jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
import torch
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.utilities import rank_zero_warn
def _safe_matmul(x: Tensor, y: Tensor) -> Tensor:
"""Safe calculation of matrix multiplication.
If input is float16, will cast to float32 for computation and back again.
"""
if x.dtype == torch.float16 or y.dtype == torch.float16:
return (x.float() @ y.T.float()).half()
return x @ y.T
def _safe_xlogy(x: Tensor, y: Tensor) -> Tensor:
"""Compute x * log(y). Returns 0 if x=0.
Example:
>>> import torch
>>> x = torch.zeros(1)
>>> _safe_xlogy(x, 1/x)
tensor([0.])
"""
res = x * torch.log(y)
res[x == 0] = 0.0
return res
def _safe_divide(
num: Tensor,
denom: Tensor,
zero_division: Union[float, Literal["warn", "nan"]] = 0.0,
) -> Tensor:
"""Safe division, by preventing division by zero.
Function will cast to float if input is not already to secure backwards compatibility.
Args:
num: numerator tensor
denom: denominator tensor, which may contain zeros
zero_division: value to replace elements divided by zero
Example:
>>> import torch
>>> num = torch.tensor([1.0, 2.0, 3.0])
>>> denom = torch.tensor([0.0, 1.0, 2.0])
>>> _safe_divide(num, denom)
tensor([0.0000, 2.0000, 1.5000])
"""
num = num if num.is_floating_point() else num.float()
denom = denom if denom.is_floating_point() else denom.float()
if isinstance(zero_division, (float, int)) or zero_division == "warn":
if zero_division == "warn" and torch.any(denom == 0):
rank_zero_warn("Detected zero division in _safe_divide. Setting 0/0 to 0.0")
zero_division = 0.0 if zero_division == "warn" else zero_division
zero_division_tensor = torch.tensor(zero_division, dtype=num.dtype).to(num.device, non_blocking=True)
return torch.where(denom != 0, num / denom, zero_division_tensor)
return torch.true_divide(num, denom)
def _adjust_weights_safe_divide(
score: Tensor, average: Optional[str], multilabel: bool, tp: Tensor, fp: Tensor, fn: Tensor, top_k: int = 1
) -> Tensor:
if average is None or average == "none":
return score
if average == "weighted":
weights = tp + fn
else:
weights = torch.ones_like(score)
if not multilabel:
weights[tp + fp + fn == 0 if top_k == 1 else tp + fn == 0] = 0.0
return _safe_divide(weights * score, weights.sum(-1, keepdim=True)).sum(-1)
def _auc_format_inputs(x: Tensor, y: Tensor) -> tuple[Tensor, Tensor]:
"""Check that auc input is correct."""
x = x.squeeze() if x.ndim > 1 else x
y = y.squeeze() if y.ndim > 1 else y
if x.ndim > 1 or y.ndim > 1:
raise ValueError(
f"Expected both `x` and `y` tensor to be 1d, but got tensors with dimension {x.ndim} and {y.ndim}"
)
if x.numel() != y.numel():
raise ValueError(
f"Expected the same number of elements in `x` and `y` tensor but received {x.numel()} and {y.numel()}"
)
return x, y
def _auc_compute_without_check(x: Tensor, y: Tensor, direction: float, axis: int = -1) -> Tensor:
"""Compute area under the curve using the trapezoidal rule.
Assumes increasing or decreasing order of `x`.
"""
with torch.no_grad():
auc_score: Tensor = torch.trapz(y, x, dim=axis) * direction
return auc_score
def _auc_compute(x: Tensor, y: Tensor, reorder: bool = False) -> Tensor:
"""Compute area under the curve using the trapezoidal rule.
Example:
>>> import torch
>>> x = torch.tensor([1, 2, 3, 4])
>>> y = torch.tensor([1, 2, 3, 4])
>>> _auc_compute(x, y)
tensor(7.5000)
"""
with torch.no_grad():
if reorder:
x, x_idx = torch.sort(x, stable=True)
y = y[x_idx]
dx = x[1:] - x[:-1]
if (dx < 0).any():
if (dx <= 0).all():
direction = -1.0
else:
raise ValueError(
"The `x` tensor is neither increasing or decreasing. Try setting the reorder argument to `True`."
)
else:
direction = 1.0
return _auc_compute_without_check(x, y, direction)
def auc(x: Tensor, y: Tensor, reorder: bool = False) -> Tensor:
"""Compute Area Under the Curve (AUC) using the trapezoidal rule.
Args:
x: x-coordinates, must be either increasing or decreasing
y: y-coordinates
reorder: if True, will reorder the arrays to make it either increasing or decreasing
Return:
Tensor containing AUC score
"""
x, y = _auc_format_inputs(x, y)
return _auc_compute(x, y, reorder=reorder)
def interp(x: Tensor, xp: Tensor, fp: Tensor) -> Tensor:
"""One-dimensional linear interpolation for monotonically increasing sample points.
Returns the one-dimensional piecewise linear interpolation to a function with
given discrete data points :math:`(xp, fp)`, evaluated at :math:`x`.
Adjusted version of this https://github.com/pytorch/pytorch/issues/50334#issuecomment-1000917964
Args:
x: the :math:`x`-coordinates at which to evaluate the interpolated values.
xp: the :math:`x`-coordinates of the data points, must be increasing.
fp: the :math:`y`-coordinates of the data points, same length as `xp`.
Returns:
the interpolated values, same size as `x`.
Example:
>>> x = torch.tensor([0.5, 1.5, 2.5])
>>> xp = torch.tensor([1, 2, 3])
>>> fp = torch.tensor([1, 2, 3])
>>> interp(x, xp, fp)
tensor([0.5000, 1.5000, 2.5000])
"""
m = _safe_divide(fp[1:] - fp[:-1], xp[1:] - xp[:-1])
b = fp[:-1] - (m * xp[:-1])
indices = torch.sum(torch.ge(x[:, None], xp[None, :]), 1) - 1
indices = torch.clamp(indices, 0, len(m) - 1)
return m[indices] * x + b[indices]
def normalize_logits_if_needed(tensor: Tensor, normalization: Literal["sigmoid", "softmax"]) -> Tensor:
"""Normalize logits if needed.
If input tensor is outside the [0,1] we assume that logits are provided and apply the normalization.
Use torch.where to prevent device-host sync.
Args:
tensor: input tensor that may be logits or probabilities
normalization: normalization method, either 'sigmoid' or 'softmax'
Returns:
normalized tensor if needed
Example:
>>> import torch
>>> tensor = torch.tensor([-1.0, 0.0, 1.0])
>>> normalize_logits_if_needed(tensor, normalization="sigmoid")
tensor([0.2689, 0.5000, 0.7311])
>>> tensor = torch.tensor([[-1.0, 0.0, 1.0], [1.0, 0.0, -1.0]])
>>> normalize_logits_if_needed(tensor, normalization="softmax")
tensor([[0.0900, 0.2447, 0.6652],
[0.6652, 0.2447, 0.0900]])
>>> tensor = torch.tensor([0.0, 0.5, 1.0])
>>> normalize_logits_if_needed(tensor, normalization="sigmoid")
tensor([0.0000, 0.5000, 1.0000])
"""
# decrease sigmoid on cpu .
if tensor.device == torch.device("cpu"):
if not torch.all((tensor >= 0) * (tensor <= 1)):
tensor = tensor.sigmoid() if normalization == "sigmoid" else torch.softmax(tensor, dim=1)
return tensor
# decrease device-host sync on device .
condition = ((tensor < 0) | (tensor > 1)).any()
return torch.where(
condition,
torch.sigmoid(tensor) if normalization == "sigmoid" else torch.softmax(tensor, dim=1),
tensor,
)