|
import os.path |
|
from pathlib import Path |
|
from typing import Any, Callable, cast, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
from PIL import Image |
|
|
|
from .utils import check_integrity, download_and_extract_archive, verify_str_arg |
|
from .vision import VisionDataset |
|
|
|
|
|
class STL10(VisionDataset): |
|
"""`STL10 <https://cs.stanford.edu/~acoates/stl10/>`_ Dataset. |
|
|
|
Args: |
|
root (str or ``pathlib.Path``): Root directory of dataset where directory |
|
``stl10_binary`` exists. |
|
split (string): One of {'train', 'test', 'unlabeled', 'train+unlabeled'}. |
|
Accordingly, dataset is selected. |
|
folds (int, optional): One of {0-9} or None. |
|
For training, loads one of the 10 pre-defined folds of 1k samples for the |
|
standard evaluation procedure. If no value is passed, loads the 5k samples. |
|
transform (callable, optional): A function/transform that takes in a PIL image |
|
and returns a transformed version. E.g, ``transforms.RandomCrop`` |
|
target_transform (callable, optional): A function/transform that takes in the |
|
target and transforms it. |
|
download (bool, optional): If true, downloads the dataset from the internet and |
|
puts it in root directory. If dataset is already downloaded, it is not |
|
downloaded again. |
|
""" |
|
|
|
base_folder = "stl10_binary" |
|
url = "http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz" |
|
filename = "stl10_binary.tar.gz" |
|
tgz_md5 = "91f7769df0f17e558f3565bffb0c7dfb" |
|
class_names_file = "class_names.txt" |
|
folds_list_file = "fold_indices.txt" |
|
train_list = [ |
|
["train_X.bin", "918c2871b30a85fa023e0c44e0bee87f"], |
|
["train_y.bin", "5a34089d4802c674881badbb80307741"], |
|
["unlabeled_X.bin", "5242ba1fed5e4be9e1e742405eb56ca4"], |
|
] |
|
|
|
test_list = [["test_X.bin", "7f263ba9f9e0b06b93213547f721ac82"], ["test_y.bin", "36f9794fa4beb8a2c72628de14fa638e"]] |
|
splits = ("train", "train+unlabeled", "unlabeled", "test") |
|
|
|
def __init__( |
|
self, |
|
root: Union[str, Path], |
|
split: str = "train", |
|
folds: Optional[int] = None, |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
download: bool = False, |
|
) -> None: |
|
super().__init__(root, transform=transform, target_transform=target_transform) |
|
self.split = verify_str_arg(split, "split", self.splits) |
|
self.folds = self._verify_folds(folds) |
|
|
|
if download: |
|
self.download() |
|
elif not self._check_integrity(): |
|
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") |
|
|
|
|
|
self.labels: Optional[np.ndarray] |
|
if self.split == "train": |
|
self.data, self.labels = self.__loadfile(self.train_list[0][0], self.train_list[1][0]) |
|
self.labels = cast(np.ndarray, self.labels) |
|
self.__load_folds(folds) |
|
|
|
elif self.split == "train+unlabeled": |
|
self.data, self.labels = self.__loadfile(self.train_list[0][0], self.train_list[1][0]) |
|
self.labels = cast(np.ndarray, self.labels) |
|
self.__load_folds(folds) |
|
unlabeled_data, _ = self.__loadfile(self.train_list[2][0]) |
|
self.data = np.concatenate((self.data, unlabeled_data)) |
|
self.labels = np.concatenate((self.labels, np.asarray([-1] * unlabeled_data.shape[0]))) |
|
|
|
elif self.split == "unlabeled": |
|
self.data, _ = self.__loadfile(self.train_list[2][0]) |
|
self.labels = np.asarray([-1] * self.data.shape[0]) |
|
else: |
|
self.data, self.labels = self.__loadfile(self.test_list[0][0], self.test_list[1][0]) |
|
|
|
class_file = os.path.join(self.root, self.base_folder, self.class_names_file) |
|
if os.path.isfile(class_file): |
|
with open(class_file) as f: |
|
self.classes = f.read().splitlines() |
|
|
|
def _verify_folds(self, folds: Optional[int]) -> Optional[int]: |
|
if folds is None: |
|
return folds |
|
elif isinstance(folds, int): |
|
if folds in range(10): |
|
return folds |
|
msg = "Value for argument folds should be in the range [0, 10), but got {}." |
|
raise ValueError(msg.format(folds)) |
|
else: |
|
msg = "Expected type None or int for argument folds, but got type {}." |
|
raise ValueError(msg.format(type(folds))) |
|
|
|
def __getitem__(self, index: int) -> Tuple[Any, Any]: |
|
""" |
|
Args: |
|
index (int): Index |
|
|
|
Returns: |
|
tuple: (image, target) where target is index of the target class. |
|
""" |
|
target: Optional[int] |
|
if self.labels is not None: |
|
img, target = self.data[index], int(self.labels[index]) |
|
else: |
|
img, target = self.data[index], None |
|
|
|
|
|
|
|
img = Image.fromarray(np.transpose(img, (1, 2, 0))) |
|
|
|
if self.transform is not None: |
|
img = self.transform(img) |
|
|
|
if self.target_transform is not None: |
|
target = self.target_transform(target) |
|
|
|
return img, target |
|
|
|
def __len__(self) -> int: |
|
return self.data.shape[0] |
|
|
|
def __loadfile(self, data_file: str, labels_file: Optional[str] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]: |
|
labels = None |
|
if labels_file: |
|
path_to_labels = os.path.join(self.root, self.base_folder, labels_file) |
|
with open(path_to_labels, "rb") as f: |
|
labels = np.fromfile(f, dtype=np.uint8) - 1 |
|
|
|
path_to_data = os.path.join(self.root, self.base_folder, data_file) |
|
with open(path_to_data, "rb") as f: |
|
|
|
everything = np.fromfile(f, dtype=np.uint8) |
|
images = np.reshape(everything, (-1, 3, 96, 96)) |
|
images = np.transpose(images, (0, 1, 3, 2)) |
|
|
|
return images, labels |
|
|
|
def _check_integrity(self) -> bool: |
|
for filename, md5 in self.train_list + self.test_list: |
|
fpath = os.path.join(self.root, self.base_folder, filename) |
|
if not check_integrity(fpath, md5): |
|
return False |
|
return True |
|
|
|
def download(self) -> None: |
|
if self._check_integrity(): |
|
return |
|
download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5) |
|
self._check_integrity() |
|
|
|
def extra_repr(self) -> str: |
|
return "Split: {split}".format(**self.__dict__) |
|
|
|
def __load_folds(self, folds: Optional[int]) -> None: |
|
|
|
if folds is None: |
|
return |
|
path_to_folds = os.path.join(self.root, self.base_folder, self.folds_list_file) |
|
with open(path_to_folds) as f: |
|
str_idx = f.read().splitlines()[folds] |
|
list_idx = np.fromstring(str_idx, dtype=np.int64, sep=" ") |
|
self.data = self.data[list_idx, :, :, :] |
|
if self.labels is not None: |
|
self.labels = self.labels[list_idx] |
|
|