File size: 3,183 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from pathlib import Path
from typing import Any, Callable, Optional, Tuple, Union

from .folder import default_loader

from .utils import download_and_extract_archive
from .vision import VisionDataset


class SUN397(VisionDataset):
    """`The SUN397 Data Set <https://vision.princeton.edu/projects/2010/SUN/>`_.

    The SUN397 or Scene UNderstanding (SUN) is a dataset for scene recognition consisting of
    397 categories with 108'754 images.

    Args:
        root (str or ``pathlib.Path``): Root directory of the dataset.
        transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader,
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        loader (callable, optional): A function to load an image given its path.
            By default, it uses PIL as its image loader, but users could also pass in
            ``torchvision.io.decode_image`` for decoding image data into tensors directly.
    """

    _DATASET_URL = "http://vision.princeton.edu/projects/2010/SUN/SUN397.tar.gz"
    _DATASET_MD5 = "8ca2778205c41d23104230ba66911c7a"

    def __init__(
        self,
        root: Union[str, Path],
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        download: bool = False,
        loader: Callable[[Union[str, Path]], Any] = default_loader,
    ) -> None:
        super().__init__(root, transform=transform, target_transform=target_transform)
        self._data_dir = Path(self.root) / "SUN397"

        if download:
            self._download()

        if not self._check_exists():
            raise RuntimeError("Dataset not found. You can use download=True to download it")

        with open(self._data_dir / "ClassName.txt") as f:
            self.classes = [c[3:].strip() for c in f]

        self.class_to_idx = dict(zip(self.classes, range(len(self.classes))))
        self._image_files = list(self._data_dir.rglob("sun_*.jpg"))

        self._labels = [
            self.class_to_idx["/".join(path.relative_to(self._data_dir).parts[1:-1])] for path in self._image_files
        ]
        self.loader = loader

    def __len__(self) -> int:
        return len(self._image_files)

    def __getitem__(self, idx: int) -> Tuple[Any, Any]:
        image_file, label = self._image_files[idx], self._labels[idx]
        image = self.loader(image_file)

        if self.transform:
            image = self.transform(image)

        if self.target_transform:
            label = self.target_transform(label)

        return image, label

    def _check_exists(self) -> bool:
        return self._data_dir.is_dir()

    def _download(self) -> None:
        if self._check_exists():
            return
        download_and_extract_archive(self._DATASET_URL, download_root=self.root, md5=self._DATASET_MD5)