File size: 6,699 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Any, Optional
from transformers import TrainingArguments
@dataclass
class ORPOConfig(TrainingArguments):
r"""
Configuration class for the [`ORPOTrainer`].
Using [`~transformers.HfArgumentParser`] we can turn this class into
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
command line.
Parameters:
learning_rate (`float`, *optional*, defaults to `1e-6`):
Initial learning rate for [`AdamW`] optimizer. The default value replaces that of
[`~transformers.TrainingArguments`].
max_length (`int` or `None`, *optional*, defaults to `1024`):
Maximum length of the sequences (prompt + completion) in the batch. This argument is required if you want
to use the default data collator.
max_prompt_length (`int` or `None`, *optional*, defaults to `512`):
Maximum length of the prompt. This argument is required if you want to use the default data collator.
max_completion_length (`int` or `None`, *optional*, defaults to `None`):
Maximum length of the completion. This argument is required if you want to use the default data collator
and your model is an encoder-decoder.
beta (`float`, *optional*, defaults to `0.1`):
Parameter controlling the relative ratio loss weight in the ORPO loss. In the [paper](https://huggingface.co/papers/2403.07691),
it is denoted by Ξ». In the [code](https://github.com/xfactlab/orpo), it is denoted by `alpha`.
disable_dropout (`bool`, *optional*, defaults to `True`):
Whether to disable dropout in the model.
label_pad_token_id (`int`, *optional*, defaults to `-100`):
Label pad token id. This argument is required if you want to use the default data collator.
padding_value (`int` or `None`, *optional*, defaults to `None`):
Padding value to use. If `None`, the padding value of the tokenizer is used.
truncation_mode (`str`, *optional*, defaults to `"keep_end"`):
Truncation mode to use when the prompt is too long. Possible values are `"keep_end"` or `"keep_start"`.
This argument is required if you want to use the default data collator.
generate_during_eval (`bool`, *optional*, defaults to `False`):
If `True`, generates and logs completions from the model to W&B or Comet during evaluation.
is_encoder_decoder (`bool` or `None`, *optional*, defaults to `None`):
When using the `model_init` argument (callable) to instantiate the model instead of the `model` argument,
you need to specify if the model returned by the callable is an encoder-decoder model.
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a
string.
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
Number of processes to use for processing the dataset.
"""
learning_rate: float = field(
default=1e-6,
metadata={
"help": "Initial learning rate for `AdamW` optimizer. The default value replaces that of "
"transformers.TrainingArguments."
},
)
max_length: Optional[int] = field(
default=1024,
metadata={"help": "Maximum length of the sequences (prompt + completion) in the batch."},
)
max_prompt_length: Optional[int] = field(
default=512,
metadata={
"help": "Maximum length of the prompt. This argument is required if you want to use the default data "
"collator and your model is an encoder-decoder."
},
)
max_completion_length: Optional[int] = field(
default=None,
metadata={
"help": "Maximum length of the completion. This argument is required if you want to use the default data "
"collator and your model is an encoder-decoder."
},
)
beta: float = field(
default=0.1,
metadata={
"help": "Parameter controlling the relative ratio loss weight in the ORPO loss. In the paper, it is "
"denoted by Ξ»."
},
)
disable_dropout: bool = field(
default=True,
metadata={"help": "Whether to disable dropout in the model."},
)
label_pad_token_id: int = field(
default=-100,
metadata={
"help": "Label pad token id. This argument is required if you want to use the default data collator."
},
)
padding_value: Optional[int] = field(
default=None,
metadata={"help": "Padding value to use. If `None`, the padding value of the tokenizer is used."},
)
truncation_mode: str = field(
default="keep_end",
metadata={
"help": "Truncation mode to use when the prompt is too long.",
"choices": ["keep_end", "keep_start"],
},
)
generate_during_eval: bool = field(
default=False,
metadata={"help": "If `True`, generates and logs completions from the model to W&B during evaluation."},
)
is_encoder_decoder: Optional[bool] = field(
default=None,
metadata={
"help": "When using the `model_init` argument (callable) to instantiate the model instead of the `model` "
"argument, you need to specify if the model returned by the callable is an encoder-decoder model."
},
)
model_init_kwargs: Optional[dict[str, Any]] = field(
default=None,
metadata={
"help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model "
"from a string."
},
)
dataset_num_proc: Optional[int] = field(
default=None,
metadata={"help": "Number of processes to use for processing the dataset."},
)
|