jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Any, Optional
from transformers import TrainingArguments
@dataclass
class ORPOConfig(TrainingArguments):
r"""
Configuration class for the [`ORPOTrainer`].
Using [`~transformers.HfArgumentParser`] we can turn this class into
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
command line.
Parameters:
learning_rate (`float`, *optional*, defaults to `1e-6`):
Initial learning rate for [`AdamW`] optimizer. The default value replaces that of
[`~transformers.TrainingArguments`].
max_length (`int` or `None`, *optional*, defaults to `1024`):
Maximum length of the sequences (prompt + completion) in the batch. This argument is required if you want
to use the default data collator.
max_prompt_length (`int` or `None`, *optional*, defaults to `512`):
Maximum length of the prompt. This argument is required if you want to use the default data collator.
max_completion_length (`int` or `None`, *optional*, defaults to `None`):
Maximum length of the completion. This argument is required if you want to use the default data collator
and your model is an encoder-decoder.
beta (`float`, *optional*, defaults to `0.1`):
Parameter controlling the relative ratio loss weight in the ORPO loss. In the [paper](https://huggingface.co/papers/2403.07691),
it is denoted by 位. In the [code](https://github.com/xfactlab/orpo), it is denoted by `alpha`.
disable_dropout (`bool`, *optional*, defaults to `True`):
Whether to disable dropout in the model.
label_pad_token_id (`int`, *optional*, defaults to `-100`):
Label pad token id. This argument is required if you want to use the default data collator.
padding_value (`int` or `None`, *optional*, defaults to `None`):
Padding value to use. If `None`, the padding value of the tokenizer is used.
truncation_mode (`str`, *optional*, defaults to `"keep_end"`):
Truncation mode to use when the prompt is too long. Possible values are `"keep_end"` or `"keep_start"`.
This argument is required if you want to use the default data collator.
generate_during_eval (`bool`, *optional*, defaults to `False`):
If `True`, generates and logs completions from the model to W&B or Comet during evaluation.
is_encoder_decoder (`bool` or `None`, *optional*, defaults to `None`):
When using the `model_init` argument (callable) to instantiate the model instead of the `model` argument,
you need to specify if the model returned by the callable is an encoder-decoder model.
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a
string.
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
Number of processes to use for processing the dataset.
"""
learning_rate: float = field(
default=1e-6,
metadata={
"help": "Initial learning rate for `AdamW` optimizer. The default value replaces that of "
"transformers.TrainingArguments."
},
)
max_length: Optional[int] = field(
default=1024,
metadata={"help": "Maximum length of the sequences (prompt + completion) in the batch."},
)
max_prompt_length: Optional[int] = field(
default=512,
metadata={
"help": "Maximum length of the prompt. This argument is required if you want to use the default data "
"collator and your model is an encoder-decoder."
},
)
max_completion_length: Optional[int] = field(
default=None,
metadata={
"help": "Maximum length of the completion. This argument is required if you want to use the default data "
"collator and your model is an encoder-decoder."
},
)
beta: float = field(
default=0.1,
metadata={
"help": "Parameter controlling the relative ratio loss weight in the ORPO loss. In the paper, it is "
"denoted by 位."
},
)
disable_dropout: bool = field(
default=True,
metadata={"help": "Whether to disable dropout in the model."},
)
label_pad_token_id: int = field(
default=-100,
metadata={
"help": "Label pad token id. This argument is required if you want to use the default data collator."
},
)
padding_value: Optional[int] = field(
default=None,
metadata={"help": "Padding value to use. If `None`, the padding value of the tokenizer is used."},
)
truncation_mode: str = field(
default="keep_end",
metadata={
"help": "Truncation mode to use when the prompt is too long.",
"choices": ["keep_end", "keep_start"],
},
)
generate_during_eval: bool = field(
default=False,
metadata={"help": "If `True`, generates and logs completions from the model to W&B during evaluation."},
)
is_encoder_decoder: Optional[bool] = field(
default=None,
metadata={
"help": "When using the `model_init` argument (callable) to instantiate the model instead of the `model` "
"argument, you need to specify if the model returned by the callable is an encoder-decoder model."
},
)
model_init_kwargs: Optional[dict[str, Any]] = field(
default=None,
metadata={
"help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model "
"from a string."
},
)
dataset_num_proc: Optional[int] = field(
default=None,
metadata={"help": "Number of processes to use for processing the dataset."},
)