|
from pathlib import Path |
|
from typing import Any, Callable, Optional, Tuple, Union |
|
|
|
from .folder import default_loader |
|
|
|
from .utils import download_and_extract_archive |
|
from .vision import VisionDataset |
|
|
|
|
|
class SUN397(VisionDataset): |
|
"""`The SUN397 Data Set <https://vision.princeton.edu/projects/2010/SUN/>`_. |
|
|
|
The SUN397 or Scene UNderstanding (SUN) is a dataset for scene recognition consisting of |
|
397 categories with 108'754 images. |
|
|
|
Args: |
|
root (str or ``pathlib.Path``): Root directory of the dataset. |
|
transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, |
|
and returns a transformed version. E.g, ``transforms.RandomCrop`` |
|
target_transform (callable, optional): A function/transform that takes in the target and transforms it. |
|
download (bool, optional): If true, downloads the dataset from the internet and |
|
puts it in root directory. If dataset is already downloaded, it is not |
|
downloaded again. |
|
loader (callable, optional): A function to load an image given its path. |
|
By default, it uses PIL as its image loader, but users could also pass in |
|
``torchvision.io.decode_image`` for decoding image data into tensors directly. |
|
""" |
|
|
|
_DATASET_URL = "http://vision.princeton.edu/projects/2010/SUN/SUN397.tar.gz" |
|
_DATASET_MD5 = "8ca2778205c41d23104230ba66911c7a" |
|
|
|
def __init__( |
|
self, |
|
root: Union[str, Path], |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
download: bool = False, |
|
loader: Callable[[Union[str, Path]], Any] = default_loader, |
|
) -> None: |
|
super().__init__(root, transform=transform, target_transform=target_transform) |
|
self._data_dir = Path(self.root) / "SUN397" |
|
|
|
if download: |
|
self._download() |
|
|
|
if not self._check_exists(): |
|
raise RuntimeError("Dataset not found. You can use download=True to download it") |
|
|
|
with open(self._data_dir / "ClassName.txt") as f: |
|
self.classes = [c[3:].strip() for c in f] |
|
|
|
self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) |
|
self._image_files = list(self._data_dir.rglob("sun_*.jpg")) |
|
|
|
self._labels = [ |
|
self.class_to_idx["/".join(path.relative_to(self._data_dir).parts[1:-1])] for path in self._image_files |
|
] |
|
self.loader = loader |
|
|
|
def __len__(self) -> int: |
|
return len(self._image_files) |
|
|
|
def __getitem__(self, idx: int) -> Tuple[Any, Any]: |
|
image_file, label = self._image_files[idx], self._labels[idx] |
|
image = self.loader(image_file) |
|
|
|
if self.transform: |
|
image = self.transform(image) |
|
|
|
if self.target_transform: |
|
label = self.target_transform(label) |
|
|
|
return image, label |
|
|
|
def _check_exists(self) -> bool: |
|
return self._data_dir.is_dir() |
|
|
|
def _download(self) -> None: |
|
if self._check_exists(): |
|
return |
|
download_and_extract_archive(self._DATASET_URL, download_root=self.root, md5=self._DATASET_MD5) |
|
|