File size: 7,234 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os.path
from pathlib import Path
from typing import Any, Callable, cast, Optional, Tuple, Union

import numpy as np
from PIL import Image

from .utils import check_integrity, download_and_extract_archive, verify_str_arg
from .vision import VisionDataset


class STL10(VisionDataset):
    """`STL10 <https://cs.stanford.edu/~acoates/stl10/>`_ Dataset.

    Args:
        root (str or ``pathlib.Path``): Root directory of dataset where directory
            ``stl10_binary`` exists.
        split (string): One of {'train', 'test', 'unlabeled', 'train+unlabeled'}.
            Accordingly, dataset is selected.
        folds (int, optional): One of {0-9} or None.
            For training, loads one of the 10 pre-defined folds of 1k samples for the
            standard evaluation procedure. If no value is passed, loads the 5k samples.
        transform (callable, optional): A function/transform that takes in a PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
    """

    base_folder = "stl10_binary"
    url = "http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz"
    filename = "stl10_binary.tar.gz"
    tgz_md5 = "91f7769df0f17e558f3565bffb0c7dfb"
    class_names_file = "class_names.txt"
    folds_list_file = "fold_indices.txt"
    train_list = [
        ["train_X.bin", "918c2871b30a85fa023e0c44e0bee87f"],
        ["train_y.bin", "5a34089d4802c674881badbb80307741"],
        ["unlabeled_X.bin", "5242ba1fed5e4be9e1e742405eb56ca4"],
    ]

    test_list = [["test_X.bin", "7f263ba9f9e0b06b93213547f721ac82"], ["test_y.bin", "36f9794fa4beb8a2c72628de14fa638e"]]
    splits = ("train", "train+unlabeled", "unlabeled", "test")

    def __init__(
        self,
        root: Union[str, Path],
        split: str = "train",
        folds: Optional[int] = None,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        download: bool = False,
    ) -> None:
        super().__init__(root, transform=transform, target_transform=target_transform)
        self.split = verify_str_arg(split, "split", self.splits)
        self.folds = self._verify_folds(folds)

        if download:
            self.download()
        elif not self._check_integrity():
            raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")

        # now load the picked numpy arrays
        self.labels: Optional[np.ndarray]
        if self.split == "train":
            self.data, self.labels = self.__loadfile(self.train_list[0][0], self.train_list[1][0])
            self.labels = cast(np.ndarray, self.labels)
            self.__load_folds(folds)

        elif self.split == "train+unlabeled":
            self.data, self.labels = self.__loadfile(self.train_list[0][0], self.train_list[1][0])
            self.labels = cast(np.ndarray, self.labels)
            self.__load_folds(folds)
            unlabeled_data, _ = self.__loadfile(self.train_list[2][0])
            self.data = np.concatenate((self.data, unlabeled_data))
            self.labels = np.concatenate((self.labels, np.asarray([-1] * unlabeled_data.shape[0])))

        elif self.split == "unlabeled":
            self.data, _ = self.__loadfile(self.train_list[2][0])
            self.labels = np.asarray([-1] * self.data.shape[0])
        else:  # self.split == 'test':
            self.data, self.labels = self.__loadfile(self.test_list[0][0], self.test_list[1][0])

        class_file = os.path.join(self.root, self.base_folder, self.class_names_file)
        if os.path.isfile(class_file):
            with open(class_file) as f:
                self.classes = f.read().splitlines()

    def _verify_folds(self, folds: Optional[int]) -> Optional[int]:
        if folds is None:
            return folds
        elif isinstance(folds, int):
            if folds in range(10):
                return folds
            msg = "Value for argument folds should be in the range [0, 10), but got {}."
            raise ValueError(msg.format(folds))
        else:
            msg = "Expected type None or int for argument folds, but got type {}."
            raise ValueError(msg.format(type(folds)))

    def __getitem__(self, index: int) -> Tuple[Any, Any]:
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
        target: Optional[int]
        if self.labels is not None:
            img, target = self.data[index], int(self.labels[index])
        else:
            img, target = self.data[index], None

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(np.transpose(img, (1, 2, 0)))

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self) -> int:
        return self.data.shape[0]

    def __loadfile(self, data_file: str, labels_file: Optional[str] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]:
        labels = None
        if labels_file:
            path_to_labels = os.path.join(self.root, self.base_folder, labels_file)
            with open(path_to_labels, "rb") as f:
                labels = np.fromfile(f, dtype=np.uint8) - 1  # 0-based

        path_to_data = os.path.join(self.root, self.base_folder, data_file)
        with open(path_to_data, "rb") as f:
            # read whole file in uint8 chunks
            everything = np.fromfile(f, dtype=np.uint8)
            images = np.reshape(everything, (-1, 3, 96, 96))
            images = np.transpose(images, (0, 1, 3, 2))

        return images, labels

    def _check_integrity(self) -> bool:
        for filename, md5 in self.train_list + self.test_list:
            fpath = os.path.join(self.root, self.base_folder, filename)
            if not check_integrity(fpath, md5):
                return False
        return True

    def download(self) -> None:
        if self._check_integrity():
            return
        download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
        self._check_integrity()

    def extra_repr(self) -> str:
        return "Split: {split}".format(**self.__dict__)

    def __load_folds(self, folds: Optional[int]) -> None:
        # loads one of the folds if specified
        if folds is None:
            return
        path_to_folds = os.path.join(self.root, self.base_folder, self.folds_list_file)
        with open(path_to_folds) as f:
            str_idx = f.read().splitlines()[folds]
            list_idx = np.fromstring(str_idx, dtype=np.int64, sep=" ")
            self.data = self.data[list_idx, :, :, :]
            if self.labels is not None:
                self.labels = self.labels[list_idx]