|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
from torch import Tensor, tensor |
|
|
|
from torchmetrics.functional.text.wip import _wip_compute, _wip_update |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["WordInfoPreserved.plot"] |
|
|
|
|
|
class WordInfoPreserved(Metric): |
|
r"""Word Information Preserved (`WIP`_) is a metric of the performance of an automatic speech recognition system. |
|
|
|
This value indicates the percentage of words that were correctly predicted between a set of ground- |
|
truth sentences and a set of hypothesis sentences. The higher the value, the better the performance of the ASR |
|
system with a WordInfoPreserved of 1 being a perfect score. Word Information Preserved rate can then be |
|
computed as: |
|
|
|
.. math:: |
|
wip = \frac{C}{N} * \frac{C}{P} |
|
|
|
where: |
|
|
|
- :math:`C` is the number of correct words, |
|
- :math:`N` is the number of words in the reference |
|
- :math:`P` is the number of words in the prediction |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~List`): Transcription(s) to score as a string or list of strings |
|
- ``target`` (:class:`~List`): Reference(s) for each speech input as a string or list of strings |
|
|
|
As output of ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``wip`` (:class:`~torch.Tensor`): A tensor with the Word Information Preserved score |
|
|
|
Args: |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Examples: |
|
>>> from torchmetrics.text import WordInfoPreserved |
|
>>> preds = ["this is the prediction", "there is an other sample"] |
|
>>> target = ["this is the reference", "there is another one"] |
|
>>> wip = WordInfoPreserved() |
|
>>> wip(preds, target) |
|
tensor(0.3472) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: bool = False |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
|
|
errors: Tensor |
|
preds_total: Tensor |
|
target_total: Tensor |
|
|
|
def __init__( |
|
self, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
self.add_state("errors", tensor(0.0), dist_reduce_fx="sum") |
|
self.add_state("target_total", tensor(0.0), dist_reduce_fx="sum") |
|
self.add_state("preds_total", tensor(0.0), dist_reduce_fx="sum") |
|
|
|
def update(self, preds: Union[str, list[str]], target: Union[str, list[str]]) -> None: |
|
"""Update state with predictions and targets.""" |
|
errors, target_total, preds_total = _wip_update(preds, target) |
|
self.errors += errors |
|
self.target_total += target_total |
|
self.preds_total += preds_total |
|
|
|
def compute(self) -> Tensor: |
|
"""Calculate the Word Information Preserved.""" |
|
return _wip_compute(self.errors, self.target_total, self.preds_total) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.text import WordInfoPreserved |
|
>>> metric = WordInfoPreserved() |
|
>>> preds = ["this is the prediction", "there is an other sample"] |
|
>>> target = ["this is the reference", "there is another one"] |
|
>>> metric.update(preds, target) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.text import WordInfoPreserved |
|
>>> metric = WordInfoPreserved() |
|
>>> preds = ["this is the prediction", "there is an other sample"] |
|
>>> target = ["this is the reference", "there is another one"] |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(preds, target)) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|