method is deprecated and will be removed in a" " future release. Please use `run.project_url` instead." ), ) return self.project_url @property @_log_to_run @_attach def project_url(self) -> str | None: """URL of the W&B project associated with the run, if there is one. Offline runs do not have a project URL. """ if self._settings._offline: wandb.termwarn("URL not available in offline run") return None return self._settings.project_url @_raise_if_finished @_log_to_run @_attach def log_code( self, root: str | None = ".", name: str | None = None, include_fn: Callable[[str, str], bool] | Callable[[str], bool] = _is_py_requirements_or_dockerfile, exclude_fn: Callable[[str, str], bool] | Callable[[str], bool] = filenames.exclude_wandb_fn, ) -> Artifact | None: """Save the current state of your code to a W&B Artifact. By default, it walks the current directory and logs all files that end with `.py`. Args: root: The relative (to `os.getcwd()`) or absolute path to recursively find code from. name: (str, optional) The name of our code artifact. By default, we'll name the artifact `source-$PROJECT_ID-$ENTRYPOINT_RELPATH`. There may be scenarios where you want many runs to share the same artifact. Specifying name allows you to achieve that. include_fn: A callable that accepts a file path and (optionally) root path and returns True when it should be included and False otherwise. This defaults to: `lambda path, root: path.endswith(".py")` exclude_fn: A callable that accepts a file path and (optionally) root path and returns `True` when it should be excluded and `False` otherwise. This defaults to a function that excludes all files within `/.wandb/` and `/wandb/` directories. Examples: Basic usage ```python run.log_code() ``` Advanced usage ```python run.log_code( "../", include_fn=lambda path: path.endswith(".py") or path.endswith(".ipynb"), exclude_fn=lambda path, root: os.path.relpath(path, root).startswith( "cache/" ), ) ``` Returns: An `Artifact` object if code was logged """ if name is None: if self.settings._jupyter: notebook_name = None if self.settings.notebook_name: notebook_name = self.settings.notebook_name elif self.settings.x_jupyter_path: if self.settings.x_jupyter_path.startswith("fileId="): notebook_name = self.settings.x_jupyter_name else: notebook_name = self.settings.x_jupyter_path name_string = f"{self._settings.project}-{notebook_name}" else: name_string = ( f"{self._settings.project}-{self._settings.program_relpath}" ) name = wandb.util.make_artifact_name_safe(f"source-{name_string}") art = InternalArtifact(name, "code") files_added = False if root is not None: root = os.path.abspath(root) for file_path in filenames.filtered_dir(root, include_fn, exclude_fn): files_added = True save_name = os.path.relpath(file_path, root) art.add_file(file_path, name=save_name) # Add any manually staged files such as ipynb notebooks for dirpath, _, files in os.walk(self._settings._tmp_code_dir): for fname in files: file_path = os.path.join(dirpath, fname) save_name = os.path.relpath(file_path, self._settings._tmp_code_dir) files_added = True art.add_file(file_path, name=save_name) if not files_added: wandb.termwarn( "No relevant files were detected in the specified directory. No code will be logged to your run." ) return None artifact = self._log_artifact(art) self._config.update( {"_wandb": {"code_path": artifact.name}}, allow_val_change=True, ) return artifact @_log_to_run def get_sweep_url(self) -> str | None: """The URL of the sweep associated with the run, if there is one. Offline runs do not have a sweep URL. Note: this method is deprecated and will be removed in a future release. Please use `run.sweep_url` instead. """ deprecate.deprecate( field_name=Deprecated.run__get_sweep_url, warning_message=( "The get_sweep_url method is deprecated and will be removed in a" " future release. Please use `run.sweep_url` instead." ), ) return self.sweep_url @property @_attach def sweep_url(self) -> str | None: """URL of the sweep associated with the run, if there is one. Offline runs do not have a sweep URL. """ if self._settings._offline: wandb.termwarn("URL not available in offline run") return None return self._settings.sweep_url @_log_to_run def get_url(self) -> str | None: """URL of the W&B run, if there is one. Offline runs do not have a URL. Note: this method is deprecated and will be removed in a future release. Please use `run.url` instead. """ deprecate.deprecate( field_name=Deprecated.run__get_url, warning_message=( "The get_url method is deprecated and will be removed in a" " future release. Please use `run.url` instead." ), ) return self.url @property @_log_to_run @_attach def url(self) -> str | None: """The url for the W&B run, if there is one. Offline runs will not have a url. """ if self._settings._offline: wandb.termwarn("URL not available in offline run") return None return self._settings.run_url @property @_log_to_run @_attach def entity(self) -> str: """The name of the W&B entity associated with the run. Entity can be a username or the name of a team or organization. """ return self._settings.entity or "" def _label_internal( self, code: str | None = None, repo: str | None = None, code_version: str | None = None, ) -> None: with telemetry.context(run=self) as tel: if code and RE_LABEL.match(code): tel.label.code_string = code if repo and RE_LABEL.match(repo): tel.label.repo_string = repo if code_version and RE_LABEL.match(code_version): tel.label.code_version = code_version def _label( self, code: str | None = None, repo: str | None = None, code_version: str | None = None, **kwargs: str, ) -> None: if self._settings.label_disable: return for k, v in (("code", code), ("repo", repo), ("code_version", code_version)): if v and not RE_LABEL.match(v): wandb.termwarn( f"Label added for '{k}' with invalid identifier '{v}' (ignored).", repeat=False, ) for v in kwargs: wandb.termwarn( f"Label added for unsupported key {v!r} (ignored).", repeat=False, ) self._label_internal(code=code, repo=repo, code_version=code_version) # update telemetry in the backend immediately for _label() callers self._telemetry_flush() def _label_probe_lines(self, lines: list[str]) -> None: if not lines: return parsed = telemetry._parse_label_lines(lines) if not parsed: return label_dict = {} code = parsed.get("code") or parsed.get("c") if code: label_dict["code"] = code repo = parsed.get("repo") or parsed.get("r") if repo: label_dict["repo"] = repo code_ver = parsed.get("version") or parsed.get("v") if code_ver: label_dict["code_version"] = code_ver self._label_internal(**label_dict) def _label_probe_main(self) -> None: m = sys.modules.get("__main__") if not m: return doc = getattr(m, "__doc__", None) if not doc: return doclines = doc.splitlines() self._label_probe_lines(doclines) # TODO: annotate jupyter Notebook class def _label_probe_notebook(self, notebook: Any) -> None: logger.info("probe notebook") lines = None try: data = notebook.probe_ipynb() cell0 = data.get("cells", [])[0] lines = cell0.get("source") # kaggle returns a string instead of a list if isinstance(lines, str): lines = lines.split() except Exception as e: logger.info(f"Unable to probe notebook: {e}") return if lines: self._label_probe_lines(lines) @_log_to_run @_attach def display(self, height: int = 420, hidden: bool = False) -> bool: """Display this run in jupyter.""" if self._settings.silent: return False if not ipython.in_jupyter(): return False try: from IPython import display except ImportError: wandb.termwarn(".display() only works in jupyter environments") return False display.display(display.HTML(self.to_html(height, hidden))) return True @_log_to_run @_attach def to_html(self, height: int = 420, hidden: bool = False) -> str: """Generate HTML containing an iframe displaying the current run.""" url = self._settings.run_url + "?jupyter=true" style = f"border:none;width:100%;height:{height}px;" prefix = "" if hidden: style += "display:none;" prefix = ipython.toggle_button() return prefix + f"" def _repr_mimebundle_( self, include: Any | None = None, exclude: Any | None = None ) -> dict[str, str]: return {"text/html": self.to_html(hidden=True)} @_log_to_run @_raise_if_finished def _config_callback( self, key: tuple[str, ...] | str | None = None, val: Any | None = None, data: dict[str, object] | None = None, ) -> None: logger.info(f"config_cb {key} {val} {data}") if self._backend and self._backend.interface: self._backend.interface.publish_config(key=key, val=val, data=data) @_log_to_run def _config_artifact_callback( self, key: str, val: str | Artifact | dict ) -> Artifact: # artifacts can look like dicts as they are passed into the run config # since the run config stores them on the backend as a dict with fields shown # in wandb.util.artifact_to_json if _is_artifact_version_weave_dict(val): assert isinstance(val, dict) public_api = self._public_api() artifact = Artifact._from_id(val["id"], public_api.client) assert artifact return self.use_artifact(artifact) elif _is_artifact_string(val): # this will never fail, but is required to make mypy happy assert isinstance(val, str) artifact_string, base_url, is_id = parse_artifact_string(val) overrides = {} if base_url is not None: overrides = {"base_url": base_url} public_api = public.Api(overrides) else: public_api = self._public_api() if is_id: artifact = Artifact._from_id(artifact_string, public_api._client) else: artifact = public_api._artifact(name=artifact_string) # in the future we'll need to support using artifacts from # different instances of wandb. assert artifact return self.use_artifact(artifact) elif _is_artifact_object(val): return self.use_artifact(val) else: raise ValueError( f"Cannot call _config_artifact_callback on type {type(val)}" ) def _set_config_wandb(self, key: str, val: Any) -> None: self._config_callback(key=("_wandb", key), val=val) @_log_to_run @_raise_if_finished def _summary_update_callback(self, summary_record: SummaryRecord) -> None: with telemetry.context(run=self) as tel: tel.feature.set_summary = True if self._backend and self._backend.interface: self._backend.interface.publish_summary(self, summary_record) @_log_to_run def _summary_get_current_summary_callback(self) -> dict[str, Any]: if self._is_finished: # TODO: WB-18420: fetch summary from backend and stage it before run is finished wandb.termwarn("Summary data not available in finished run") return {} if not self._backend or not self._backend.interface: return {} handle = self._backend.interface.deliver_get_summary() try: result = handle.wait_or(timeout=self._settings.summary_timeout) except TimeoutError: return {} get_summary_response = result.response.get_summary_response return proto_util.dict_from_proto_list(get_summary_response.item) @_log_to_run def _metric_callback(self, metric_record: MetricRecord) -> None: if self._backend and self._backend.interface: self._backend.interface._publish_metric(metric_record) @_log_to_run def _publish_file(self, fname: str) -> None: """Mark a run file to be uploaded with the run. This is a W&B-internal function: it can be used by other internal wandb code. Args: fname: The path to the file in the run's files directory, relative to the run's files directory. """ if not self._backend or not self._backend.interface: return files: FilesDict = dict(files=[(GlobStr(fname), "now")]) self._backend.interface.publish_files(files) def _pop_all_charts( self, data: dict[str, Any], key_prefix: str | None = None, ) -> dict[str, Any]: """Pops all charts from a dictionary including nested charts. This function will return a mapping of the charts and a dot-separated key for each chart. Indicating the path to the chart in the data dictionary. """ keys_to_remove = set() charts: dict[str, Any] = {} for k, v in data.items(): key = f"{key_prefix}.{k}" if key_prefix else k if isinstance(v, Visualize): keys_to_remove.add(k) charts[key] = v elif isinstance(v, CustomChart): keys_to_remove.add(k) charts[key] = v elif isinstance(v, dict): nested_charts = self._pop_all_charts(v, key) charts.update(nested_charts) for k in keys_to_remove: data.pop(k) return charts def _serialize_custom_charts( self, data: dict[str, Any], ) -> dict[str, Any]: """Process and replace chart objects with their underlying table values. This processes the chart objects passed to `run.log()`, replacing their entries in the given dictionary (which is saved to the run's history) and adding them to the run's config. Args: data: Dictionary containing data that may include plot objects Plot objects can be nested in dictionaries, which will be processed recursively. Returns: The processed dictionary with custom charts transformed into tables. """ if not data: return data charts = self._pop_all_charts(data) for k, v in charts.items(): v.set_key(k) self._config_callback( val=v.spec.config_value, key=v.spec.config_key, ) if isinstance(v, CustomChart): data[v.spec.table_key] = v.table elif isinstance(v, Visualize): data[k] = v.table return data @_log_to_run def _partial_history_callback( self, data: dict[str, Any], step: int | None = None, commit: bool | None = None, ) -> None: if not (self._backend and self._backend.interface): return data = data.copy() # avoid modifying the original data # Serialize custom charts before publishing data = self._serialize_custom_charts(data) not_using_tensorboard = len(wandb.patched["tensorboard"]) == 0 self._backend.interface.publish_partial_history( self, data, user_step=self._step, step=step, flush=commit, publish_step=not_using_tensorboard, ) @_log_to_run def _console_callback(self, name: str, data: str) -> None: # logger.info("console callback: %s, %s", name, data) if self._backend and self._backend.interface: self._backend.interface.publish_output(name, data) @_log_to_run @_raise_if_finished def _console_raw_callback(self, name: str, data: str) -> None: # logger.info("console callback: %s, %s", name, data) # NOTE: console output is only allowed on the process which installed the callback # this will prevent potential corruption in the socket to the service. Other methods # are protected by the _attach run decorator, but this callback was installed on the # write function of stdout and stderr streams. console_pid = getattr(self, "_attach_pid", 0) if console_pid != os.getpid(): return if self._backend and self._backend.interface: self._backend.interface.publish_output_raw(name, data) @_log_to_run def _tensorboard_callback( self, logdir: str, save: bool = True, root_logdir: str = "" ) -> None: logger.info("tensorboard callback: %s, %s", logdir, save) if self._backend and self._backend.interface: self._backend.interface.publish_tbdata(logdir, save, root_logdir) def _set_library(self, library: _WandbSetup) -> None: self._wl = library def _set_backend(self, backend: wandb.sdk.backend.backend.Backend) -> None: self._backend = backend def _set_internal_run_interface( self, interface: wandb.sdk.interface.interface_queue.InterfaceQueue, ) -> None: self._internal_run_interface = interface def _set_teardown_hooks(self, hooks: list[TeardownHook]) -> None: self._teardown_hooks = hooks def _set_run_obj(self, run_obj: RunRecord) -> None: # noqa: C901 if run_obj.starting_step: self._starting_step = run_obj.starting_step self._step = run_obj.starting_step if run_obj.start_time: self._start_time = run_obj.start_time.ToMicroseconds() / 1e6 if run_obj.runtime: self._start_runtime = run_obj.runtime # Grab the config from resuming if run_obj.config: c_dict = config_util.dict_no_value_from_proto_list(run_obj.config.update) # We update the config object here without triggering the callback self._config._update(c_dict, allow_val_change=True, ignore_locked=True) # Update the summary, this will trigger an un-needed graphql request :( if run_obj.summary: summary_dict = {} for orig in run_obj.summary.update: summary_dict[orig.key] = json.loads(orig.value_json) if summary_dict: self.summary.update(summary_dict) # update settings from run_obj if run_obj.run_id: self._settings.run_id = run_obj.run_id if run_obj.entity: self._settings.entity = run_obj.entity if run_obj.project: self._settings.project = run_obj.project if run_obj.run_group: self._settings.run_group = run_obj.run_group if run_obj.job_type: self._settings.run_job_type = run_obj.job_type if run_obj.display_name: self._settings.run_name = run_obj.display_name if run_obj.notes: self._settings.run_notes = run_obj.notes if run_obj.tags: self._settings.run_tags = tuple(run_obj.tags) if run_obj.sweep_id: self._settings.sweep_id = run_obj.sweep_id if run_obj.host: self._settings.host = run_obj.host if run_obj.resumed: self._settings.resumed = run_obj.resumed if run_obj.git: if run_obj.git.remote_url: self._settings.git_remote_url = run_obj.git.remote_url if run_obj.git.commit: self._settings.git_commit = run_obj.git.commit if run_obj.forked: self._forked = run_obj.forked wandb._sentry.configure_scope( process_context="user", tags=dict(self._settings), ) def _populate_git_info(self) -> None: from .lib.gitlib import GitRepo # Use user provided git info if available otherwise resolve it from the environment try: repo = GitRepo( root=self._settings.git_root, remote=self._settings.git_remote, remote_url=self._settings.git_remote_url, commit=self._settings.git_commit, lazy=False, ) self._settings.git_remote_url = repo.remote_url self._settings.git_commit = repo.last_commit except Exception: wandb.termwarn("Cannot find valid git repo associated with this directory.") def _add_singleton( self, data_type: str, key: str, value: dict[int | str, str] ) -> None: """Store a singleton item to wandb config. A singleton in this context is a piece of data that is continually logged with the same value in each history step, but represented as a single item in the config. We do this to avoid filling up history with a lot of repeated unnecessary data Add singleton can be called many times in one run, and it will only be updated when the value changes. The last value logged will be the one persisted to the server. """ value_extra = {"type": data_type, "key": key, "value": value} if data_type not in self._config["_wandb"]: self._config["_wandb"][data_type] = {} if data_type in self._config["_wandb"][data_type]: old_value = self._config["_wandb"][data_type][key] else: old_value = None if value_extra != old_value: self._config["_wandb"][data_type][key] = value_extra self._config.persist() def _log( self, data: dict[str, Any], step: int | None = None, commit: bool | None = None, ) -> None: if not isinstance(data, Mapping): raise TypeError("wandb.log must be passed a dictionary") if any(not isinstance(key, str) for key in data.keys()): raise TypeError("Key values passed to `wandb.log` must be strings.") self._partial_history_callback(data, step, commit) if step is not None: if os.getpid() != self._init_pid or self._is_attached: wandb.termwarn( "Note that setting step in multiprocessing can result in data loss. " "Please use `run.define_metric(...)` to define a custom metric " "to log your step values.", repeat=False, ) # if step is passed in when tensorboard_sync is used we honor the step passed # to make decisions about how to close out the history record, but will strip # this history later on in publish_history() if len(wandb.patched["tensorboard"]) > 0: wandb.termwarn( "Step cannot be set when using tensorboard syncing. " "Please use `run.define_metric(...)` to define a custom metric " "to log your step values.", repeat=False, ) if step > self._step: self._step = step if (step is None and commit is None) or commit: self._step += 1 @_log_to_run @_raise_if_finished @_attach def log( self, data: dict[str, Any], step: int | None = None, commit: bool | None = None, ) -> None: """Upload run data. Use `log` to log data from runs, such as scalars, images, video, histograms, plots, and tables. See our [guides to logging](https://docs.wandb.ai/guides/track/log) for live examples, code snippets, best practices, and more. The most basic usage is `run.log({"train-loss": 0.5, "accuracy": 0.9})`. This will save the loss and accuracy to the run's history and update the summary values for these metrics. Visualize logged data in the workspace at [wandb.ai](https://wandb.ai), or locally on a [self-hosted instance](https://docs.wandb.ai/guides/hosting) of the W&B app, or export data to visualize and explore locally, e.g. in Jupyter notebooks, with [our API](https://docs.wandb.ai/guides/track/public-api-guide). Logged values don't have to be scalars. Logging any wandb object is supported. For example `run.log({"example": wandb.Image("myimage.jpg")})` will log an example image which will be displayed nicely in the W&B UI. See the [reference documentation](https://docs.wandb.com/ref/python/data-types) for all of the different supported types or check out our [guides to logging](https://docs.wandb.ai/guides/track/log) for examples, from 3D molecular structures and segmentation masks to PR curves and histograms. You can use `wandb.Table` to log structured data. See our [guide to logging tables](https://docs.wandb.ai/guides/models/tables/tables-walkthrough) for details. The W&B UI organizes metrics with a forward slash (`/`) in their name into sections named using the text before the final slash. For example, the following results in two sections named "train" and "validate": ``` run.log( { "train/accuracy": 0.9, "train/loss": 30, "validate/accuracy": 0.8, "validate/loss": 20, } ) ``` Only one level of nesting is supported; `run.log({"a/b/c": 1})` produces a section named "a/b". `run.log` is not intended to be called more than a few times per second. For optimal performance, limit your logging to once every N iterations, or collect data over multiple iterations and log it in a single step. ### The W&B step With basic usage, each call to `log` creates a new "step". The step must always increase, and it is not possible to log to a previous step. Note that you can use any metric as the X axis in charts. In many cases, it is better to treat the W&B step like you'd treat a timestamp rather than a training step. ``` # Example: log an "epoch" metric for use as an X axis. run.log({"epoch": 40, "train-loss": 0.5}) ``` See also [define_metric](https://docs.wandb.ai/ref/python/run#define_metric). It is possible to use multiple `log` invocations to log to the same step with the `step` and `commit` parameters. The following are all equivalent: ``` # Normal usage: run.log({"train-loss": 0.5, "accuracy": 0.8}) run.log({"train-loss": 0.4, "accuracy": 0.9}) # Implicit step without auto-incrementing: run.log({"train-loss": 0.5}, commit=False) run.log({"accuracy": 0.8}) run.log({"train-loss": 0.4}, commit=False) run.log({"accuracy": 0.9}) # Explicit step: run.log({"train-loss": 0.5}, step=current_step) run.log({"accuracy": 0.8}, step=current_step) current_step += 1 run.log({"train-loss": 0.4}, step=current_step) run.log({"accuracy": 0.9}, step=current_step) ``` Args: data: A `dict` with `str` keys and values that are serializable Python objects including: `int`, `float` and `string`; any of the `wandb.data_types`; lists, tuples and NumPy arrays of serializable Python objects; other `dict`s of this structure. step: The step number to log. If `None`, then an implicit auto-incrementing step is used. See the notes in the description. commit: If true, finalize and upload the step. If false, then accumulate data for the step. See the notes in the description. If `step` is `None`, then the default is `commit=True`; otherwise, the default is `commit=False`. Examples: For more and more detailed examples, see [our guides to logging](https://docs.wandb.com/guides/track/log). ### Basic usage ```python import wandb run = wandb.init() run.log({"accuracy": 0.9, "epoch": 5}) ``` ### Incremental logging ```python import wandb run = wandb.init() run.log({"loss": 0.2}, commit=False) # Somewhere else when I'm ready to report this step: run.log({"accuracy": 0.8}) ``` ### Histogram ```python import numpy as np import wandb # sample gradients at random from normal distribution gradients = np.random.randn(100, 100) run = wandb.init() run.log({"gradients": wandb.Histogram(gradients)}) ``` ### Image from numpy ```python import numpy as np import wandb run = wandb.init() examples = [] for i in range(3): pixels = np.random.randint(low=0, high=256, size=(100, 100, 3)) image = wandb.Image(pixels, caption=f"random field {i}") examples.append(image) run.log({"examples": examples}) ``` ### Image from PIL ```python import numpy as np from PIL import Image as PILImage import wandb run = wandb.init() examples = [] for i in range(3): pixels = np.random.randint( low=0, high=256, size=(100, 100, 3), dtype=np.uint8, ) pil_image = PILImage.fromarray(pixels, mode="RGB") image = wandb.Image(pil_image, caption=f"random field {i}") examples.append(image) run.log({"examples": examples}) ``` ### Video from numpy ```python import numpy as np import wandb run = wandb.init() # axes are (time, channel, height, width) frames = np.random.randint( low=0, high=256, size=(10, 3, 100, 100), dtype=np.uint8, ) run.log({"video": wandb.Video(frames, fps=4)}) ``` ### Matplotlib Plot ```python from matplotlib import pyplot as plt import numpy as np import wandb run = wandb.init() fig, ax = plt.subplots() x = np.linspace(0, 10) y = x * x ax.plot(x, y) # plot y = x^2 run.log({"chart": fig}) ``` ### PR Curve ```python import wandb run = wandb.init() run.log({"pr": wandb.plot.pr_curve(y_test, y_probas, labels)}) ``` ### 3D Object ```python import wandb run = wandb.init() run.log( { "generated_samples": [ wandb.Object3D(open("sample.obj")), wandb.Object3D(open("sample.gltf")), wandb.Object3D(open("sample.glb")), ] } ) ``` Raises: wandb.Error: if called before `wandb.init` ValueError: if invalid data is passed """ if step is not None: with telemetry.context(run=self) as tel: tel.feature.set_step_log = True if self._settings._shared and step is not None: wandb.termwarn( "In shared mode, the use of `wandb.log` with the step argument is not supported " f"and will be ignored. Please refer to {url_registry.url('define-metric')} " "on how to customize your x-axis.", repeat=False, ) self._log(data=data, step=step, commit=commit) @_log_to_run @_raise_if_finished @_attach def save( self, glob_str: str | os.PathLike, base_path: str | os.PathLike | None = None, policy: PolicyName = "live", ) -> bool | list[str]: """Sync one or more files to W&B. Relative paths are relative to the current working directory. A Unix glob, such as "myfiles/*", is expanded at the time `save` is called regardless of the `policy`. In particular, new files are not picked up automatically. A `base_path` may be provided to control the directory structure of uploaded files. It should be a prefix of `glob_str`, and the directory structure beneath it is preserved. It's best understood through examples: ``` wandb.save("these/are/myfiles/*") # => Saves files in a "these/are/myfiles/" folder in the run. wandb.save("these/are/myfiles/*", base_path="these") # => Saves files in an "are/myfiles/" folder in the run. wandb.save("/User/username/Documents/run123/*.txt") # => Saves files in a "run123/" folder in the run. See note below. wandb.save("/User/username/Documents/run123/*.txt", base_path="/User") # => Saves files in a "username/Documents/run123/" folder in the run. wandb.save("files/*/saveme.txt") # => Saves each "saveme.txt" file in an appropriate subdirectory # of "files/". ``` Note: when given an absolute path or glob and no `base_path`, one directory level is preserved as in the example above. Args: glob_str: A relative or absolute path or Unix glob. base_path: A path to use to infer a directory structure; see examples. policy: One of `live`, `now`, or `end`. * live: upload the file as it changes, overwriting the previous version * now: upload the file once now * end: upload file when the run ends Returns: Paths to the symlinks created for the matched files. For historical reasons, this may return a boolean in legacy code. """ if isinstance(glob_str, bytes): # Preserved for backward compatibility: allow bytes inputs. glob_str = glob_str.decode("utf-8") if isinstance(glob_str, str) and (glob_str.startswith(("gs://", "s3://"))): # Provide a better error message for a common misuse. wandb.termlog(f"{glob_str} is a cloud storage url, can't save file to W&B.") return [] # NOTE: We use PurePath instead of Path because WindowsPath doesn't # like asterisks and errors out in resolve(). It also makes logical # sense: globs aren't real paths, they're just path-like strings. glob_path = pathlib.PurePath(glob_str) resolved_glob_path = pathlib.PurePath(os.path.abspath(glob_path)) if base_path is not None: base_path = pathlib.Path(base_path) elif not glob_path.is_absolute(): base_path = pathlib.Path(".") else: # Absolute glob paths with no base path get special handling. wandb.termwarn( "Saving files without folders. If you want to preserve " "subdirectories pass base_path to wandb.save, i.e. " 'wandb.save("/mnt/folder/file.h5", base_path="/mnt")', repeat=False, ) base_path = resolved_glob_path.parent.parent if policy not in ("live", "end", "now"): raise ValueError( 'Only "live", "end" and "now" policies are currently supported.' ) resolved_base_path = pathlib.PurePath(os.path.abspath(base_path)) return self._save( resolved_glob_path, resolved_base_path, policy, ) def _save( self, glob_path: pathlib.PurePath, base_path: pathlib.PurePath, policy: PolicyName, ) -> list[str]: # Can't use is_relative_to() because that's added in Python 3.9, # but we support down to Python 3.8. if not str(glob_path).startswith(str(base_path)): raise ValueError("Glob may not walk above the base path") if glob_path == base_path: raise ValueError("Glob cannot be the same as the base path") relative_glob = glob_path.relative_to(base_path) if relative_glob.parts[0] == "*": raise ValueError("Glob may not start with '*' relative to the base path") relative_glob_str = GlobStr(str(relative_glob)) with telemetry.context(run=self) as tel: tel.feature.save = True # Files in the files directory matched by the glob, including old and # new ones. globbed_files = set( pathlib.Path( self._settings.files_dir, ).glob(relative_glob_str) ) had_symlinked_files = len(globbed_files) > 0 is_star_glob = "*" in relative_glob_str # The base_path may itself be a glob, so we can't do # base_path.glob(relative_glob_str) for path_str in glob.glob(str(base_path / relative_glob_str)): source_path = pathlib.Path(path_str).absolute() # We can't use relative_to() because base_path may be a glob. relative_path = pathlib.Path(*source_path.parts[len(base_path.parts) :]) target_path = pathlib.Path(self._settings.files_dir, relative_path) globbed_files.add(target_path) # If the file is already where it needs to be, don't create a symlink. if source_path.resolve() == target_path.resolve(): continue target_path.parent.mkdir(parents=True, exist_ok=True) # Delete the symlink if it exists. target_path.unlink(missing_ok=True) target_path.symlink_to(source_path) # Inform users that new files aren't detected automatically. if not had_symlinked_files and is_star_glob: file_str = f"{len(globbed_files)} file" if len(globbed_files) > 1: file_str += "s" wandb.termwarn( f"Symlinked {file_str} into the W&B run directory, " "call wandb.save again to sync new files." ) files_dict: FilesDict = { "files": [ ( GlobStr(str(f.relative_to(self._settings.files_dir))), policy, ) for f in globbed_files ] } if self._backend and self._backend.interface: self._backend.interface.publish_files(files_dict) return [str(f) for f in globbed_files] @_log_to_run @_attach def restore( self, name: str, run_path: str | None = None, replace: bool = False, root: str | None = None, ) -> None | TextIO: return restore( name, run_path or self._get_path(), replace, root or self._settings.files_dir, ) @_log_to_run @_attach def finish( self, exit_code: int | None = None, quiet: bool | None = None, ) -> None: """Finish a run and upload any remaining data. Marks the completion of a W&B run and ensures all data is synced to the server. The run's final state is determined by its exit conditions and sync status. Run States: - Running: Active run that is logging data and/or sending heartbeats. - Crashed: Run that stopped sending heartbeats unexpectedly. - Finished: Run completed successfully (`exit_code=0`) with all data synced. - Failed: Run completed with errors (`exit_code!=0`). Args: exit_code: Integer indicating the run's exit status. Use 0 for success, any other value marks the run as failed. quiet: Deprecated. Configure logging verbosity using `wandb.Settings(quiet=...)`. """ if quiet is not None: deprecate.deprecate( field_name=Deprecated.run__finish_quiet, warning_message=( "The `quiet` argument to `wandb.run.finish()` is deprecated, " "use `wandb.Settings(quiet=...)` to set this instead." ), run=self, ) return self._finish(exit_code) @_log_to_run def _finish( self, exit_code: int | None = None, ) -> None: if self._is_finished: return assert self._wl logger.info(f"finishing run {self._get_path()}") with telemetry.context(run=self) as tel: tel.feature.finish = True # Run hooks that need to happen before the last messages to the # internal service, like Jupyter hooks. for hook in self._teardown_hooks: if hook.stage == TeardownStage.EARLY: hook.call() # Early-stage hooks may use methods that require _is_finished # to be False, so we set this after running those hooks. self._is_finished = True self._wl.remove_active_run(self) try: self._atexit_cleanup(exit_code=exit_code) # Run hooks that should happen after the last messages to the # internal service, like detaching the logger. for hook in self._teardown_hooks: if hook.stage == TeardownStage.LATE: hook.call() self._teardown_hooks = [] # Inform the service that we're done sending messages for this run. # # TODO: Why not do this in _atexit_cleanup()? if self._settings.run_id: service = self._wl.assert_service() service.inform_finish(run_id=self._settings.run_id) finally: if wandb.run is self: module.unset_globals() wandb._sentry.end_session() @_log_to_run @_raise_if_finished @_attach def status( self, ) -> RunStatus: """Get sync info from the internal backend, about the current run's sync status.""" if not self._backend or not self._backend.interface: return RunStatus() handle_run_status = self._backend.interface.deliver_request_run_status() result = handle_run_status.wait_or(timeout=None) sync_data = result.response.run_status_response sync_time = None if sync_data.sync_time.seconds: sync_time = datetime.fromtimestamp( sync_data.sync_time.seconds + sync_data.sync_time.nanos / 1e9 ) return RunStatus( sync_items_total=sync_data.sync_items_total, sync_items_pending=sync_data.sync_items_pending, sync_time=sync_time, ) def _add_panel( self, visualize_key: str, panel_type: str, panel_config: dict ) -> None: config = { "panel_type": panel_type, "panel_config": panel_config, } self._config_callback(val=config, key=("_wandb", "visualize", visualize_key)) def _redirect( self, stdout_slave_fd: int | None, stderr_slave_fd: int | None, console: str | None = None, ) -> None: if console is None: console = self._settings.console # only use raw for service to minimize potential changes if console == "wrap": console = "wrap_raw" logger.info("redirect: %s", console) out_redir: redirect.RedirectBase err_redir: redirect.RedirectBase # raw output handles the output_log writing in the internal process if console in {"redirect", "wrap_emu"}: output_log_path = os.path.join( self._settings.files_dir, filenames.OUTPUT_FNAME ) # output writer might have been set up, see wrap_fallback case if not self._output_writer: self._output_writer = filesystem.CRDedupedFile( open(output_log_path, "wb") ) if console == "redirect": logger.info("Redirecting console.") out_redir = redirect.Redirect( src="stdout", cbs=[ lambda data: self._console_callback("stdout", data), self._output_writer.write, # type: ignore ], flush_periodically=(self._settings.mode == "online"), ) err_redir = redirect.Redirect( src="stderr", cbs=[ lambda data: self._console_callback("stderr", data), self._output_writer.write, # type: ignore ], flush_periodically=(self._settings.mode == "online"), ) if os.name == "nt": def wrap_fallback() -> None: if self._out_redir: self._out_redir.uninstall() if self._err_redir: self._err_redir.uninstall() msg = ( "Tensorflow detected. Stream redirection is not supported " "on Windows when tensorflow is imported. Falling back to " "wrapping stdout/err." ) wandb.termlog(msg) self._redirect(None, None, console="wrap") add_import_hook("tensorflow", wrap_fallback) elif console == "wrap_emu": logger.info("Wrapping output streams.") out_redir = redirect.StreamWrapper( src="stdout", cbs=[ lambda data: self._console_callback("stdout", data), self._output_writer.write, # type: ignore ], flush_periodically=(self._settings.mode == "online"), ) err_redir = redirect.StreamWrapper( src="stderr", cbs=[ lambda data: self._console_callback("stderr", data), self._output_writer.write, # type: ignore ], flush_periodically=(self._settings.mode == "online"), ) elif console == "wrap_raw": logger.info("Wrapping output streams.") out_redir = redirect.StreamRawWrapper( src="stdout", cbs=[ lambda data: self._console_raw_callback("stdout", data), ], ) err_redir = redirect.StreamRawWrapper( src="stderr", cbs=[ lambda data: self._console_raw_callback("stderr", data), ], ) elif console == "off": return else: raise ValueError("unhandled console") try: # save stdout and stderr before installing new write functions out_redir.install() err_redir.install() self._out_redir = out_redir self._err_redir = err_redir logger.info("Redirects installed.") except Exception as e: wandb.termwarn(f"Failed to redirect: {e}") logger.exception("Failed to redirect.") return def _restore(self) -> None: logger.info("restore") # TODO(jhr): drain and shutdown all threads if self._out_redir: self._out_redir.uninstall() if self._err_redir: self._err_redir.uninstall() logger.info("restore done") def _atexit_cleanup(self, exit_code: int | None = None) -> None: if self._backend is None: logger.warning("process exited without backend configured") return if self._atexit_cleanup_called: return self._atexit_cleanup_called = True exit_code = exit_code or (self._hooks and self._hooks.exit_code) or 0 self._exit_code = exit_code logger.info(f"got exitcode: {exit_code}") # Delete this run's "resume" file if the run finished successfully. # # This is used by the "auto" resume mode, which resumes from the last # failed (or unfinished/crashed) run. If we reach this line, then this # run shouldn't be a candidate for "auto" resume. if exit_code == 0: if os.path.exists(self._settings.resume_fname): os.remove(self._settings.resume_fname) try: self._on_finish() except KeyboardInterrupt: if not wandb.wandb_agent._is_running(): # type: ignore wandb.termerror("Control-C detected -- Run data was not synced") raise except Exception: self._console_stop() logger.exception("Problem finishing run") wandb.termerror("Problem finishing run") raise Run._footer( sampled_history=self._sampled_history, final_summary=self._final_summary, poll_exit_response=self._poll_exit_response, internal_messages_response=self._internal_messages_response, settings=self._settings, printer=self._printer, ) def _console_start(self) -> None: logger.info("atexit reg") self._hooks = ExitHooks() self._redirect(self._stdout_slave_fd, self._stderr_slave_fd) def _console_stop(self) -> None: self._restore() if self._output_writer: self._output_writer.close() self._output_writer = None def _on_start(self) -> None: self._header() if self._settings.save_code and self._settings.code_dir is not None: self.log_code(self._settings.code_dir) if self._settings.x_save_requirements: if self._backend and self._backend.interface: from wandb.util import working_set logger.debug( "Saving list of pip packages installed into the current environment" ) self._backend.interface.publish_python_packages(working_set()) if self._backend and self._backend.interface and not self._settings._offline: assert self._settings.run_id self._run_status_checker = RunStatusChecker( self._settings.run_id, interface=self._backend.interface, ) self._run_status_checker.start() self._console_start() self._on_ready() def _on_attach(self) -> None: """Event triggered when run is attached to another run.""" with telemetry.context(run=self) as tel: tel.feature.attach = True self._is_attached = True self._on_ready() def _register_telemetry_import_hooks( self, ) -> None: def _telemetry_import_hook( run: Run, module: Any, ) -> None: with telemetry.context(run=run) as tel: try: name = getattr(module, "__name__", None) if name is not None: setattr(tel.imports_finish, name, True) except AttributeError: return import_telemetry_set = telemetry.list_telemetry_imports() import_hook_fn = functools.partial(_telemetry_import_hook, self) if not self._settings.run_id: return for module_name in import_telemetry_set: register_post_import_hook( import_hook_fn, self._settings.run_id, module_name, ) def _on_ready(self) -> None: """Event triggered when run is ready for the user.""" assert self._wl self._wl.add_active_run(self) self._register_telemetry_import_hooks() # start reporting any telemetry changes self._telemetry_obj_active = True self._telemetry_flush() try: self._detect_and_apply_job_inputs() except Exception: logger.exception("Problem applying launch job inputs") # object is about to be returned to the user, don't let them modify it self._freeze() if not self._settings.resume: if os.path.exists(self._settings.resume_fname): os.remove(self._settings.resume_fname) def _detect_and_apply_job_inputs(self) -> None: """If the user has staged launch inputs, apply them to the run.""" from wandb.sdk.launch.inputs.internal import StagedLaunchInputs StagedLaunchInputs().apply(self) def _make_job_source_reqs(self) -> tuple[list[str], dict[str, Any], dict[str, Any]]: from wandb.util import working_set installed_packages_list = sorted(f"{d.key}=={d.version}" for d in working_set()) input_types = TypeRegistry.type_of(self.config.as_dict()).to_json() output_types = TypeRegistry.type_of(self.summary._as_dict()).to_json() return installed_packages_list, input_types, output_types def _construct_job_artifact( self, name: str, source_dict: JobSourceDict, installed_packages_list: list[str], patch_path: os.PathLike | None = None, ) -> Artifact: job_artifact = InternalArtifact(name, job_builder.JOB_ARTIFACT_TYPE) if patch_path and os.path.exists(patch_path): job_artifact.add_file(FilePathStr(str(patch_path)), "diff.patch") with job_artifact.new_file("requirements.frozen.txt") as f: f.write("\n".join(installed_packages_list)) with job_artifact.new_file("wandb-job.json") as f: f.write(json.dumps(source_dict)) return job_artifact def _create_image_job( self, input_types: dict[str, Any], output_types: dict[str, Any], installed_packages_list: list[str], docker_image_name: str | None = None, args: list[str] | None = None, ) -> Artifact | None: docker_image_name = docker_image_name or os.getenv("WANDB_DOCKER") if not docker_image_name: return None name = wandb.util.make_artifact_name_safe(f"job-{docker_image_name}") s_args: Sequence[str] = args if args is not None else self._settings._args source_info: JobSourceDict = { "_version": "v0", "source_type": "image", "source": {"image": docker_image_name, "args": s_args}, "input_types": input_types, "output_types": output_types, "runtime": self._settings._python, } job_artifact = self._construct_job_artifact( name, source_info, installed_packages_list ) return job_artifact def _log_job_artifact_with_image( self, docker_image_name: str, args: list[str] | None = None ) -> Artifact: packages, in_types, out_types = self._make_job_source_reqs() job_artifact = self._create_image_job( in_types, out_types, packages, args=args, docker_image_name=docker_image_name, ) assert job_artifact artifact = self.log_artifact(job_artifact) if not artifact: raise wandb.Error(f"Job Artifact log unsuccessful: {artifact}") else: return artifact async def _display_finish_stats( self, progress_printer: progress.ProgressPrinter, ) -> None: last_result: Result | None = None async def loop_update_printer() -> None: while True: if last_result: progress_printer.update( [last_result.response.poll_exit_response], ) await asyncio.sleep(0.1) async def loop_poll_exit() -> None: nonlocal last_result assert self._backend and self._backend.interface while True: handle = self._backend.interface.deliver_poll_exit() time_start = time.monotonic() last_result = await handle.wait_async(timeout=None) # Update at most once a second. time_elapsed = time.monotonic() - time_start if time_elapsed < 1: await asyncio.sleep(1 - time_elapsed) async with asyncio_compat.open_task_group() as task_group: task_group.start_soon(loop_update_printer()) task_group.start_soon(loop_poll_exit()) def _on_finish(self) -> None: trigger.call("on_finished") if self._run_status_checker is not None: self._run_status_checker.stop() self._console_stop() # TODO: there's a race here with jupyter console logging assert self._backend and self._backend.interface if self._settings.x_update_finish_state: exit_handle = self._backend.interface.deliver_exit(self._exit_code) else: exit_handle = self._backend.interface.deliver_finish_without_exit() with progress.progress_printer( self._printer, default_text="Finishing up...", ) as progress_printer: # Wait for the run to complete. wait_with_progress( exit_handle, timeout=None, progress_after=1, display_progress=functools.partial( self._display_finish_stats, progress_printer, ), ) # Print some final statistics. poll_exit_handle = self._backend.interface.deliver_poll_exit() result = poll_exit_handle.wait_or(timeout=None) progress.print_sync_dedupe_stats( self._printer, result.response.poll_exit_response, ) self._poll_exit_response = result.response.poll_exit_response internal_messages_handle = self._backend.interface.deliver_internal_messages() result = internal_messages_handle.wait_or(timeout=None) self._internal_messages_response = result.response.internal_messages_response # dispatch all our final requests final_summary_handle = self._backend.interface.deliver_get_summary() sampled_history_handle = ( self._backend.interface.deliver_request_sampled_history() ) result = sampled_history_handle.wait_or(timeout=None) self._sampled_history = result.response.sampled_history_response result = final_summary_handle.wait_or(timeout=None) self._final_summary = result.response.get_summary_response if self._backend: self._backend.cleanup() if self._run_status_checker: self._run_status_checker.join() if self._settings.run_id: self._unregister_telemetry_import_hooks(self._settings.run_id) @staticmethod def _unregister_telemetry_import_hooks(run_id: str) -> None: import_telemetry_set = telemetry.list_telemetry_imports() for module_name in import_telemetry_set: unregister_post_import_hook(module_name, run_id) @_log_to_run @_raise_if_finished @_attach def define_metric( self, name: str, step_metric: str | wandb_metric.Metric | None = None, step_sync: bool | None = None, hidden: bool | None = None, summary: str | None = None, goal: str | None = None, overwrite: bool | None = None, ) -> wandb_metric.Metric: """Customize metrics logged with `wandb.log()`. Args: name: The name of the metric to customize. step_metric: The name of another metric to serve as the X-axis for this metric in automatically generated charts. step_sync: Automatically insert the last value of step_metric into `run.log()` if it is not provided explicitly. Defaults to True if step_metric is specified. hidden: Hide this metric from automatic plots. summary: Specify aggregate metrics added to summary. Supported aggregations include "min", "max", "mean", "last", "best", "copy" and "none". "best" is used together with the goal parameter. "none" prevents a summary from being generated. "copy" is deprecated and should not be used. goal: Specify how to interpret the "best" summary type. Supported options are "minimize" and "maximize". overwrite: If false, then this call is merged with previous `define_metric` calls for the same metric by using their values for any unspecified parameters. If true, then unspecified parameters overwrite values specified by previous calls. Returns: An object that represents this call but can otherwise be discarded. """ if summary and "copy" in summary: deprecate.deprecate( Deprecated.run__define_metric_copy, "define_metric(summary='copy') is deprecated and will be removed.", self, ) if (summary and "best" in summary) or goal is not None: deprecate.deprecate( Deprecated.run__define_metric_best_goal, "define_metric(summary='best', goal=...) is deprecated and will be removed. " "Use define_metric(summary='min') or define_metric(summary='max') instead.", self, ) return self._define_metric( name, step_metric, step_sync, hidden, summary, goal, overwrite, ) def _define_metric( self, name: str, step_metric: str | wandb_metric.Metric | None = None, step_sync: bool | None = None, hidden: bool | None = None, summary: str | None = None, goal: str | None = None, overwrite: bool | None = None, ) -> wandb_metric.Metric: if not name: raise wandb.Error("define_metric() requires non-empty name argument") if isinstance(step_metric, wandb_metric.Metric): step_metric = step_metric.name for arg_name, arg_val, exp_type in ( ("name", name, str), ("step_metric", step_metric, str), ("step_sync", step_sync, bool), ("hidden", hidden, bool), ("summary", summary, str), ("goal", goal, str), ("overwrite", overwrite, bool), ): # NOTE: type checking is broken for isinstance and str if arg_val is not None and not isinstance(arg_val, exp_type): arg_type = type(arg_val).__name__ raise wandb.Error( f"Unhandled define_metric() arg: {arg_name} type: {arg_type}" ) stripped = name[:-1] if name.endswith("*") else name if "*" in stripped: raise wandb.Error( f"Unhandled define_metric() arg: name (glob suffixes only): {name}" ) summary_ops: Sequence[str] | None = None if summary: summary_items = [s.lower() for s in summary.split(",")] summary_ops = [] valid = {"min", "max", "mean", "best", "last", "copy", "none"} # TODO: deprecate copy and best for i in summary_items: if i not in valid: raise wandb.Error(f"Unhandled define_metric() arg: summary op: {i}") summary_ops.append(i) with telemetry.context(run=self) as tel: tel.feature.metric_summary = True # TODO: deprecate goal goal_cleaned: str | None = None if goal is not None: goal_cleaned = goal[:3].lower() valid_goal = {"min", "max"} if goal_cleaned not in valid_goal: raise wandb.Error(f"Unhandled define_metric() arg: goal: {goal}") with telemetry.context(run=self) as tel: tel.feature.metric_goal = True if hidden: with telemetry.context(run=self) as tel: tel.feature.metric_hidden = True if step_sync: with telemetry.context(run=self) as tel: tel.feature.metric_step_sync = True with telemetry.context(run=self) as tel: tel.feature.metric = True m = wandb_metric.Metric( name=name, step_metric=step_metric, step_sync=step_sync, summary=summary_ops, hidden=hidden, goal=goal_cleaned, overwrite=overwrite, ) m._set_callback(self._metric_callback) m._commit() return m @_log_to_run @_attach def watch( self, models: torch.nn.Module | Sequence[torch.nn.Module], criterion: torch.F | None = None, # type: ignore log: Literal["gradients", "parameters", "all"] | None = "gradients", log_freq: int = 1000, idx: int | None = None, log_graph: bool = False, ) -> None: """Hooks into the given PyTorch model(s) to monitor gradients and the model's computational graph. This function can track parameters, gradients, or both during training. It should be extended to support arbitrary machine learning models in the future. Args: models (Union[torch.nn.Module, Sequence[torch.nn.Module]]): A single model or a sequence of models to be monitored. criterion (Optional[torch.F]): The loss function being optimized (optional). log (Optional[Literal["gradients", "parameters", "all"]]): Specifies whether to log "gradients", "parameters", or "all". Set to None to disable logging. (default="gradients") log_freq (int): Frequency (in batches) to log gradients and parameters. (default=1000) idx (Optional[int]): Index used when tracking multiple models with `wandb.watch`. (default=None) log_graph (bool): Whether to log the model's computational graph. (default=False) Raises: ValueError: If `wandb.init` has not been called or if any of the models are not instances of `torch.nn.Module`. """ wandb.sdk._watch(self, models, criterion, log, log_freq, idx, log_graph) @_log_to_run @_attach def unwatch( self, models: torch.nn.Module | Sequence[torch.nn.Module] | None = None ) -> None: """Remove pytorch model topology, gradient and parameter hooks. Args: models (torch.nn.Module | Sequence[torch.nn.Module]): Optional list of pytorch models that have had watch called on them """ wandb.sdk._unwatch(self, models=models) def _detach(self) -> None: pass @_log_to_run @_raise_if_finished @_attach def link_artifact( self, artifact: Artifact, target_path: str, aliases: list[str] | None = None, ) -> Artifact | None: """Link the given artifact to a portfolio (a promoted collection of artifacts). The linked artifact will be visible in the UI for the specified portfolio. Args: artifact: the (public or local) artifact which will be linked target_path: `str` - takes the following forms: `{portfolio}`, `{project}/{portfolio}`, or `{entity}/{project}/{portfolio}` aliases: `List[str]` - optional alias(es) that will only be applied on this linked artifact inside the portfolio. The alias "latest" will always be applied to the latest version of an artifact that is linked. Returns: The linked artifact if linking was successful, otherwise None. """ portfolio, project, entity = wandb.util._parse_entity_project_item(target_path) if aliases is None: aliases = [] if not self._backend or not self._backend.interface: return None if artifact.is_draft() and not artifact._is_draft_save_started(): artifact = self._log_artifact(artifact) if self._settings._offline: # TODO: implement offline mode + sync raise NotImplementedError # Wait until the artifact is committed before trying to link it. artifact.wait() organization = "" if is_artifact_registry_project(project): organization = entity or self.settings.organization or "" # In a Registry linking, the entity is used to fetch the organization of the artifact # therefore the source artifact's entity is passed to the backend entity = artifact._source_entity project = project or self.project entity = entity or self.entity handle = self._backend.interface.deliver_link_artifact( artifact, portfolio, aliases, entity, project, organization, ) if artifact._ttl_duration_seconds is not None: wandb.termwarn( "Artifact TTL will be disabled for source artifacts that are linked to portfolios." ) result = handle.wait_or(timeout=None) response = result.response.link_artifact_response if response.error_message: wandb.termerror(response.error_message) return None if response.version_index is None: wandb.termerror( "Error fetching the linked artifact's version index after linking" ) return None try: artifact_name = f"{entity}/{project}/{portfolio}:v{response.version_index}" if is_artifact_registry_project(project): if organization: artifact_name = f"{organization}/{project}/{portfolio}:v{response.version_index}" else: artifact_name = f"{project}/{portfolio}:v{response.version_index}" linked_artifact = self._public_api()._artifact(artifact_name) except Exception as e: wandb.termerror(f"Error fetching link artifact after linking: {e}") return None return linked_artifact @_log_to_run @_raise_if_finished @_attach def use_artifact( self, artifact_or_name: str | Artifact, type: str | None = None, aliases: list[str] | None = None, use_as: str | None = None, ) -> Artifact: """Declare an artifact as an input to a run. Call `download` or `file` on the returned object to get the contents locally. Args: artifact_or_name: (str or Artifact) An artifact name. May be prefixed with project/ or entity/project/. If no entity is specified in the name, the Run or API setting's entity is used. Valid names can be in the following forms: - name:version - name:alias You can also pass an Artifact object created by calling `wandb.Artifact` type: (str, optional) The type of artifact to use. aliases: (list, optional) Aliases to apply to this artifact use_as: This argument is deprecated and does nothing. Returns: An `Artifact` object. """ if self._settings._offline: raise TypeError("Cannot use artifact when in offline mode.") api = internal.Api( default_settings={ "entity": self._settings.entity, "project": self._settings.project, } ) api.set_current_run_id(self._settings.run_id) if use_as is not None: deprecate.deprecate( field_name=Deprecated.run__use_artifact_use_as, warning_message=( "`use_as` argument is deprecated and does not affect the behaviour of `run.use_artifact`" ), ) if isinstance(artifact_or_name, str): name = artifact_or_name public_api = self._public_api() artifact = public_api._artifact(type=type, name=name) if type is not None and type != artifact.type: raise ValueError( f"Supplied type {type} does not match type {artifact.type} of artifact {artifact.name}" ) api.use_artifact( artifact.id, entity_name=self._settings.entity, project_name=self._settings.project, artifact_entity_name=artifact.entity, artifact_project_name=artifact.project, ) else: artifact = artifact_or_name if aliases is None: aliases = [] elif isinstance(aliases, str): aliases = [aliases] if isinstance(artifact_or_name, Artifact) and artifact.is_draft(): if use_as is not None: wandb.termwarn( "Indicating use_as is not supported when using a draft artifact" ) self._log_artifact( artifact, aliases=aliases, is_user_created=True, use_after_commit=True, ) artifact.wait() elif isinstance(artifact, Artifact) and not artifact.is_draft(): api.use_artifact( artifact.id, artifact_entity_name=artifact.entity, artifact_project_name=artifact.project, ) else: raise ValueError( 'You must pass an artifact name (e.g. "pedestrian-dataset:v1"), ' "an instance of `wandb.Artifact`, or `wandb.Api().artifact()` to `use_artifact`" ) if self._backend and self._backend.interface: self._backend.interface.publish_use_artifact(artifact) return artifact @_log_to_run @_raise_if_finished @_attach def log_artifact( self, artifact_or_path: Artifact | StrPath, name: str | None = None, type: str | None = None, aliases: list[str] | None = None, tags: list[str] | None = None, ) -> Artifact: """Declare an artifact as an output of a run. Args: artifact_or_path: (str or Artifact) A path to the contents of this artifact, can be in the following forms: - `/local/directory` - `/local/directory/file.txt` - `s3://bucket/path` You can also pass an Artifact object created by calling `wandb.Artifact`. name: (str, optional) An artifact name. Valid names can be in the following forms: - name:version - name:alias - digest This will default to the basename of the path prepended with the current run id if not specified. type: (str) The type of artifact to log, examples include `dataset`, `model` aliases: (list, optional) Aliases to apply to this artifact, defaults to `["latest"]` tags: (list, optional) Tags to apply to this artifact, if any. Returns: An `Artifact` object. """ return self._log_artifact( artifact_or_path, name=name, type=type, aliases=aliases, tags=tags, ) @_log_to_run @_raise_if_finished @_attach def upsert_artifact( self, artifact_or_path: Artifact | str, name: str | None = None, type: str | None = None, aliases: list[str] | None = None, distributed_id: str | None = None, ) -> Artifact: """Declare (or append to) a non-finalized artifact as output of a run. Note that you must call run.finish_artifact() to finalize the artifact. This is useful when distributed jobs need to all contribute to the same artifact. Args: artifact_or_path: (str or Artifact) A path to the contents of this artifact, can be in the following forms: - `/local/directory` - `/local/directory/file.txt` - `s3://bucket/path` You can also pass an Artifact object created by calling `wandb.Artifact`. name: (str, optional) An artifact name. May be prefixed with entity/project. Valid names can be in the following forms: - name:version - name:alias - digest This will default to the basename of the path prepended with the current run id if not specified. type: (str) The type of artifact to log, examples include `dataset`, `model` aliases: (list, optional) Aliases to apply to this artifact, defaults to `["latest"]` distributed_id: (string, optional) Unique string that all distributed jobs share. If None, defaults to the run's group name. Returns: An `Artifact` object. """ if self._settings.run_group is None and distributed_id is None: raise TypeError( "Cannot upsert artifact unless run is in a group or distributed_id is provided" ) if distributed_id is None: distributed_id = self._settings.run_group or "" return self._log_artifact( artifact_or_path, name=name, type=type, aliases=aliases, distributed_id=distributed_id, finalize=False, ) @_log_to_run @_raise_if_finished @_attach def finish_artifact( self, artifact_or_path: Artifact | str, name: str | None = None, type: str | None = None, aliases: list[str] | None = None, distributed_id: str | None = None, ) -> Artifact: """Finishes a non-finalized artifact as output of a run. Subsequent "upserts" with the same distributed ID will result in a new version. Args: artifact_or_path: (str or Artifact) A path to the contents of this artifact, can be in the following forms: - `/local/directory` - `/local/directory/file.txt` - `s3://bucket/path` You can also pass an Artifact object created by calling `wandb.Artifact`. name: (str, optional) An artifact name. May be prefixed with entity/project. Valid names can be in the following forms: - name:version - name:alias - digest This will default to the basename of the path prepended with the current run id if not specified. type: (str) The type of artifact to log, examples include `dataset`, `model` aliases: (list, optional) Aliases to apply to this artifact, defaults to `["latest"]` distributed_id: (string, optional) Unique string that all distributed jobs share. If None, defaults to the run's group name. Returns: An `Artifact` object. """ if self._settings.run_group is None and distributed_id is None: raise TypeError( "Cannot finish artifact unless run is in a group or distributed_id is provided" ) if distributed_id is None: distributed_id = self._settings.run_group or "" return self._log_artifact( artifact_or_path, name, type, aliases, distributed_id=distributed_id, finalize=True, ) def _log_artifact( self, artifact_or_path: Artifact | StrPath, name: str | None = None, type: str | None = None, aliases: list[str] | None = None, tags: list[str] | None = None, distributed_id: str | None = None, finalize: bool = True, is_user_created: bool = False, use_after_commit: bool = False, ) -> Artifact: if self._settings.anonymous in ["allow", "must"]: wandb.termwarn( "Artifacts logged anonymously cannot be claimed and expire after 7 days." ) if not finalize and distributed_id is None: raise TypeError("Must provide distributed_id if artifact is not finalize") if aliases is not None: aliases = validate_aliases(aliases) # Check if artifact tags are supported if tags is not None: tags = validate_tags(tags) artifact, aliases = self._prepare_artifact( artifact_or_path, name, type, aliases ) if len(artifact.metadata) > MAX_ARTIFACT_METADATA_KEYS: raise ValueError( f"Artifact must not have more than {MAX_ARTIFACT_METADATA_KEYS} metadata keys." ) artifact.distributed_id = distributed_id self._assert_can_log_artifact(artifact) if self._backend and self._backend.interface: if not self._settings._offline: handle = self._backend.interface.deliver_artifact( self, artifact, aliases, tags, self.step, finalize=finalize, is_user_created=is_user_created, use_after_commit=use_after_commit, ) artifact._set_save_handle(handle, self._public_api().client) else: self._backend.interface.publish_artifact( self, artifact, aliases, tags, finalize=finalize, is_user_created=is_user_created, use_after_commit=use_after_commit, ) elif self._internal_run_interface: self._internal_run_interface.publish_artifact( self, artifact, aliases, tags, finalize=finalize, is_user_created=is_user_created, use_after_commit=use_after_commit, ) return artifact def _public_api(self, overrides: dict[str, str] | None = None) -> PublicApi: overrides = {"run": self._settings.run_id} # type: ignore if not self._settings._offline: overrides["entity"] = self._settings.entity or "" overrides["project"] = self._settings.project or "" return public.Api(overrides) # TODO(jhr): annotate this def _assert_can_log_artifact(self, artifact) -> None: # type: ignore if self._settings._offline: return try: public_api = self._public_api() entity = public_api.settings["entity"] project = public_api.settings["project"] expected_type = Artifact._expected_type( entity, project, artifact.name, public_api.client ) except requests.exceptions.RequestException: # Just return early if there is a network error. This is # ok, as this function is intended to help catch an invalid # type early, but not a hard requirement for valid operation. return if expected_type is not None and artifact.type != expected_type: raise ValueError( f"Artifact {artifact.name} already exists with type '{expected_type}'; " f"cannot create another with type '{artifact.type}'" ) if entity and artifact._source_entity and entity != artifact._source_entity: raise ValueError( f"Artifact {artifact.name} is owned by entity " f"'{artifact._source_entity}'; it can't be moved to '{entity}'" ) if project and artifact._source_project and project != artifact._source_project: raise ValueError( f"Artifact {artifact.name} exists in project " f"'{artifact._source_project}'; it can't be moved to '{project}'" ) def _prepare_artifact( self, artifact_or_path: Artifact | StrPath, name: str | None = None, type: str | None = None, aliases: list[str] | None = None, ) -> tuple[Artifact, list[str]]: if isinstance(artifact_or_path, (str, os.PathLike)): name = ( name or f"run-{self._settings.run_id}-{os.path.basename(artifact_or_path)}" ) artifact = Artifact(name, type or "unspecified") if os.path.isfile(artifact_or_path): artifact.add_file(str(artifact_or_path)) elif os.path.isdir(artifact_or_path): artifact.add_dir(str(artifact_or_path)) elif "://" in str(artifact_or_path): artifact.add_reference(str(artifact_or_path)) else: raise ValueError( "path must be a file, directory or external" "reference like s3://bucket/path" ) else: artifact = artifact_or_path if not isinstance(artifact, Artifact): raise TypeError( "You must pass an instance of wandb.Artifact or a " "valid file path to log_artifact" ) artifact.finalize() return artifact, _resolve_aliases(aliases) @_log_to_run @_raise_if_finished @_attach def log_model( self, path: StrPath, name: str | None = None, aliases: list[str] | None = None, ) -> None: """Logs a model artifact containing the contents inside the 'path' to a run and marks it as an output to this run. Args: path: (str) A path to the contents of this model, can be in the following forms: - `/local/directory` - `/local/directory/file.txt` - `s3://bucket/path` name: (str, optional) A name to assign to the model artifact that the file contents will be added to. The string must contain only the following alphanumeric characters: dashes, underscores, and dots. This will default to the basename of the path prepended with the current run id if not specified. aliases: (list, optional) Aliases to apply to the created model artifact, defaults to `["latest"]` Examples: ```python run.log_model( path="/local/directory", name="my_model_artifact", aliases=["production"], ) ``` Invalid usage ```python run.log_model( path="/local/directory", name="my_entity/my_project/my_model_artifact", aliases=["production"], ) ``` Raises: ValueError: if name has invalid special characters Returns: None """ self._log_artifact( artifact_or_path=path, name=name, type="model", aliases=aliases ) @_log_to_run @_raise_if_finished @_attach def use_model(self, name: str) -> FilePathStr: """Download the files logged in a model artifact 'name'. Args: name: (str) A model artifact name. 'name' must match the name of an existing logged model artifact. May be prefixed with entity/project/. Valid names can be in the following forms: - model_artifact_name:version - model_artifact_name:alias Examples: ```python run.use_model( name="my_model_artifact:latest", ) run.use_model( name="my_project/my_model_artifact:v0", ) run.use_model( name="my_entity/my_project/my_model_artifact:", ) ``` Invalid usage ```python run.use_model( name="my_entity/my_project/my_model_artifact", ) ``` Raises: AssertionError: if model artifact 'name' is of a type that does not contain the substring 'model'. Returns: path: (str) path to downloaded model artifact file(s). """ if self._settings._offline: # Downloading artifacts is not supported when offline. raise RuntimeError("`use_model` not supported in offline mode.") artifact = self.use_artifact(artifact_or_name=name) if "model" not in str(artifact.type.lower()): raise AssertionError( "You can only use this method for 'model' artifacts." " For an artifact to be a 'model' artifact, its type property" " must contain the substring 'model'." ) path = artifact.download() # If returned directory contains only one file, return path to that file dir_list = os.listdir(path) if len(dir_list) == 1: return FilePathStr(os.path.join(path, dir_list[0])) return path @_log_to_run @_raise_if_finished @_attach def link_model( self, path: StrPath, registered_model_name: str, name: str | None = None, aliases: list[str] | None = None, ) -> Artifact | None: """Log a model artifact version and link it to a registered model in the model registry. The linked model version will be visible in the UI for the specified registered model. Steps: - Check if 'name' model artifact has been logged. If so, use the artifact version that matches the files located at 'path' or log a new version. Otherwise log files under 'path' as a new model artifact, 'name' of type 'model'. - Check if registered model with name 'registered_model_name' exists in the 'model-registry' project. If not, create a new registered model with name 'registered_model_name'. - Link version of model artifact 'name' to registered model, 'registered_model_name'. - Attach aliases from 'aliases' list to the newly linked model artifact version. Args: path: (str) A path to the contents of this model, can be in the following forms: - `/local/directory` - `/local/directory/file.txt` - `s3://bucket/path` registered_model_name: (str) - the name of the registered model that the model is to be linked to. A registered model is a collection of model versions linked to the model registry, typically representing a team's specific ML Task. The entity that this registered model belongs to will be derived from the run name: (str, optional) - the name of the model artifact that files in 'path' will be logged to. This will default to the basename of the path prepended with the current run id if not specified. aliases: (List[str], optional) - alias(es) that will only be applied on this linked artifact inside the registered model. The alias "latest" will always be applied to the latest version of an artifact that is linked. Examples: ```python run.link_model( path="/local/directory", registered_model_name="my_reg_model", name="my_model_artifact", aliases=["production"], ) ``` Invalid usage ```python run.link_model( path="/local/directory", registered_model_name="my_entity/my_project/my_reg_model", name="my_model_artifact", aliases=["production"], ) run.link_model( path="/local/directory", registered_model_name="my_reg_model", name="my_entity/my_project/my_model_artifact", aliases=["production"], ) ``` Raises: AssertionError: if registered_model_name is a path or if model artifact 'name' is of a type that does not contain the substring 'model' ValueError: if name has invalid special characters Returns: The linked artifact if linking was successful, otherwise None. """ name_parts = registered_model_name.split("/") if len(name_parts) != 1: raise AssertionError( "Please provide only the name of the registered model." " Do not append the entity or project name." ) project = "model-registry" target_path = self.entity + "/" + project + "/" + registered_model_name public_api = self._public_api() try: artifact = public_api._artifact(name=f"{name}:latest") if "model" not in str(artifact.type.lower()): raise AssertionError( "You can only use this method for 'model' artifacts." " For an artifact to be a 'model' artifact, its type" " property must contain the substring 'model'." ) artifact = self._log_artifact( artifact_or_path=path, name=name, type=artifact.type ) except (ValueError, CommError): artifact = self._log_artifact( artifact_or_path=path, name=name, type="model" ) return self.link_artifact( artifact=artifact, target_path=target_path, aliases=aliases ) @_log_to_run @_raise_if_finished @_attach def alert( self, title: str, text: str, level: str | AlertLevel | None = None, wait_duration: int | float | timedelta | None = None, ) -> None: """Launch an alert with the given title and text. Args: title: (str) The title of the alert, must be less than 64 characters long. text: (str) The text body of the alert. level: (str or AlertLevel, optional) The alert level to use, either: `INFO`, `WARN`, or `ERROR`. wait_duration: (int, float, or timedelta, optional) The time to wait (in seconds) before sending another alert with this title. """ level = level or AlertLevel.INFO level_str: str = level.value if isinstance(level, AlertLevel) else level if level_str not in {lev.value for lev in AlertLevel}: raise ValueError("level must be one of 'INFO', 'WARN', or 'ERROR'") wait_duration = wait_duration or timedelta(minutes=1) if isinstance(wait_duration, int) or isinstance(wait_duration, float): wait_duration = timedelta(seconds=wait_duration) elif not callable(getattr(wait_duration, "total_seconds", None)): raise TypeError( "wait_duration must be an int, float, or datetime.timedelta" ) wait_duration = int(wait_duration.total_seconds() * 1000) if self._backend and self._backend.interface: self._backend.interface.publish_alert(title, text, level_str, wait_duration) def __enter__(self) -> Run: return self def __exit__( self, exc_type: type[BaseException], exc_val: BaseException, exc_tb: TracebackType, ) -> bool: exception_raised = exc_type is not None if exception_raised: traceback.print_exception(exc_type, exc_val, exc_tb) exit_code = 1 if exception_raised else 0 self._finish(exit_code=exit_code) return not exception_raised @_log_to_run @_raise_if_finished @_attach def mark_preempting(self) -> None: """Mark this run as preempting. Also tells the internal process to immediately report this to server. """ if self._backend and self._backend.interface: self._backend.interface.publish_preempting() @property @_log_to_run @_raise_if_finished @_attach def _system_metrics(self) -> dict[str, list[tuple[datetime, float]]]: """Returns a dictionary of system metrics. Returns: A dictionary of system metrics. """ from wandb.proto import wandb_internal_pb2 def pb_to_dict( system_metrics_pb: wandb_internal_pb2.GetSystemMetricsResponse, ) -> dict[str, list[tuple[datetime, float]]]: res = {} for metric, records in system_metrics_pb.system_metrics.items(): measurements = [] for record in records.record: # Convert timestamp to datetime dt = datetime.fromtimestamp( record.timestamp.seconds, tz=timezone.utc ) dt = dt.replace(microsecond=record.timestamp.nanos // 1000) measurements.append((dt, record.value)) res[metric] = measurements return res if not self._backend or not self._backend.interface: return {} handle = self._backend.interface.deliver_get_system_metrics() try: result = handle.wait_or(timeout=1) except TimeoutError: return {} else: try: response = result.response.get_system_metrics_response return pb_to_dict(response) if response else {} except Exception: logger.exception("Error getting system metrics.") return {} @property @_log_to_run @_attach @_raise_if_finished def _metadata(self) -> Metadata | None: """The metadata associated with this run. NOTE: Automatically collected metadata can be overridden by the user. """ if not self._backend or not self._backend.interface: return self.__metadata # Initialize the metadata object if it doesn't exist. if self.__metadata is None: self.__metadata = Metadata() self.__metadata._set_callback(self._metadata_callback) handle = self._backend.interface.deliver_get_system_metadata() try: result = handle.wait_or(timeout=1) except TimeoutError: logger.exception("Timeout getting run metadata.") return None response = result.response.get_system_metadata_response # Temporarily disable the callback to prevent triggering # an update call to wandb-core with the callback. with self.__metadata.disable_callback(): # Values stored in the metadata object take precedence. self.__metadata.update_from_proto(response.metadata, skip_existing=True) return self.__metadata @_log_to_run @_raise_if_finished @_attach def _metadata_callback( self, metadata: MetadataRequest, ) -> None: """Callback to publish Metadata to wandb-core upon user updates.""" # ignore updates if the attached to another run if self._is_attached: wandb.termwarn( "Metadata updates are ignored when attached to another run.", repeat=False, ) return if self._backend and self._backend.interface: self._backend.interface.publish_metadata(metadata) # ------------------------------------------------------------------------------ # HEADER # ------------------------------------------------------------------------------ def _header(self) -> None: self._header_wandb_version_info() self._header_sync_info() self._header_run_info() def _header_wandb_version_info(self) -> None: if self._settings.quiet or self._settings.silent: return # TODO: add this to a higher verbosity level self._printer.display(f"Tracking run with wandb version {wandb.__version__}") def _header_sync_info(self) -> None: if self._settings._offline: self._printer.display( [ f"W&B syncing is set to {self._printer.code('`offline`')}" f" in this directory. Run {self._printer.code('`wandb online`')}" f" or set {self._printer.code('WANDB_MODE=online')}" " to enable cloud syncing.", ] ) else: sync_dir = self._settings.sync_dir info = [f"Run data is saved locally in {self._printer.files(sync_dir)}"] if not self._printer.supports_html: info.append( f"Run {self._printer.code('`wandb offline`')} to turn off syncing." ) if not self._settings.quiet and not self._settings.silent: self._printer.display(info) def _header_run_info(self) -> None: settings, printer = self._settings, self._printer if settings._offline or settings.silent: return run_url = settings.run_url project_url = settings.project_url sweep_url = settings.sweep_url run_state_str = ( "Resuming run" if settings.resumed or settings.resume_from else "Syncing run" ) run_name = settings.run_name if not run_name: return if printer.supports_html: import wandb.jupyter if not wandb.jupyter.display_if_magic_is_used(self): run_line = f"{printer.link(run_url, run_name)}" project_line, sweep_line = "", "" if not settings.quiet: doc_html = printer.link(url_registry.url("developer-guide"), "docs") project_html = printer.link(project_url, "Weights & Biases") project_line = f"to {project_html} ({doc_html})" if sweep_url: sweep_line = f"Sweep page: {printer.link(sweep_url, sweep_url)}" printer.display( [f"{run_state_str} {run_line} {project_line}", sweep_line], ) elif run_name: printer.display(f"{run_state_str} {printer.name(run_name)}") if not settings.quiet: # TODO: add verbosity levels and add this to higher levels printer.display( f"{printer.emoji('star')} View project at {printer.link(project_url)}" ) if sweep_url: printer.display( f"{printer.emoji('broom')} View sweep at {printer.link(sweep_url)}" ) printer.display( f"{printer.emoji('rocket')} View run at {printer.link(run_url)}", ) if run_name and settings.anonymous in ["allow", "must"]: printer.display( ( "Do NOT share these links with anyone." " They can be used to claim your runs." ), level="warn", ) # ------------------------------------------------------------------------------ # FOOTER # ------------------------------------------------------------------------------ # Note: All the footer methods are static methods since we want to share the printing logic # with the service execution path that doesn't have access to the run instance @staticmethod def _footer( sampled_history: SampledHistoryResponse | None = None, final_summary: GetSummaryResponse | None = None, poll_exit_response: PollExitResponse | None = None, internal_messages_response: InternalMessagesResponse | None = None, *, settings: Settings, printer: printer.Printer, ) -> None: Run._footer_history_summary_info( history=sampled_history, summary=final_summary, settings=settings, printer=printer, ) Run._footer_sync_info( poll_exit_response=poll_exit_response, settings=settings, printer=printer, ) Run._footer_log_dir_info(settings=settings, printer=printer) Run._footer_notify_wandb_core( settings=settings, printer=printer, ) Run._footer_internal_messages( internal_messages_response=internal_messages_response, settings=settings, printer=printer, ) @staticmethod def _footer_sync_info( poll_exit_response: PollExitResponse | None = None, *, settings: Settings, printer: printer.Printer, ) -> None: if settings.silent: return if settings._offline: if not settings.quiet: printer.display( [ "You can sync this run to the cloud by running:", printer.code(f"wandb sync {settings.sync_dir}"), ], ) return info = [] if settings.run_name and settings.run_url: info.append( f"{printer.emoji('rocket')} View run {printer.name(settings.run_name)} at: {printer.link(settings.run_url)}" ) if settings.project_url: info.append( f"{printer.emoji('star')} View project at: {printer.link(settings.project_url)}" ) if poll_exit_response and poll_exit_response.file_counts: logger.info("logging synced files") file_counts = poll_exit_response.file_counts info.append( f"Synced {file_counts.wandb_count} W&B file(s), {file_counts.media_count} media file(s), " f"{file_counts.artifact_count} artifact file(s) and {file_counts.other_count} other file(s)", ) printer.display(info) @staticmethod def _footer_log_dir_info( *, settings: Settings, printer: printer.Printer, ) -> None: if settings.quiet or settings.silent: return log_dir = settings.log_user or settings.log_internal if log_dir: log_dir = os.path.dirname(log_dir.replace(os.getcwd(), ".")) printer.display( f"Find logs at: {printer.files(log_dir)}", ) @staticmethod def _footer_history_summary_info( history: SampledHistoryResponse | None = None, summary: GetSummaryResponse | None = None, *, settings: Settings, printer: printer.Printer, ) -> None: if settings.quiet or settings.silent: return panel = [] # Render history if available if history: logger.info("rendering history") sampled_history = { item.key: wandb.util.downsample( item.values_float or item.values_int, 40 ) for item in history.item if not item.key.startswith("_") } history_rows = [] for key, values in sorted(sampled_history.items()): if any(not isinstance(value, numbers.Number) for value in values): continue sparkline = printer.sparklines(values) if sparkline: history_rows.append([key, sparkline]) if history_rows: history_grid = printer.grid( history_rows, "Run history:", ) panel.append(history_grid) # Render summary if available if summary: final_summary = {} for item in summary.item: if item.key.startswith("_") or len(item.nested_key) > 0: continue final_summary[item.key] = json.loads(item.value_json) logger.info("rendering summary") summary_rows = [] for key, value in sorted(final_summary.items()): # arrays etc. might be too large. for now, we just don't print them if isinstance(value, str): value = value[:20] + "..." * (len(value) >= 20) summary_rows.append([key, value]) elif isinstance(value, numbers.Number): value = round(value, 5) if isinstance(value, float) else value summary_rows.append([key, str(value)]) else: continue if summary_rows: summary_grid = printer.grid( summary_rows, "Run summary:", ) panel.append(summary_grid) if panel: printer.display(printer.panel(panel)) @staticmethod def _footer_internal_messages( internal_messages_response: InternalMessagesResponse | None = None, *, settings: Settings, printer: printer.Printer, ) -> None: if settings.quiet or settings.silent: return if not internal_messages_response: return for message in internal_messages_response.messages.warning: printer.display(message, level="warn") @staticmethod def _footer_notify_wandb_core( *, settings: Settings, printer: printer.Printer, ) -> None: """Prints a message advertising the upcoming core release.""" if settings.quiet or not settings.x_require_legacy_service: return printer.display( "The legacy backend is deprecated. In future versions, `wandb-core` will become " "the sole backend service, and the `wandb.require('legacy-service')` flag will be removed. " f"For more information, visit {url_registry.url('wandb-core')}", level="warn", ) # We define this outside of the run context to support restoring before init def restore( name: str, run_path: str | None = None, replace: bool = False, root: str | None = None, ) -> None | TextIO: """Download the specified file from cloud storage. File is placed into the current directory or run directory. By default, will only download the file if it doesn't already exist. Args: name: the name of the file run_path: optional path to a run to pull files from, i.e. `username/project_name/run_id` if wandb.init has not been called, this is required. replace: whether to download the file even if it already exists locally root: the directory to download the file to. Defaults to the current directory or the run directory if wandb.init was called. Returns: None if it can't find the file, otherwise a file object open for reading Raises: wandb.CommError: if we can't connect to the wandb backend ValueError: if the file is not found or can't find run_path """ is_disabled = wandb.run is not None and wandb.run.disabled run = None if is_disabled else wandb.run if run_path is None: if run is not None: run_path = run.path else: raise ValueError( "run_path required when calling wandb.restore before wandb.init" ) if root is None: if run is not None: root = run.dir api = public.Api() api_run = api.run(run_path) if root is None: root = os.getcwd() path = os.path.join(root, name) if os.path.exists(path) and replace is False: return open(path) if is_disabled: return None files = api_run.files([name]) if len(files) == 0: return None # if the file does not exist, the file has an md5 of 0 if files[0].md5 == "0": raise ValueError(f"File {name} not found in {run_path or root}.") return files[0].download(root=root, replace=True) # propagate our doc string to the runs restore method try: Run.restore.__doc__ = restore.__doc__ except AttributeError: pass def finish( exit_code: int | None = None, quiet: bool | None = None, ) -> None: """Finish a run and upload any remaining data. Marks the completion of a W&B run and ensures all data is synced to the server. The run's final state is determined by its exit conditions and sync status. Run States: - Running: Active run that is logging data and/or sending heartbeats. - Crashed: Run that stopped sending heartbeats unexpectedly. - Finished: Run completed successfully (`exit_code=0`) with all data synced. - Failed: Run completed with errors (`exit_code!=0`). Args: exit_code: Integer indicating the run's exit status. Use 0 for success, any other value marks the run as failed. quiet: Deprecated. Configure logging verbosity using `wandb.Settings(quiet=...)`. """ if wandb.run: wandb.run.finish(exit_code=exit_code, quiet=quiet)