A newer version of the Gradio SDK is available:
5.39.0
metadata
'[object Object]': null
Model Card for {{ model_name }}
This model is a fine-tuned version of [{{ base_model }}](https://huggingface.co/{{ base_model }}){% if dataset_name %} on the [{{ dataset_name }}](https://huggingface.co/datasets/{{ dataset_name }}) dataset{% endif %}. It has been trained using TRL.
Quick start
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="{{ hub_model_id }}", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
Training procedure
{% if wandb_url %}[]({{ wandb_url }}){% endif %}
{% if comet_url %}[
]({{ comet_url }}){% endif %}
This model was trained with {{ trainer_name }}{% if paper_id %}, a method introduced in [{{ paper_title }}](https://huggingface.co/papers/{{ paper_id }}){% endif %}.
Framework versions
- TRL: {{ trl_version }}
- Transformers: {{ transformers_version }}
- Pytorch: {{ pytorch_version }}
- Datasets: {{ datasets_version }}
- Tokenizers: {{ tokenizers_version }}
Citations
{% if trainer_citation %}Cite {{ trainer_name }} as:
{{ trainer_citation }}
```{% endif %}
Cite TRL as:
```bibtex
{% raw %}@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}{% endraw %}