# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union import torch from torch import Tensor from typing_extensions import Literal from torchmetrics.utilities import rank_zero_warn def _safe_matmul(x: Tensor, y: Tensor) -> Tensor: """Safe calculation of matrix multiplication. If input is float16, will cast to float32 for computation and back again. """ if x.dtype == torch.float16 or y.dtype == torch.float16: return (x.float() @ y.T.float()).half() return x @ y.T def _safe_xlogy(x: Tensor, y: Tensor) -> Tensor: """Compute x * log(y). Returns 0 if x=0. Example: >>> import torch >>> x = torch.zeros(1) >>> _safe_xlogy(x, 1/x) tensor([0.]) """ res = x * torch.log(y) res[x == 0] = 0.0 return res def _safe_divide( num: Tensor, denom: Tensor, zero_division: Union[float, Literal["warn", "nan"]] = 0.0, ) -> Tensor: """Safe division, by preventing division by zero. Function will cast to float if input is not already to secure backwards compatibility. Args: num: numerator tensor denom: denominator tensor, which may contain zeros zero_division: value to replace elements divided by zero Example: >>> import torch >>> num = torch.tensor([1.0, 2.0, 3.0]) >>> denom = torch.tensor([0.0, 1.0, 2.0]) >>> _safe_divide(num, denom) tensor([0.0000, 2.0000, 1.5000]) """ num = num if num.is_floating_point() else num.float() denom = denom if denom.is_floating_point() else denom.float() if isinstance(zero_division, (float, int)) or zero_division == "warn": if zero_division == "warn" and torch.any(denom == 0): rank_zero_warn("Detected zero division in _safe_divide. Setting 0/0 to 0.0") zero_division = 0.0 if zero_division == "warn" else zero_division zero_division_tensor = torch.tensor(zero_division, dtype=num.dtype).to(num.device, non_blocking=True) return torch.where(denom != 0, num / denom, zero_division_tensor) return torch.true_divide(num, denom) def _adjust_weights_safe_divide( score: Tensor, average: Optional[str], multilabel: bool, tp: Tensor, fp: Tensor, fn: Tensor, top_k: int = 1 ) -> Tensor: if average is None or average == "none": return score if average == "weighted": weights = tp + fn else: weights = torch.ones_like(score) if not multilabel: weights[tp + fp + fn == 0 if top_k == 1 else tp + fn == 0] = 0.0 return _safe_divide(weights * score, weights.sum(-1, keepdim=True)).sum(-1) def _auc_format_inputs(x: Tensor, y: Tensor) -> tuple[Tensor, Tensor]: """Check that auc input is correct.""" x = x.squeeze() if x.ndim > 1 else x y = y.squeeze() if y.ndim > 1 else y if x.ndim > 1 or y.ndim > 1: raise ValueError( f"Expected both `x` and `y` tensor to be 1d, but got tensors with dimension {x.ndim} and {y.ndim}" ) if x.numel() != y.numel(): raise ValueError( f"Expected the same number of elements in `x` and `y` tensor but received {x.numel()} and {y.numel()}" ) return x, y def _auc_compute_without_check(x: Tensor, y: Tensor, direction: float, axis: int = -1) -> Tensor: """Compute area under the curve using the trapezoidal rule. Assumes increasing or decreasing order of `x`. """ with torch.no_grad(): auc_score: Tensor = torch.trapz(y, x, dim=axis) * direction return auc_score def _auc_compute(x: Tensor, y: Tensor, reorder: bool = False) -> Tensor: """Compute area under the curve using the trapezoidal rule. Example: >>> import torch >>> x = torch.tensor([1, 2, 3, 4]) >>> y = torch.tensor([1, 2, 3, 4]) >>> _auc_compute(x, y) tensor(7.5000) """ with torch.no_grad(): if reorder: x, x_idx = torch.sort(x, stable=True) y = y[x_idx] dx = x[1:] - x[:-1] if (dx < 0).any(): if (dx <= 0).all(): direction = -1.0 else: raise ValueError( "The `x` tensor is neither increasing or decreasing. Try setting the reorder argument to `True`." ) else: direction = 1.0 return _auc_compute_without_check(x, y, direction) def auc(x: Tensor, y: Tensor, reorder: bool = False) -> Tensor: """Compute Area Under the Curve (AUC) using the trapezoidal rule. Args: x: x-coordinates, must be either increasing or decreasing y: y-coordinates reorder: if True, will reorder the arrays to make it either increasing or decreasing Return: Tensor containing AUC score """ x, y = _auc_format_inputs(x, y) return _auc_compute(x, y, reorder=reorder) def interp(x: Tensor, xp: Tensor, fp: Tensor) -> Tensor: """One-dimensional linear interpolation for monotonically increasing sample points. Returns the one-dimensional piecewise linear interpolation to a function with given discrete data points :math:`(xp, fp)`, evaluated at :math:`x`. Adjusted version of this https://github.com/pytorch/pytorch/issues/50334#issuecomment-1000917964 Args: x: the :math:`x`-coordinates at which to evaluate the interpolated values. xp: the :math:`x`-coordinates of the data points, must be increasing. fp: the :math:`y`-coordinates of the data points, same length as `xp`. Returns: the interpolated values, same size as `x`. Example: >>> x = torch.tensor([0.5, 1.5, 2.5]) >>> xp = torch.tensor([1, 2, 3]) >>> fp = torch.tensor([1, 2, 3]) >>> interp(x, xp, fp) tensor([0.5000, 1.5000, 2.5000]) """ m = _safe_divide(fp[1:] - fp[:-1], xp[1:] - xp[:-1]) b = fp[:-1] - (m * xp[:-1]) indices = torch.sum(torch.ge(x[:, None], xp[None, :]), 1) - 1 indices = torch.clamp(indices, 0, len(m) - 1) return m[indices] * x + b[indices] def normalize_logits_if_needed(tensor: Tensor, normalization: Literal["sigmoid", "softmax"]) -> Tensor: """Normalize logits if needed. If input tensor is outside the [0,1] we assume that logits are provided and apply the normalization. Use torch.where to prevent device-host sync. Args: tensor: input tensor that may be logits or probabilities normalization: normalization method, either 'sigmoid' or 'softmax' Returns: normalized tensor if needed Example: >>> import torch >>> tensor = torch.tensor([-1.0, 0.0, 1.0]) >>> normalize_logits_if_needed(tensor, normalization="sigmoid") tensor([0.2689, 0.5000, 0.7311]) >>> tensor = torch.tensor([[-1.0, 0.0, 1.0], [1.0, 0.0, -1.0]]) >>> normalize_logits_if_needed(tensor, normalization="softmax") tensor([[0.0900, 0.2447, 0.6652], [0.6652, 0.2447, 0.0900]]) >>> tensor = torch.tensor([0.0, 0.5, 1.0]) >>> normalize_logits_if_needed(tensor, normalization="sigmoid") tensor([0.0000, 0.5000, 1.0000]) """ # decrease sigmoid on cpu . if tensor.device == torch.device("cpu"): if not torch.all((tensor >= 0) * (tensor <= 1)): tensor = tensor.sigmoid() if normalization == "sigmoid" else torch.softmax(tensor, dim=1) return tensor # decrease device-host sync on device . condition = ((tensor < 0) | (tensor > 1)).any() return torch.where( condition, torch.sigmoid(tensor) if normalization == "sigmoid" else torch.softmax(tensor, dim=1), tensor, )